

www.sciencesignaling.org/cgi/content/full/10/483/eaak9660/DC1

Supplementary Materials for

Regulation of the ubiquitylation and deubiquitylation of CREB-binding protein modulates histone acetylation and lung inflammation

Jianxin Wei, Su Dong, Rachel K. Bowser, Andrew Khoo, Lina Zhang, Anastasia M. Jacko, Yutong Zhao,* Jing Zhao*

*Corresponding author. Email: zhaoj@upmc.edu (J.Z.); zhaoy3@upmc.edu (Y.Z.)

Published 13 June 2017, *Sci. Signal.* **10**, eaak9660 (2017) DOI: 10.1126/scisignal.aak9660

This PDF file includes:

Fig. S1. FBXL19 induces CBP degradation.

Fig. S2. FBXL19 mediates CBP degradation in the nucleus.

Fig. S3. FBXL19 induces the K48-linked polyubiquitylation of CBP.

Fig. S4. LPS stimulates the phosphorylation of CBP and FBXL19.

Fig. S5. FBXL19 is not auto-ubiquitylated.

Fig. S6. The reduction in CBP stability attenuates the LPS-induced acetylation of histone H4 on Lys¹².

Fig. S7. FBXL19 attenuates histone H4K8ac-mediated Il8 promoter activity.

Fig. S8. IU1 attenuates LPS-stimulated cytokine release.

Fig. S1. FBXL19 induces CBP degradation. HBEpCs were transfected with the indicated amounts of *Fbxl19-v5* plasmid. Top: Forty-eight hours later, cell lysates were analyzed by Western blotting with antibodies against CBP, V5, and β -actin. Bottom: Analysis of relative CBP protein abundance was determined by densitometric analysis of band intensities with ImageJ software. Data are means ± SEM of three experiments. *P* values were calculated by one-way ANOVA and post hoc Tukey's test. Western blotts are from a single experiment and are representative of at least three independent experiments.

Fig. S2. FBXL19 mediates CBP degradation in the nucleus. (A and B) MLE12 cells were left untransfected (-) or were transfected with *Fbxl19-v5* plasmid (+). Forty-eight hours later, cell nuclear and cytoplasmic fractions were separated and subjected to Western blotting analysis with antibodies against CBP, V5, and LaminA/C. Whole-cell lysates were also analyzed (A). The relative abundances of CBP protein were determined by densitometric analysis of band intensities with ImageJ software. Data are means \pm SEM of three experiments. *P* values were calculated with the unpaired Student's *t* test (B). (C) MLE12 cells were left untransfected (-) or were transfected with *cbpwt-v5* or *cbp^{K2103R}-v5* plasmid. Forty-eight hours later, cell nuclear and cytoplasmic fractions were separated and subjected to Western blotting analysis with antibodies against V5 and LaminA/C. Western blots are from a single experiment and are representative of at least three independent experiments.

Fig. S3. FBXL19 induces the K48-linked polyubiquitylation of CBP. HBEpCs were transfected with the indicated amounts of *Fbxl19-v5* plasmid. Forty-eight hours later, cell lysates were subjected to immunoprecipitation (IP) with an anti-CBP antibody, which was followed by Western blotting (IB) analysis with antibodies against K48-linked ubiquitin (K48-Ubi) and K63-linked ubiquitin (K63-Ubi). Input cell lysates were analyzed by Western blotting with antibodies against CBP, V5, and β -actin. Western blots are from a single experiment and are representative of at least three independent experiments.

Fig. S4. LPS stimulates the phosphorylation of CBP and FBXL19. (A) MLE12 cells were left untreated (-) or were treated with LPS (10 μ g/ml) for 3 hours. Cell lysates were then subjected to immunoprecipitation (IP) with an anti-CBP antibody, which was followed by Western blotting (IB) analysis with an antibody against phosphorylated serine residues (p-serine). Input cell lysates were analyzed by Western blotting with antibodies against CBP and β -actin. (B) FBXL19-V5-overexpressing MLE12 cells were left untreated or were treated with LPS (10 μ g/ml) for the indicated times. Cell lysates were subjected to immunoprecipitation (IP) with an anti-V5 antibody, which was followed by Western blotting (IB) analysis with an antibody against phosphorylated serine residues (p-serine). Input cell lysates were analyzed by Western blotting with antibodies against V5 and β -actin. Western blots are from a single experiment and are representative of at least three independent experiments.

Fig. S5. FBXL19 is not auto-ubiquitylated. MLE12 cells were transfected with 2 μ g of *Fbxl19-myc*plasmid together with the indicated amounts of *Fbxl19-v5* plasmid. Forty-eight hours later, cell lysates were analyzed by Western blotting with antibodies against Myc, V5, and β -actin. Western blots are from a single experiment and are representative of at least three independent experiments.

Fig. S6. The reduction in CBP stability attenuates the LPS-induced acetylation of histone H4 on Lys¹². (A and B). MLE12 cells were left untransfected or were transfected with *Fbxl19-v5* plasmid. Fortyeight hours later, the cells were left untreated (-) or were treated with LPS (10 μ g/ml) for 3 hours. Histones were extracted and the samples were analyzed by Western blotting with antibodies against histone H4K12ac and histone H4 (A). Fold-changes in the relative abundance of H4K12ac were determined by densitometric analysis of band intensities with ImageJ software (B). Data are means ± SEM of three experiments. *P* values were calculated by two-way ANOVA and post hoc Tukey's test.

Fig. S7. FBXL19 attenuates histone H4K8ac–mediated *118* promoter activity. Beas2B cells were left untransfected (-) or were transfected with *Fbxl19-v5* plasmid. Forty-eight hours later, the cells were left untreated (-) or were treated with LPS (10 μ g/ml) for 3 hours. Chromatin immunoprecipitation (ChIP) assays were performed to investigate the extent of binding of H4K8ac to the *118* promoter. The relative abundance of DNA from the *118* proximal promoter region was determined by real-time PCR analysis as described in Materials and Methods. Data were normalized to the IgG control and are means ± SEM of three experiments. *P* values were determined by two-way ANOVA and post hoc Tukey's test.

Fig. S8. IU1 attenuates LPS-stimulated cytokine release. (A and B) MLE12 cells were incubated with IU1 before being treated with LPS (10 µg/ml) for 6 hours. The amounts of IL-6 (A) and KC (B) secreted into the cell culture medium were measured by ELISA. Data are means \pm SEM of three experiments. *P* values were calculated by one-way ANOVA and post hoc Tukey's test. (C) PBMCs were treated with LPS (0.2 µg/ml) with or without 50 µM IU1 for 24 hours. Cytokine release assays were performed as described in Materials and Methods. Cytokine release by IU1-treated cells was normalized to that released by cells treated with LPS alone. Data are means \pm SEM of three experiments. *P* values were calculated by unpaired Student's *t* test. **P* < 0.05 and #*P* < 0.01.