Electronic Supplementary Information

Polyethyleneimine functionalized platinum superstructures: Enhancing hydrogen evolution performance by morphological and interfacial control

Guang-Rui Xu,^{‡a} Juan Bai,^{‡a} Jia-Xing Jiang,^a Jong-Min Lee^{*b} and Yu Chen^{*a}

^aKey Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710062, China. Email: ndchenyu@gmail.com (Y. Chen) ^bSchool of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore. Email: jmlee@ntu.edu.sg (J. M. Lee)

[‡]These authors contributed equally to this work.

Scheme S1 Molecular structure of PEI.

Fig. S1. The XPS scan of Pt-SSs@PEI.

Fig. S2. LSV curves of (a) the single-component K_2PtCl_4 solution and (b) the mixture solution of K_2PtCl_4 + PEI in 0.1 M KCl electrolyte (pH 2.0) at the glassy carbon at 100 mV s⁻¹.

Fig. S3. (A) Time-dependent UV-vis absorption spectra of the mixture solution of $K_2PtCl_4 + PEI$ after addition of $N_2H_4 \cdot H_2O$ and (B) the corresponding plot of the absorbance intensity of Pt nanocrystals at 260 nm as a function of time.

Fig. S4. Digital photographs of the reaction intermediates collected at (A) 0, (B) 3, (C) 6, (D) 9, (E) 12, and (F) 15 h, respectively.

Fig. S5. The digital photographs of 9 ml 5 mM of K_2PtCl_4 aqueous solution (A) before and (B) after the addition of 1 ml of N_2H_4 · H_2O at 3 min.

Fig. S6. TEM image of Pt aggregates without PEI.

Fig. S7. TEM image of Pt aggregates by replacing PEI with polyallylamine with straight-chain structure.

Fig. S8. TEM image of Pt-SSs@PEI after increasing reaction time to 25 h at 80 °C.

Fig. S9. CV curves of Pt-SSs@PEI and Pt-SSs in a N_2 -saturated 0.5 M H_2SO_4 solution at 50 mV s⁻¹.

Fig. S10. LSV curves of Pt-SSs@PEI and Pt-SSs in a N_2 -saturated 0.5 M H_2SO_4 solution at 2 mV s⁻¹ and rotating rate of 1600 rpm.

Fig. S11. LSV curves of Pt aggregates and Pt-SSs without PEI in a N_2 -saturated 0.5 M H_2SO_4 solution at 2 mV s⁻¹ and rotating rate of 1600 rpm.

Fig. S12. TEM image of Pt-SSs@PEI after 10, 000 CV cycling.

Table S1	The Equation	value of recentl	v reported	various	Pt-based	nanostructures	for the HER
I abic 51	The Lonset	value of recently	y reported	various	i t-basea	nanostructures	for the fillin.

Catalysts	Electrolyte	E _{onset} value (vs. RHE)	Ref
Pt-SSs@PEI	$0.5 \text{ M} \text{H}_2 \text{SO}_4$. +64.6 mV	This work
Pt–Au alloy	$0.5 \mathrm{~M~H_2SO_4}$. —200 mV	Ref. 51
Single-walled carbon nanotubes with pseudo-atomic-scale platinum	$0.5 \text{ M H}_2 \text{SO}_4$. —10 mV	Ref. 52
Pt nanoparticles on N-doped carbon	$0.5 \text{ M} \text{ H}_2 \text{SO}$. —2 mV	Ref. 53
Pt confined in a calixarene-based {Ni24} coordination cage	0.5 M H ₂ SO	. —40 mV	Ref. 42
Pt single-atom	$0.5 \text{ M} \text{ H}_2 \text{SO}$	40 mV	Ref. 6
Pt-Ni nanowires	$0.5 \text{ M} \text{ H}_2 \text{SO}$. —15 mV	Ref. 43
Pt nanoparticles on carbon nanofibers	$0.5 \text{ M} \text{ H}_2 \text{SO}$	50 mV	Ref. 44
Pt ₈₁ Fe ₂₉ Co ₆ nanoparticles	$0.5 \text{ M} \text{ H}_2 \text{SO}$. —10 mV	Ref. 10
Pt/N-doped carbon	$0.5 \text{ M} \text{H}_2 \text{SO}_4$	5 mV	Ref. 45
Pt on Pd nanocubes	$0.5 \ M \ H_2 SO_4$. —25 mV	Ref. 46
PtCuNi alloys	$0.5 \ M \ H_2 SO_4$	60 mV	Ref. 47
PtNi alloy	0.1 M KOH	. - 65 mV	Ref. 48
PtNi /NiS nanowires	1 M KOH	50 mV	Ref. 3
Pt-Ni(OH) ₂ nanocomposites	0.1 M KOH	. —200 mV	Ref. 49
Ni ₃ N/Pt composite	1 M KOH	. —40 mV	Ref. 50