Supplementary Materials

Identification of potential regulatory mutations using multi-omics analysis and haplotyping of lung adenocarcinoma cell lines

Sarun Sereewattanawoot, Ayako Suzuki, Masahide Seki, Yoshitaka Sakamoto, Takashi Kohno, Sumio Sugano, Katsuya Tsuchihara, Yutaka Suzuki

Table of Contents

Supplementary Materials Legends	2
Supplementary Figure S1	5
Supplementary Figure S2	6
Supplementary Figure S3	7
Supplementary Figure S4	
Supplementary Figure S5	9
Supplementary Figure S6	
Supplementary Figure S7	
Supplementary Figure S8.	
Supplementary Figure S9	
Supplementary Figure S10	15
Supplementary Table S1	
Supplementary Table S2	21
Supplementary Table S3	
Supplementary Table S4	23
Supplementary Table S5	24
Supplementary Table S8	25

*Supplementary Table S6, Supplementary Table S7, Supplementary Table S9 and Supplementary Table S10 are provided in separate Microsoft Excel files.

Supplementary Materials Legends Supplementary Fig. S1. Scheme of haplotype construction.

Graphic representation of haplotype construction based on the Molecular Indexes (MIs). Each circle represents one variant (ref or alt) in one SNP/SNV position. Circles that are connected horizontally are members of the same MIs (left box) or haplotypes (center and right boxes). Vertically aligned circles occupied the same SNP/SNV position in the genome. Thin arrows and rectangles indicate components of each haplotype.

Supplementary Fig. S2. Ploidy of the cell lines.

Histogram comparing the average ploidy reported by implementing the phasing strategy and the average ploidy previously reported by COSMIC. COSMIC data are available for 17 of the 23 cell line. For those cell lines, average ploidy is 3.48 – 2.73 (average 3.23) for our phasing and 3.13 - 1.99 (average 3.04) for COSMIC.

Supplementary Fig. S3. Relation between sequencing depths and phase block coverage in LC2/ad

Curves showing relation between sequencing depths and phase blocks (**A**) and phased SNPs/SNVs (**B**) in LC2/ad cell line. Blue dots represent cumulative coverage of 1-13 MinION runs, curves are logarithmic regression of the dots.

Supplementary Fig. S4. HiC analysis of regulatory mutations.

(**A**, **B**) Association between regulatory mutations and the promoters in topologically associating domains (TADs). The number for phased regulatory mutations (A) and phased with biased expression (**B**) are shown in the graphs. (**C**) An example of TADs with regulatory mutations. A regulatory mutation located in different TAD of the TSS is visualized in A549 HiC data using the WashU EpiGenome Browser.

Supplementary Fig. S5. PANTHER GO-Slim analysis of imprinted genes.

GO-term overrepresentation analysis by Panther using the Panther GO-Slim Biological Process database. Only "cell-cell adhesion", a subset of cellular processes (bottom) was significantly enriched (6.33 folds; Bonferroni corrected P=0.03).

Supplementary Fig. S6. Examples of allelic expression imbalances caused by imprinting.

Visualization of *MAP2K3* (**A**) and *BCLAF1* (**B**), which are transcriptionally imprinted in all cell lines regardless of the presence or expression of regulatory SNVs. The tables indicate the presence of coding region SNPs/SNVs in each cell line and blue entries mean indicate presence while white entries indicate absence. Due to the large number of cell lines and variants, only 4 common SNPs/SNVs from *MAP2K3* and 2 from *BCLAF1* are shown via the genomic viewer (IGV).

Supplementary Fig. S7. RefSeq transcripts with biased allele expression.

Breakdown of RefSeq transcripts with both regulatory SNVs ChIP-imbalance expression and coding SNPs/SNVs RNA imbalance expression, partition by chromosome X and other chromosomes.

Supplementary Fig S8. Haplotyping of PDGFRA gene in H1703 cell line

Each character denotes nucleotide in each haplotype's SNPs/SNVs position; (+) indicates insertion after that position and (-) indicates deletion after that position.

Supplementary Fig. S9. Gain/loss of regulatory elements by regulatory mutations.

(A) A regulatory mutation of *ZNF594* in A427 cell line. A promoter mutation and three coding SNPs are shown with IGV visualization of whole-genome sequencing and RNA-seq data (upper). 18 ENCODE ChIP-Seq peaks were overlapped with the regulatory mutation (lower panel). (B) A regulatory mutation of *ERAP2* in H1975 cell line. A promoter mutation and coding SNV are shown using IGV. (C) The *RNF2* binding peak in ENCODE ChIP-Seq data overlapped with a regulatory mutation of *NFATC1* in RERF-LC-Ad1 (left). Expression levels of *NFATC1* in the cell lines are shown in the right.

Supplementary Fig. S10. Survival analysis of 31 genes with regulatory mutations using TCGA-LUAD data.

Kaplan-Meier analysis of cases in TCGA-LUAD data divided into two groups depending on expression levels of the genes with regulatory mutations. (**A**, **B**) The cases with high expression levels of a given gene significantly showed good or poor prognosis comparing with the other cases. (**C**, **D**) The cases with low expression levels of a given gene significantly showed good or poor prognosis comparing with the other cases.

Supplementary Table S1.Summary of SNPs/SNVs detected by Illumina short-read sequencing.

Genic SNPs/SNVs are those in the exon, intron and UTR. Coding SNPs/SNVs are those only in exons. Regulatory SNVs are those in "peak" region of each ChiP marker. Each Chip-Seq marker dataset was counted separately.

Supplementary Table S2. Detailed statistics of implemented phasing scheme.

Detailed statistics of the 10x synthetic long-read sequencing with phasing statistics from the implemented phasing scheme (the original 10x Long Ranger results are summarized in Table 1). Block lengths were calculated by subtracting the distance between the most 5' SNP/SNV and the most 3' SNP/SNV in each phase block.

Supplementary Table S3. Statistics of the MinION physical long read sequencing.

We performed nine 2D runs and one 1D run for H1975, three 2D runs for RERF-LC-KJ and three 1D and 10 1D² runs for LC/2ad. For the 2D runs, only paired read that passed MinION's quality control were used. For the 1D and 1D² run, any read that passed quality control was used. Reads from every run were then merged and analyzed as a single dataset.

Supplementary Table S4. Validation analysis of the phasing results by MinION reads.

Summary of validation analysis by MinION. Only reads with >10 mapping quality were considered. Blocks that had at least twice supportive reads were considered validated.

For 1D and 1D² runs (LC2ad), only nucleotides with base call quality over 15 were considered.

Supplementary Table S5. The number of heterozygous SNVs with imbalanced and balanced transcriptions.

The number of SNVs called and considered heterozygous by GATK HaplotypeCaller categorized by chromosome and expression pattern.

Supplementary Table S6. A list of imprinted RefSeq transcripts in more than 7 cell lines.

This table is provided in separate Excel file.

Supplementary Table S7. A list of regulatory mutations phased and allelic-biased in the 23 cell lines.

The full table is provided in separate Excel file.

Supplementary Table S8. PANTHER GO-Slim overrepresentation analysis of regulatory SNVs.

Only GO-Terms with Benjamini P-values < 0.05 are shown. "DNA binding" (GO:0003677)

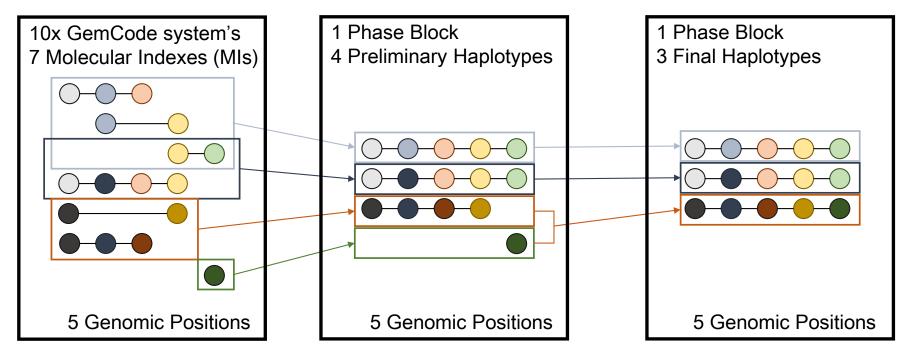
, "Regulation of gene expression, epigenetic" (GO:0040029) and "Regulation of nucleobase-containing compound metabolic process" (GO:0019219) are overrepresented, hinting a more complex downstream effects of those regulatory mutations.

Supplementary Table S9 Lists of regulatory SNVs associated with IncRNA and enhancer regions in the FANTOM5 database

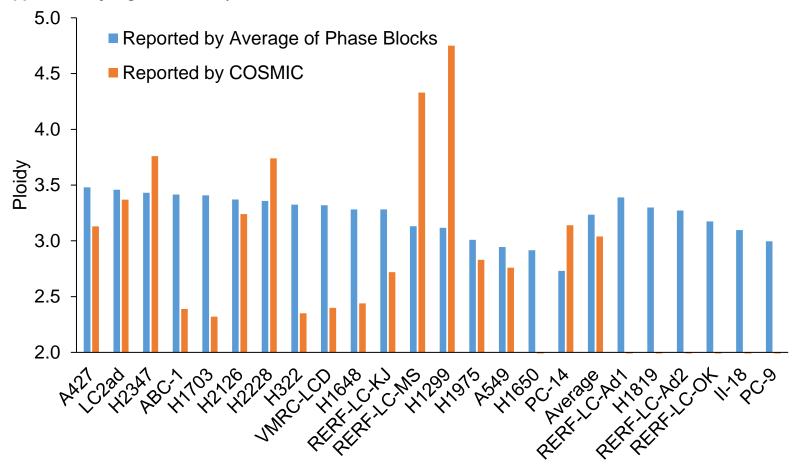
The table is provided by the separate excel file.

(A) Regulatory SNVs associated with FANTOM CAT

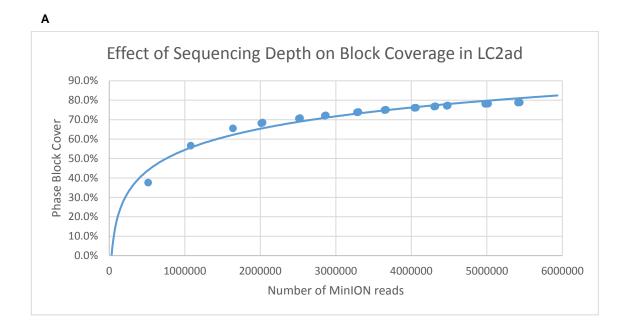
(B) Regulatory SNVs associated with enhancer regions

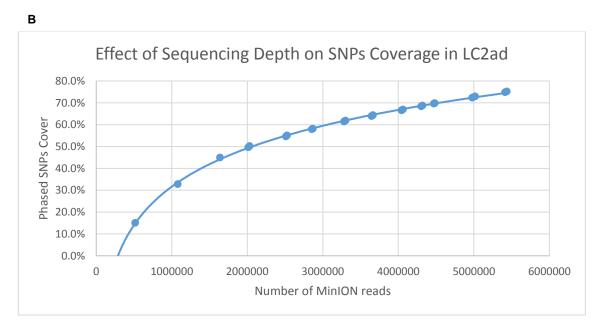

Supplementary Table S10 Sequences of DNA fragments and primers for validation experiments

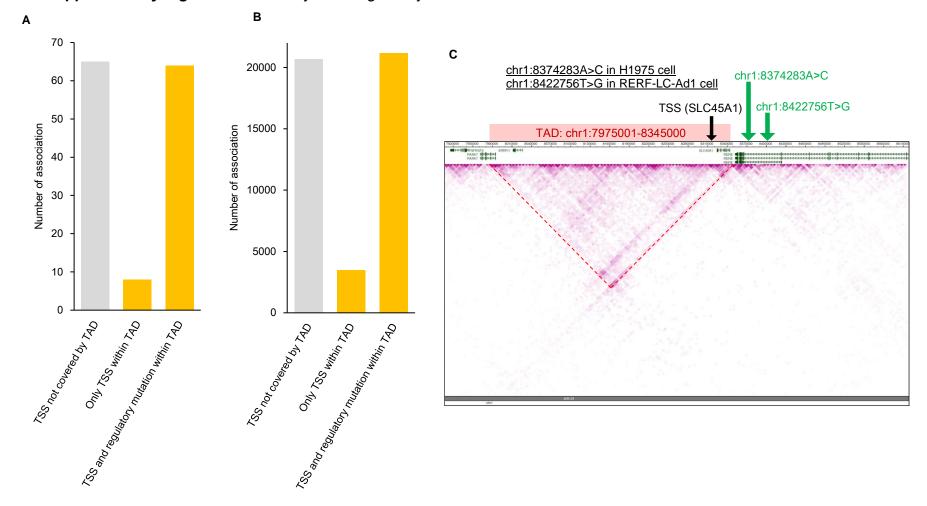
The table is provided by the separate excel file.


(A) DNA fragments used for Luciferase assay

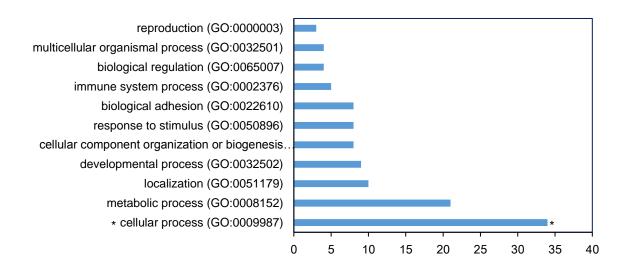
(B) Primers used for qPCR

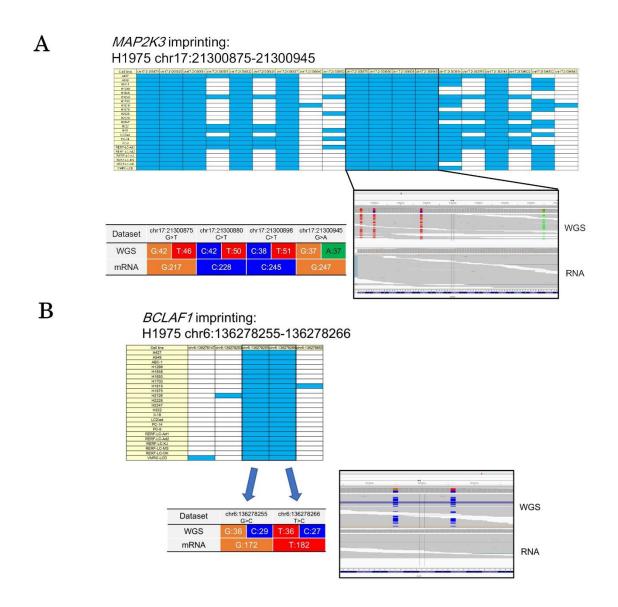

Supplementary Figure S1 Scheme of haplotype construction



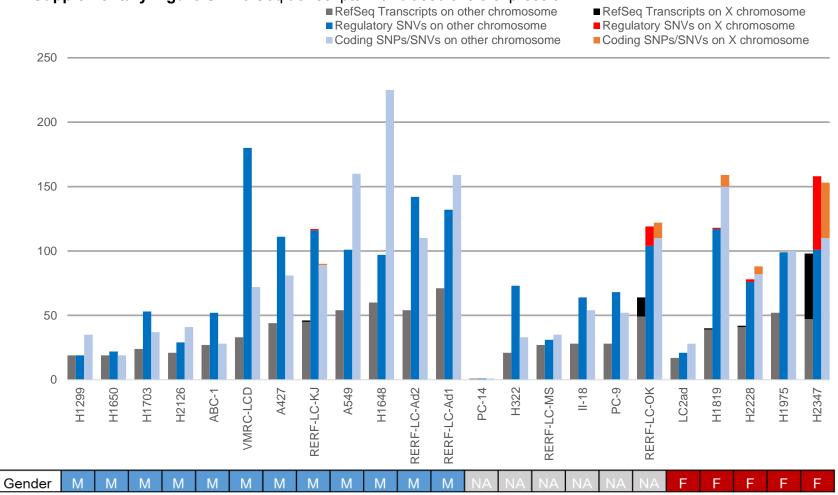

Supplementary Figure S2 Ploidy of the cell lines

Supplementary Figure S3 Relation between sequencing depths and phase block coverage in LC2/ad




Supplementary Figure S4 HiC analysis of regulatory mutations

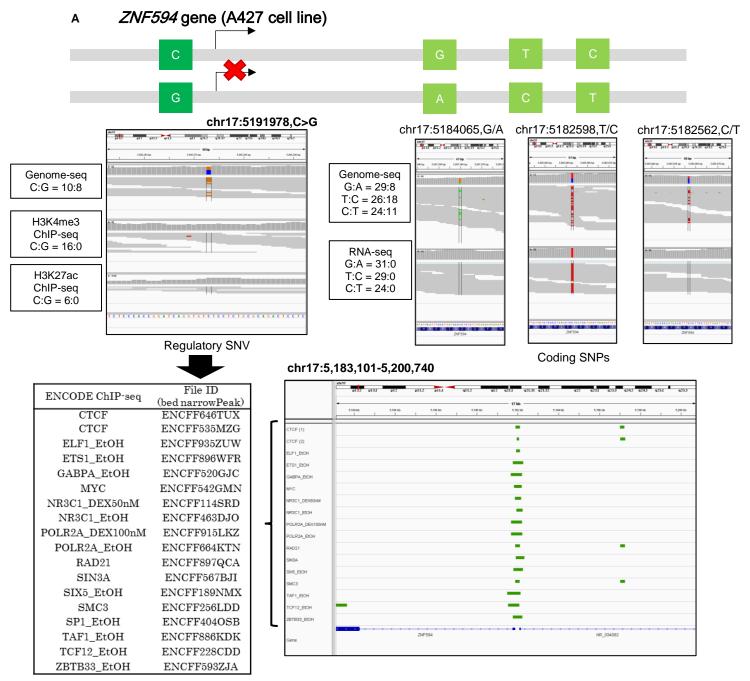
Supplementary Figure S5 PANTHER GO-Slim analysis of imprinted genes

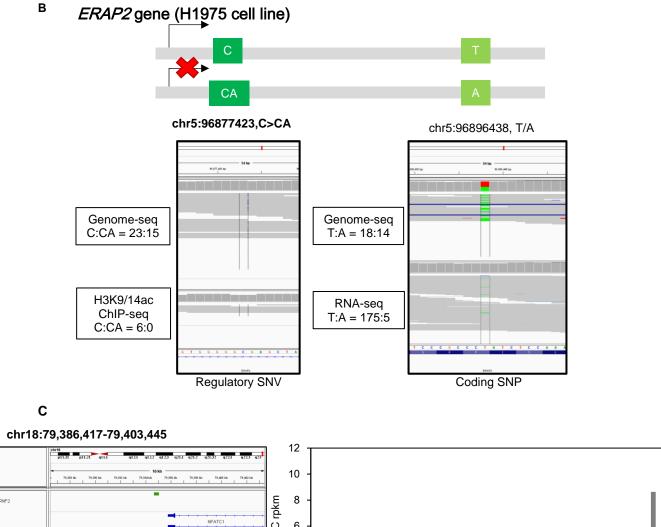


*"cell-cell adhesion" (GO:0016337), a subset of cellular process, is significantly enriched (6.33 folds; Benjamini P= 0.03)

Supplementary Figure S6 Examples of allelic expression imbalances caused by imprinting

Supplementary Figure S7 RefSeq transcripts with biased allele expression

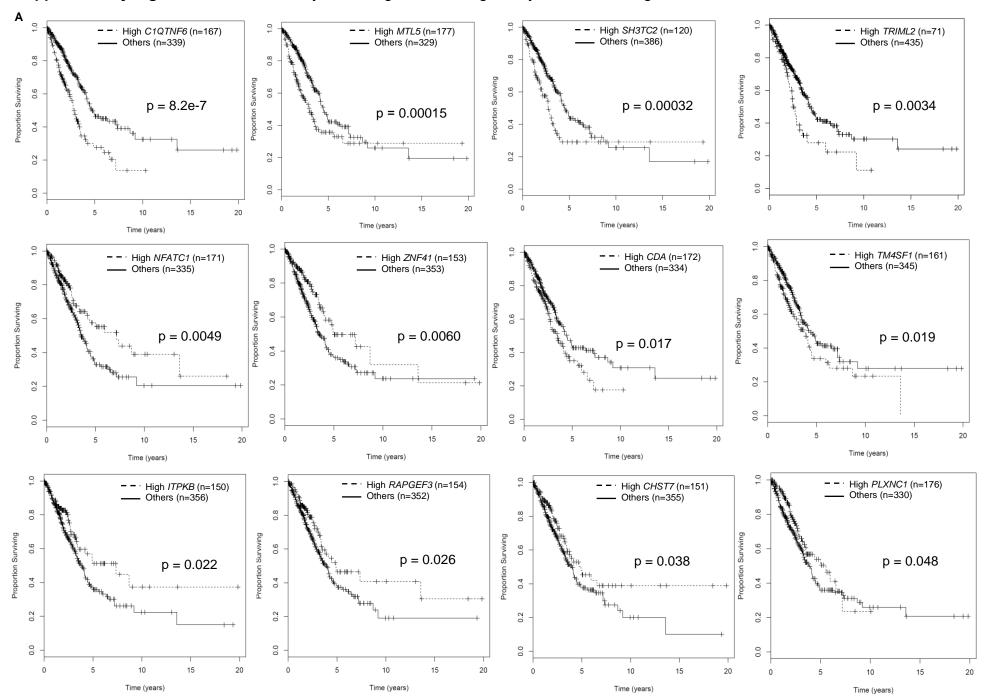

■ RefSeq Transcripts on X chromosome


																																												C	Cod	ing	SN	NPs	÷			
		chr4:54221414	chr4:54222376	chr4:54222594	chr4:54222742	chr4:54226459	chr4:54227622	chr4:54227747	chr4:54227788	chr4:54227864	chr4:54228300	chr4:54228462	chr4:54230013	chr4:54232874	chr4:54236258	chr4:54240528	chr4:54240616	chr4:54258424	chr4:54263911	chr4:54263987	chr4:54264627	chr4:54264834	chr4:54265283	chr4:54267559	chr4:54267769	chr4:54267792	chr4:54271016	chr4:54271934	chr4:54273604	chr4:54273849	chr4:54275126	chr4:54275333	chr4:54275365	chr4:54277410	chr4:54277854	chr4:54278223	chr4:54278246	chr4:54280222	chr4:54280239	chr4:54280587	chr4:54280759	chr4:54280760	chr4:54284564	chr4:54285791	chr4:54285836	chr4:54285873	chr4:54286117	chr4:54286319	chr4:54287740	chr4:54287942	chr4:54288360	chr4:54288724
	1	А	т	т	A	с	(-)AACTT	G	А	G	А	т	А	А	с	с	с	G	с	A	G	A (-)	А	G	т	т	с	с	с	т	А	т	т	А	т	т	A	G T	Т	А	Т	т	9A(+)		Т	T	T	(-) TTTATTT (-)	С	Т	с	с
	2	А	т	т	А	с	(-)AACTT	G	А	G	А	т	А	А	с	с	с	G	с	А	G	(-)	А	G	т	т	с	с	с	т	А	т	т	А	т	т	A	Э т	(+)TGTAGGT	A 4	Т	т	9A(+)		Т	Т	Т	(-) TTTATTT (-) TTTATTT (-) TTTATTTA	С		с	с
	3	А	т	т	А	с	(-)AACTT	G	А	G	A	т	А	А	с	с	с	G	с	А	G	A (-)	А	G	т	т	с	(+)TCCT	с	т	А	т	т	А	т		c	G T	(+)TGTAGGT (+)TGTAGGT (+)TGTAGGT	A	Т	т	9 Y (+)		Т	T	T	(-) TTTATTT ATTTATTTA		Т	с	с
Number	4	А	т	т	A	с	(-)AACTT	G	А	G	А	т	А	А	с	с	с	G	с	А	G	т	А	G	т	т	с	(+)TCCT	с	т	А	т	т	А	т	AAA(-)	c	ЭT	1954191(+)	A	Т	Т	9A(+)	Т	Т	T	T	TTTATTT(-) ATTTATTTA	С	Т	с	с
	5	А	с	т	A	с	(-)AACTT	А	А	G	A	т	А	А	с	т	G	A	т	G	т	т	с	т	с	с	т	с	т	с	G	с	А	G	т	т	A	A C	Т	с	A		A C	∀ (+)	G	с	G	Т	Т	с	G	Т
Haplotype	6	A	с	с	А	т	с	A	G	с	G	G	А	А	с	т	G	A	т	G	т	т	с	т	с	с	т	с	т	с	G	с	А	G	G	т	A	A C	Ē.	C	A		A C	A(+)	G	с	G	Т	Т	с	G	Т
	7	А	с	с	А	т	с	А	G	с	G	G	А	А	с	т	G	A	т	G	т	т	с	т	С	с	т	с	т	с	G	с	А	G	G	т	A	A C	(+)T01/45	A	A		A C	Y (+)	G	с	G	Т	т	с	G	т
	8	A	с	с	А	т	с	А	G	с	G	G	А	А	с	т	G	A	т	G	т	т	с	т	с	с	т	с	т	с	G	с	А	G	G	т	A	A C		с	A		A C	A(+)	G	с	G	Т	Т	с	G	т
	9	с	т	с	с	т	с	A	G	с	G	G	т	с	т	т	G	A	т	G	Т	т	с	Т	с	с	т	с	Т	с	G	с	A	G	G	т	A	A C	1994191(+)	C	A	A	A C	A (+)	G	с	G	Т	Т	с	G	Т

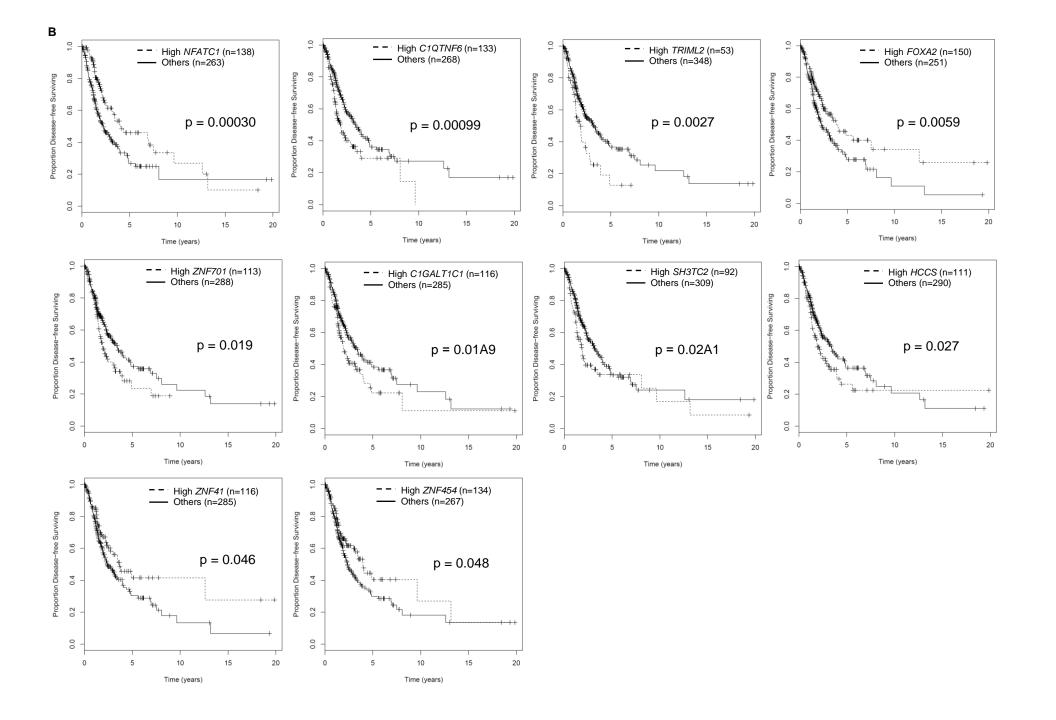
Supplementary Figure S8. Haplotyping of PDGFRA gene in H1703 cell line

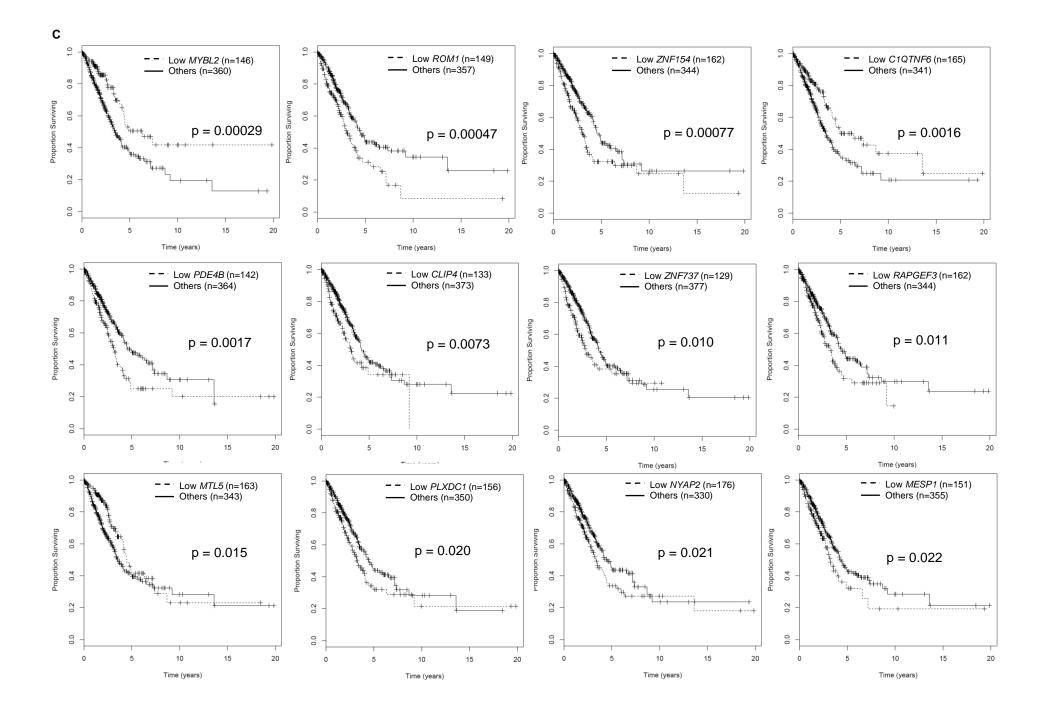
Regulatory SNVs

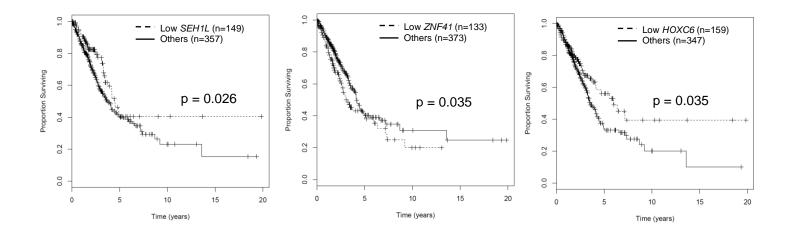
Supplementary Figure S9 Gain/loss of regulatory elements by regulatory mutations

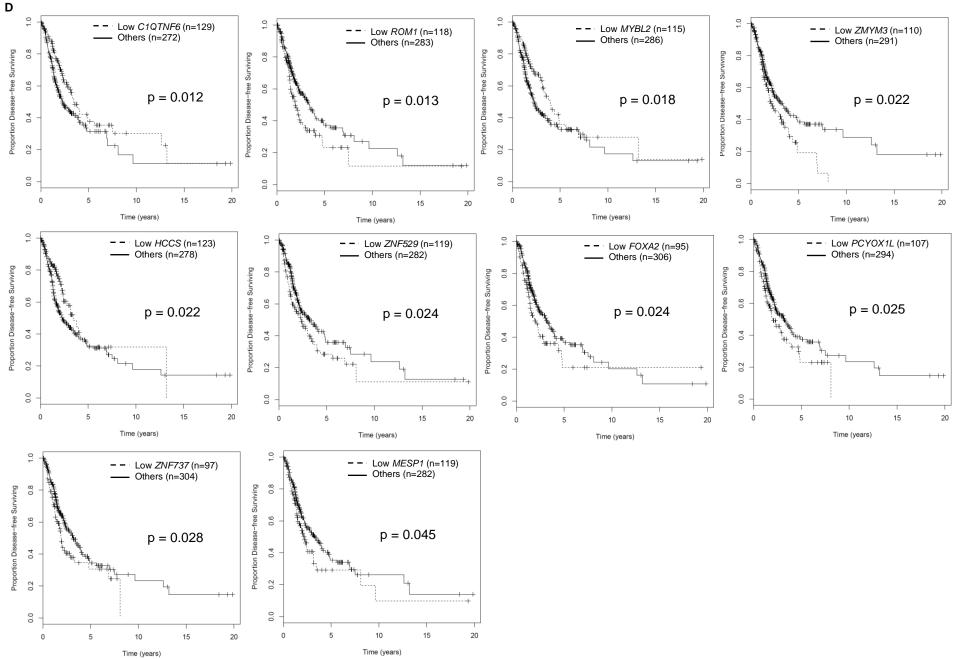


NFATC rpkm 6 NFATC1 NFATC1 4 NFATC1 NFATC1 NFATC1 2 NFATC1 NFATC1 0 . NFATC1 . NFATC1 File ID


ChIP-seq


RNF2


(bed narrowPeak) ENCFF110EOX,



Supplementary Figure S10 Survival analysis of 31 genes with regulatory mutations using TCGA-LUAD data

~	Whole-ge	enome sequen	cing	S	SNPs/SNVs from GATK							
Cell line	Mapped reads	%mapped reads	Depths	Raw SNPs/SNVs	Genic SNPs/SNVs	Coding SNPs/SNVs	Regulatory SNVs					
A427	1,084,672,075	94%	34.6	4,024,063	1,397,615	18,775	70,651					
A549	762,328,900	71%	22.7	4,228,434	1,150,303	17,890	46,197					
ABC-1	1,198,942,503	94%	38.4	3,918,935	1,359,715	18,666	15,685					
H322	921,462,662	95%	29.1	3,710,129	$1,\!273,\!472$	17,904	20,267					
H1299	930,092,532	95%	29.9	3,910,954	1,343,074	18,287	49,532					
H1648	1,129,800,194	94%	38.0	4,842,219	1,668,060	27,552	53,569					
H1650	1,093,147,187	96%	35.0	3,738,924	1,272,227	17,280	68,423					
H1703	1,035,232,011	87%	31.9	3,908,849	1,340,392	18,276	48,255					
H1819	1,197,312,856	92%	38.1	4,169,230	1,441,883	19,326	65,711					
H1975	1,056,952,131	94%	33.4	4,026,746	1,333,864	19,389	75,912					
H2126	668,355,912	88%	21.3	4,233,027	1,457,113	19,789	36,050					
H2228	855,605,013	90%	27.4	4,407,002	1,512,216	19,312	76,000					
H2347	983,271,902	85%	31.6	3,265,345	1,316,041	18,102	82,687					
II-18	890,312,525	84%	26.8	4,122,525	1,428,765	20,231	37,516					
LC2ad	1,400,218,662	93%	44.8	3,955,271	1,372,090	18,855	35,557					
PC-9	1,326,079,008	94%	42.4	3,949,215	1,368,717	18,717	42,801					
PC-14	979,278,917	97%	31.3	3,712,268	1,259,609	17,977	10,460					
RERF-LC-Ad1	1,265,604,463	95%	40.6	4,368,425	1,514,733	20,936	68,740					
RERF-LC-Ad2	1,284,008,781	95%	41.1	4,213,008	1,449,905	19,887	69,823					
RERF-LC-KJ	1,113,739,330	95%	35.6	4,135,667	1,426,828	19,961	33,029					
RERF-LC-MS	1,319,743,295	93%	42.3	3,949,142	1,348,821	17,980	48,221					
VMRC-LCD	1,394,724,167	93%	44.6	4,078,677	1,383,592	19,613	36,608					
RERF-LC-OK	684,830,042	86%	21.0	4,011,742	1,333,768	18,749	42,278					
Average	1,068,509,351	91%	34.4	4,038,252	1,380,557	19,281	49,303					

Supplementary Table S1 Summary of SNPs/SNVs detected by Illumina short-read sequencing

Supplementary Table S2 Detailed statistics of implemented phasing scheme

	10x WES + Regulatory Region (bait: 113.7 Mb)														
		Sequencir	ig Statistic	s				Pha	sing Statist	ics					
			PCR			Eligible		Number	Average						
	Number of	Mapped	Duplicati	Bait		Heterozygous	SNPs	of Phase	Block	Longest Block					
Cell Line	Reads	Read%	on	Coverage	Depths	SNPs (WGS)	Phased	Blocks	Length	Length					
A427	99,593,100	99.5%	3.01%	99.4%	59.65	1,975,179	5.74%	6,986	70,717	1,213,123					
A549	95,848,264	99.5%	3.21%	99.3%	56.27	1,192,617	6.31%	7,074	38,458	921,645					
ABC-1	94,462,990	99.4%	17.60%	99.0%	52.33	1,600,165	5.34%	6,415	59,274	1,700,788					
H322	88,136,374	99.5%	3.56%	99.1%	51.35	1,302,262	5.73%	5,378	57,835	1,240,285					
H1299	103,133,700	99.4%	5.63%	99.4%	61.15	1,616,105	5.38%	7,287	47,072	1,192,363					
H1648	85,929,520	99.5%	3.46%	99.4%	51.49	2,559,456	4.66%	8,051	58,395	1,521,176					
H1650	85,269,994	99.5%	5.59%	99.0%	50.05	1,322,760	4.38%	5,131	41,893	1,238,886					
H1703	97,084,096	99.4%	5.52%	99.3%	54.65	1,667,112	6.02%	7,055	57,862	921,997					
H1819	93,562,794	99.3%	6.80%	99.2%	52.51	1,928,801	5.45%	7,578	50,257	889,804					
H1975	83,093,898	99.2%	2.63%	99.1%	48.99	2,265,683	4.96%	9,382	42,142	1,377,795					
H2126	95,109,618	99.4%	7.52%	99.3%	53.93	1,466,115	5.44%	5,397	70,279	1,622,928					
H2228	91,567,448	99.2%	3.15%	99.4%	54.40	2,318,737	5.59%	7,958	73,144	1,501,979					
H2347	93,224,434	99.4%	8.65%	99.3%	53.37	2,521,416	5.48%	9,319	60,363	1,316,657					
II-18	85,938,160	99.5%	1.75%	99.1%	50.97	1,378,873	5.43%	6,658	38,159	730,910					
LC2ad	87,391,948	99.1%	3.19%	99.3%	51.01	2,065,496	5.43%	6,732	79,515	1,689,253					
PC-9	93,671,674	99.1%	8.50%	98.9%	55.43	1,726,066	4.93%	6,374	54,957	1,186,613					
PC-14	85,912,630	99.5%	2.15%	99.3%	51.62	1,270,056	0.59%	1,342	23,491	383,302					
RERF-LC-Ad1	95,459,772	99.5%	3.49%	99.3%	55.92	2,393,906	5.69%	9,244	57,500	1,245,677					
RERF-LC-Ad2	85,929,050	99.5%	3.56%	99.4%	51.22	2,112,023	5.21%	7,614	59,455	1,041,153					
RERF-LC-KJ	102,867,672	99.4%	5.20%	99.5%	60.16	1,963,388	5.94%	8,623	49,086	993,296					
RERF-LC-MS	73,659,054	99.4%	4.91%	99.1%	41.65	1,677,568	4.11%	5,648	59,231	1,208,661					
VMRC-LCD	83,375,866	99.4%	5.12%	99.1%	47.48	2,017,028	5.21%	7,868	51,510	1,530,527					
RERF-LC-OK	101,048,218	99.5%	3.86%	99.4%	60.36	1,621,744	6.30%	7,981	49,848	876,013					
Average	91,359,577	99.4%	5.1%	99.2%	53	1,824,459	5.18%	7,004	54,367	1,197,601					

Supplementary Table S3 Statistics of the MinION physical long read sequencing used in validation of the phase blocks.

		1D r	ead	2D read			Un-	Mapped	Ava	Covorago	Read	length
Cell	Run	pass	fail	pass	fail	Total [*]	mapped	to human genome	depth	Coverage 1 (≥1×)	Mean	Max
H1975	10	42,629	291	640,277	61,363	682,209	7,876	674,333 (98.8%)	0.7	0.46	4,815	179,616
RERF-LC- KJ	3	-	-	477,280	42,680	519,960	7,978	511,982 (98.5%)	0.58	0.36	3,627	118,237

*For the mapping and further analyses, we used 2D passed reads on 9 runs and 1D reads on 1 run in H1975 and 2D reads on 3 runs in RERF-LC-KJ.

(B) LC2/ad (R9.5 flow cell)

		Total^{*}		Mapped to	Avg.	Coverage ·	Read	l length
Cell	Run	(1D + 1D square)	Un-mapped	human genome	depth	(≥1×)	Mean	Max
LC2/ad	13	6,704,709	1,084,394	5,620,315 (83.8%)	6.6	0.93	6,572	2,495,160

*We used both 1D and 1D Square reads for the analysis.

Cell line	H1975	RERF-LC-KJ	LC2/ad
Flow cell version	R9 + R9.4	R9.4	R9.5
Run	9 (2D passed) + 1 (1D)	3 (2D)	3 (1D) + 10 (1D square)
Phase block	9382	8623	6697
Block covered	5763	4046	5282
%block covered	61.4	46.9	78.9
SNPs in block	199,987	193,853	218,892
SNPs covered	74,916	44,018	164,656
%SNPs covered	37.5	22.7	75.2
Supported block	4963	3473	4422
Not supported block	800	573	1260
%supported block	86.1	85.8	77.8

Supplementary Table S4 Validation analysis of the phasing results by MinION reads

			Autos	some + Y				Х				
Gender	Cell line			Expressio	on		Expression					
		Total	Balanced	Imbalance	d %imbalance	Total	Balanced	Imbalance	ed %imbalance			
Female	LC2/ad	1833572	5071	422	7.68	74265	13	78	85.7			
	H1819	1760876	4402	679	13.4	6276	28	39	58.2			
	H1975	2190422	5288	591	10.1	4192	0	4	100.0			
	H2228	2331330	5904	671	10.2	14467	7	38	84.4			
	H2347	2370936	5462	585	9.7	92483	15	140	90.3			
Male	A427	1856941	4147	490	10.6	4796	6	1	14.3			
	A549	2084037	3422	479	12.3	33667	0	18	100.0			
	ABC-1	1423400	2981	381	11.3	4283	3	8	72.7			
	H1299	1566125	3346	378	10.2	7107	0	10	100.0			
	H1648	2441256	5377	706	11.6	3363	2	21	91.3			
	H1650	1136166	2372	343	12.6	2677	1	21	95.5			
	H1703	1634715	3645	433	10.6	4480	2	8	80.0			
	H2126	1573235	3680	423	10.3	5148	0	6	100.0			
	RERF-LC-Ad1	2275585	5607	776	12.2	3557	0	4	100.0			
	RERF-LC-Ad2	1975614	4826	541	10.1	4601	2	9	81.8			
	RERF-LC-KJ	1892689	4741	546	10.3	3997	0	10	100.0			
	VMRC-LCD	1873618	4595	544	10.6	5253	5	8	61.5			
Unknown	PC-14	1120101	303	2304	88.4	2177	1	17	94.4			
	PC-9	1538099	3825	432	10.2	5973	13	13	50.0			
	H322	1222734	3358	433	11.4	3316	2	11	84.6			
	II-18	1345778	3039	354	10.4	3733	1	1	50.0			
	RERF-LC-MS	1491318	3191	633	16.6	4590	1	4	80.0			
	RERF-LC-OK	1855675	4147	513	11.0	74904	31	107	77.5			

Supplementary Table S5 The number of heterozygous SNVs with imbalanced and balanced transcriptions

Supplementary Table S8 PANTHER GO-Slim overrepresentation analysis of regulatory SNVs

Panther GO Slim Biological Process	# reference genes	# matched	# expected	Over/ l undere	Fold enrichme	nt ^{P-values}
Regulation of gene expression, epigenetic (GO:0040029)	51	5	0.29	+	17.42	2.85e-3
Regulation of nucleobase-containing compound metabolic process (GO:0019219)	534	13	3	+	4.33	2.62e-3
Biosynthetic process (GO:0009058)	1521	23	8.56	+	2.69	2.94e-3
Nitrogen compound metabolic process (GO:0006807)	2018	27	11.35	+	2.38	4.11e-3
Panther GO Slim Molecular Function	# reference genes	# matched	# expected	Over/ under e	Fold enrichme	nt ^{P-values}
DNA binding (GO:0003677)	1624	21	9.14	+	2.3	4.88e-2