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Nicole El Marj, Bernhard P. Staresina

Correspondence
b.staresina@bham.ac.uk

In Brief

Sleep spindles play a crucial role in

memory consolidation, but the underlying

mechanisms are not well understood.

Using an auditory memory-cueing

technique and EEG analysis in humans,

Cairney et al. show that sleep spindles

mediate the informational content of

reactivated memory traces in service of

offline mnemonic processing.

mailto:b.staresina@bham.ac.uk
https://doi.org/10.1016/j.cub.2018.01.087
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cub.2018.01.087&domain=pdf


Current Biology

Report
Memory Consolidation Is Linked
to Spindle-Mediated Information
Processing during Sleep
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SUMMARY

How are brief encounters transformed into lasting
memories? Previous research has established the
role of non-rapid eye movement (NREM) sleep, along
with its electrophysiological signatures of slow oscil-
lations (SOs) and spindles, for memory consolidation
[1–4]. In related work, experimental manipulations
have demonstrated that NREM sleep provides a win-
dow of opportunity to selectively strengthen partic-
ular memory traces via the delivery of auditory cues
[5–10], a procedure known as targeted memory
reactivation (TMR). It has remained unclear, how-
ever, whether TMR triggers the brain’s endogenous
consolidation mechanisms (linked to SOs and/or
spindles) and whether those mechanisms in turn
mediate effective processing of mnemonic informa-
tion. We devised a novel paradigm in which associa-
tive memories (adjective-object and adjective-scene
pairs) were selectively cued during a post-learning
nap, successfully stabilizing next-day retention
relative to non-cued memories. First, we found that,
compared to novel control adjectives, memory
cues evoked an increase in fast spindles. Critically,
during the time window of cue-induced spindle
activity, the memory category linked to the verbal
cue (object or scene) could be reliably decoded,
with the fidelity of this decoding predicting the
behavioral consolidation benefits of TMR. These re-
sults provide correlative evidence for an information
processing role of sleep spindles in service of mem-
ory consolidation.

RESULTS

We tested the prediction that TMR delivered in non-rapid eye

movement (NREM) sleep bolsters memory retention by exploit-

ing the brain’s endogenous consolidation mechanisms. Of the

neural oscillations unique to NREM sleep, spindles have been

recently implicated in memory reactivation and spontaneous
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information processing [11, 12] and thus appear to be the prime

candidate to mediate consolidation in a targeted manner.

As shown in Figure 1, participants (n = 46) encoded pairwise

associations (adjective-object and adjective-scene pairs) before

an initial test phase (T1), in which adjective-recognition judge-

ments (old or new) were made (see Table S1). Critically, for

recognized adjectives, recall of the associated image (object or

scene) was assessed. Half of the correctly recalled adjective-ob-

ject and adjective-scene pairs were randomly assigned to a cued

condition, such that the adjectives would be replayed during the

offline period (targeted memory reactiviation [TMR]). The other

half of the correctly recalled pairs were assigned to a non-cued

condition. The to-be-cued adjectives were intermixed with a

number of non-encoded control adjectives. Immediately after

T1, participants either took a 90 min nap (nap group; n = 27,

19 females) or remained awake for the same period of time

(wake group; n = 19 females). In the nap group, TMR took place

during NREM stages N2 and N3. In the wake group, TMR coin-

cided with a working memory task to prevent participants from

directly attending to the cues [7, 9]. After the offline period, par-

ticipants completed a second test (T2) before returning after an

additional night of sleep to complete a final test phase (T3).
Behavior
Category recall at T1 did not differ between the nap and wake

groups (t(44) = 0.77, p = 0.45; see Table S2, Figure 2A). Category

retention at T2 (i.e., the proportion of T1-recalled categories that

were also recalled at T2) was significantly better after sleep than

wakefulness (Group main effect: F(1,44) = 17.10; p < .0001)

but unaffected by cueing (TMR main effect: F(1,44) = 0.19,

p = 0.66; TMR*Group interaction: F(1,44) = 0.02, p = 0.89) (Fig-

ure 2C). However, category retention at T3 (i.e., the proportion

of T2-recalled categories that were also recalled at T3) revealed

both a memory benefit of sleep (Group main effect: F(1,44) =

9.34; p = 0.004) and a recall advantage from cueing (TMR

main effect: F(1,44) = 4.65, p = 0.04; TMR*Group interaction:

F(1,44) = 3.94, p = 0.05). The memory-enhancing effects of

TMR were driven by the nap group, who exhibited superior

retention of cued relative to non-cued categories (t(26) = 3.83,

p = 0.001), whereas no such difference was observed in the

wake group (t(18) = 0.09, p = 0.93). Taken together, these results

suggest that TMR in post-learning sleep augmented overnight

consolidation processes, improving retention the following day.
rs. Published by Elsevier Ltd.
commons.org/licenses/by/4.0/).
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Figure 1. Experimental Paradigm

(A) During encoding, participants were presented

with 50 adjective-object and 50 adjective-scene

combinations (randomly intermixed) and indicated

whether the combinations elicited a realistic or

bizarre mental image. Prior to encoding, partici-

pants performed a familiarization phase for both

the adjectives and the images (see STAR

Methods). Approximately 5 min after encoding,

participants performed the first retrieval session

(T1), in which all previously seen (old) adjectives

were intermixed with 50 previously unseen (new)

adjectives and participants indicated whether they

thought the adjective was old or new. In the case of

an ‘‘old’’ response, participants were asked

whether they also remembered the associated

image category (object or scene) or whether

they did not remember the associated category

(‘‘?’’ response option). If they indicated ‘‘object’’ or

‘‘scene,’’ another screen appeared (not shown) in

which participants could type in a description of

the image if they remembered it or simply type in

a ‘‘?’’ if they did not. Adjectives were presented

visually and acoustically throughout.

(B) In the nap group, participants were given the

opportunity to sleep for 90 min (monitored with

polysomnography). Once they entered late NREM

sleep (stages N2 and N3), (1) half of the adjectives

for which the object category was remembered at

T1, (2) half of the adjectives for which the scene

category was remembered at T1, and (3) a

matched number of novel adjectives (controls)

were continuously played via external speakers

(targeted memory reactivation [TMR]). In the wake

group, participants started with 30 min of playing

the online game Bubble Shooter, followed by

30 min of performing a 1-back working memory

task during which TMR was applied, followed

again by 30 min of playing Bubble Shooter.

(C) After the offline period (T2), participants performed the same test as in T1 but with a new set of 50 lure adjectives. Finally, after a night of sleep, participants

returned the next morning (T3) for another retrieval session, again with 50 new lure adjectives. For detailed description of behavioral results, see Tables S1–S3.
In the nap group, the behavioral benefit of TMR on T3 retention,

quantified as: [proportion of cued T2-recalled categories also

recalled at T3 minus proportion of non-cued T2-recalled cate-

gories also recalled at T3] was not correlated with the total

number of memory cues presented (objects + scenes) in sleep

(Spearman’s rho = 0.02, p = 0.93; see STARMethods). Exemplar

recall data is available in Table S3.

At the end of the experiment, participants were re-presented

with all of the adjectives from the encoding phase and, for

each, asked to indicate whether or not it was replayed in the off-

line period. The discrimination task analysis was restricted to

items that were correctly recalled at T1 (and thus assigned to

the cued and non-cued conditions). Cued stimuli that were and

were not correctly identified as such were marked as hits and

misses, respectively. Non-cued stimuli that were and were not

correctly identified as such were marked as correct rejections

or false alarms, respectively. A discrimination index was then

calculated for each participant by subtracting the proportion of

non-cued trials marked as false alarms from the proportion of

cued trials marked as hits. The discrimination index was not

significantly different from zero in either the nap group (t(26) =

0.07, p = 0.95) or the wake group (t(18) = 1.67, p = 0.11), implying
that participants could not reliably identify the cue stimuli. It

should be noted that none of the nap group participants pro-

fessed any knowledge of adjective replay.

EEG
As a first step, we explored the event-related potentials (ERPs)

evoked by auditory cues for previously presented (old) adjectives

in the nap group (see Table S4 for descriptive sleep electroen-

cephalogram [EEG] data). As shown in Figure 2B, auditory

cues were followed by a pronounced ERP response resembling

a slow oscillation (SO)/k-complex, with comparable patterns for

old object cues, old scene cues, and new control stimuli (Fig-

ure S1). Note also that the relatively small ERP amplitude results

from the temporal jitter of evoked responses relative to the cue

onset and that these responses surpass standard amplitude

criteria for SOs/k-complexes when aligned to their respective

event centers (Figure S2). Consistent with previous findings

[13], time-frequency representation (TFR) results showed that

these cue-induced SOs harbored a theta/slow spindle burst in

the SO trough (henceforth referred to as SO down-state), which

was followed by a fast spindle burst in the ensuing SO peak

(henceforth referred to as SO up-state).
Current Biology 28, 948–954, March 19, 2018 949



Figure 2. Behavior and Evoked Responses

(A) Behavioral results at T1 (pre-offline period). Bar

graphs showmean (±SEM) accuracy for adjective-

category retrieval for the nap group (blue) and the

wake group (orange). Note that 50% accuracy is

not to be mistaken as chance performance given

that participants had a ‘‘?’’ response option (see

Figure 1A).

(B) Event-related potential (ERP) and time-

frequency representation (TFR) evoked by the

onset of memory cues. The figure depicts the un-

thresholded TFR along with the grand average

ERP (both collapsed across all channels and then

averaged across participants), revealing a strong

increase of theta/slow spindle power in the evoked

SO down-state followed by an increase in fast

spindle power in the ensuing SO up-state. ERP

topographies for object, scene, and control stimuli

are shown in Figure S1.

(C) At T2 and T3, behavioral results are further

separated into cued trials (solid fill) and not cued

trials (hatched fill), and retrieval accuracy is ex-

pressed as proportions retained from the most

recent memory assessment (see also Table S2).

Stars denote significant effects, 5 denotes an

interaction effect.
To more directly isolate the mechanisms engaged in the pro-

cessing of mnemonic cues, we next asked whether evoked

oscillatory responses might be able to distinguish between old

cues and novel control adjectives. As shown in Figures 3A and

3B, the direct contrast revealed that old cues elicited a signifi-

cant increase in oscillatory power in the fast spindle band

(13–16 Hz) from�1.7 to 2.3 s after cue onset (p < 0.05, corrected

for multiple comparisons across channels, time, and frequency).

Topographical representation of the significant spindle band in-

crease revealed that the effect stemmed from left-hemisphere

electrodes, with a maximum at centroparietal sites C3/P3 (Fig-

ure 3C). The increase in fast spindle power for old cues versus

control stimuli (1.7–2.3 s; Figure 3B) was even more pronounced

when restricting old cues to those that yielded successful mem-

ory during both T2 and T3 testing (t(26) = 2.10, p = 0.007 as

opposed to t(26) = 2.09, p = 0.014 when including all trials).

To fully characterize the observed spindle power increase for

old (versus new) cues, we algorithmically detected discrete spin-

dle events (see STAR Methods) from 1.5 to 2.5 s post-cue onset

(set to encapsulate the window of increased spindle power in our

TFR analysis). Indeed, old relative to new cues elicited more

fast spindles across left-hemisphere electrodes (t(26) = 3.33,

p = 0.003, Figure S3A), corroborating that the spindle band

power increase (Figure 3A) is due to a relative surge in discrete

spindle events. Figure 3D displays the resulting grand average
950 Current Biology 28, 948–954, March 19, 2018
spindle across participants, aligned to

the maximum of the detected spindle

events. As can be appreciated by the

above-zero spindle center, these spin-

dles appeared to be modulated by the

up-states of concomitant SOs. To statis-

tically quantify this observation, we

derived the preferred phase of spindle-
SO coupling for the detected events (see STAR Methods).

Indeed, as shown in Figure 3D, the preferred phase of SO-spin-

dle modulation clustered significantly around the SO up-state

(0�) across participants (Rayleigh test: z = 8.7, p < .001; V test

versus 0: v = 13.9, p < .001). In sum, these results show that

old memory cues relative to new control adjectives elicit an in-

crease in fast spindle events, which are localized to left-hemi-

sphere sites. Spindles were further found to be modulated by

the SO up-state, but note that direct comparison of SO-spindle

coupling for old cues versus control adjectives was impeded

by the low numbers of spindles elicited by control adjectives.

If the surge in fast spindles for old cues was indeed indicative

of cue-induced information processing, we reasoned that we

should be able to decode from evoked EEG responses the cat-

egorical features of the images paired with the adjectives during

learning (object versus scene; Figure 1). We used a representa-

tional similarity analysis (RSA) approach to tackle this question

[14]. First, we derived a feature vector of 8 channels 3 41 time

points (spanning 200ms at our sampling rate of 200 Hz) centered

at each sample from �0.2 to 2.5 s relative to cue onset. Next,

using Spearman correlations, we quantified both the within-

category similarity (how similar is the EEG pattern of a given

object-related adjective to the EEG pattern of all other object-

related adjectives, and how similar is the pattern of a given

scene-related adjective to the pattern of all other scene-related



Figure 3. Time-Frequency Representation

(A) Time-frequency representation (TFR) differencemap of responses elicited by old memory cues versus new control adjectives, with the corresponding ERP for

old cues superimposed.

(B) Same as (A) but after statistical thresholding (p < 0.05, corrected). Note the significant increase in fast spindle power (13–16 Hz) from �1.7 to 2.3 s post cue

onset.

(C) Topography of the resulting cluster, revealing left-hemisphere specificity of the effect.

(D) Left: Grand average (±SEM) of discrete spindle events detected from 1.5 to 2.5 s after onset of old memory cues at left-hemisphere sites. Right: Histogram of

participants’ corresponding SO-spindle modulation phases (mean direction = 15�, shown in red). Direct comparison of discrete spindles for old memory cues

versus new control stimuli is shown in Figure S3.
adjectives) and the between-category similarity (how similar is

the pattern of a given object-related adjective to the pattern of

all scene-related adjectives and vice versa) at each time point.

Converging evidence was sought via a standard decoding

approach (linear discriminant analysis [LDA]; see Figure S4).

However, the advantage of our RSA approach is that it provides,

via the between-category similarity, a single measure that cap-

tures the level of pattern distinctiveness of objects versus scenes

(i.e., the smaller the between-category similarity, the greater the

category distinctiveness of object versus scene information).

Category-specific information processing would be ex-

pressed as an increase in within-category similarity (collapsed

across object- and scene-related adjectives) compared to be-

tween-category similarity. As shown in Figure 4A, within-cate-

gory similarity tended to exceed between-category similarity

throughout the post-cue period. Importantly, however, the stron-

gest effect that also reached statistical significance (p < .05, cor-

rected for multiple comparisons across time) was observed from
1.76 to 2.06 s after cue onset, which is closely overlapped with

the observed window of increased fast spindle power for old

relative to new cues (1.7–2.3 s; Figure 3B). It deserves explicit

mention that the EEG features used for this analysis was not

spindle power per se but the raw EEG trace across electrodes

(see STAR Methods). In fact, the diagnostic information was

largely carried by lower-frequency topographies; i.e., the result

pattern in Figure 4A held when low pass filtering the EEG below

4Hz but diminishedwhen high pass filtering the EEG above 4 Hz.

This could be due to spindles effectively inducing event-related

(lower frequency) EEG responses at target sites and/or to the

fact that higher-frequency EEG components are too irregular

to allow reliable time-by-time decoding across trials. In any

case, to investigate the relationship between fast spindles and

category-specific information processing beyond temporal co-

occurrence, we next assessed the correlation between (1) rela-

tive spindle counts for old cues versus control stimuli from 1.5

to 2.5 s post-cue and (2) the level of category distinctiveness
Current Biology 28, 948–954, March 19, 2018 951



Figure 4. Information Processing Evoked by Memory Cues

(A) Time courses (mean ± SEM) of within- and between-category similarities in response to old memory cues. Shaded area from 1.76 to 2.06 s highlights a

significant increase (p < .05, corrected for multiple comparisons across time, see also Figure S4).

(B) Spearman correlation of category distinctiveness (1 minus between-category similarity from 1.76 to 2.06 s) and the behavioral benefit of cueing on overnight

consolidation across participants.
for objects versus scenes (1 minus between-category similarity)

in the same time window. Intriguingly, we observed a significant

positive correlation between the two variables (Spearman’s

rho = 0.47, p = 0.014; Figure S3B), supporting the notion that

spindles are linked to processing of the informational content

of reactivated memory traces.

Lastly, we asked whether spindle-mediated information pro-

cessing bears any relevance for behavioral manifestations of

consolidation. To this end, we assessed the correlation between

(1) the behavioral benefit of cueing on T3 retention (proportion of

cued T2-recalled categories also recalled at T3minus proportion

of non-cued T2-recalled categories also recalled at T3) and (2)

category distinctiveness of object versus scene information

(1 minus between-category similarity, averaged across the

1.76–2.06 s effect window). As shown in Figure 4B, the results

revealed a significant positive relationship between the two vari-

ables (Spearman’s rho = 0.41, p = 0.03).

DISCUSSION

Our study reveals that spindle-mediated information processing

is a central mechanism for offline consolidation and that TMR

may exploit this mechanism to selectively strengthen particular

memory traces. Specifically, we found that memory cues deliv-

ered in NREM sleep prompted a transient increase in fast spin-

dles that was coupled to depolarising SO up-states (Figure 3).

During this surge in spindle activity, the categorical features of

cued representations could be reliably decoded, with the level

of category distinctiveness predicting the behavioral impact of

TMR on consolidation (Figure 4).

What is the functional significance of fast spindles for memory

consolidation? Simultaneous EEG-fMRI recordings have shown

that reactivation of learning networks is linked to spindle param-

eters during subsequent NREM sleep [11]. Moreover, olfactory
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memory cueing has been shown to evoke sleep spindles in

task-relevant brain regions [15]. Although ceiling memory perfor-

mance in these two studies precluded a direct link to consolida-

tion, their findings suggest that a TMR-induced increase in fast

spindle activity may reflect mnemonic processing in relevant

hippocampal-neocortical networks. This view is substantiated

by the left-hemispheric specificity of the cue-evoked spindle in-

crease observed in our study (Figure 3C), which may reflect the

verbal properties of the auditory cues.

More critically, during this transient, cue-induced fast spindle

increase, we were able to reliably decode the categorical fea-

tures (i.e., object versus scene) of the mnemonic association

linked to the verbal cue (Figures 4A and S4), with the fidelity of

category distinctiveness predicting the cueing benefit on next-

day memory retention across participants (Figure 4B). One

intriguing possibility is that spindles effectively gate activation

toward category-specific cortical modules, leading to discrimi-

nable distributions of the spatiotemporal EEG patterns. Consis-

tent with this notion, recent work applying EEG classifiers to

continuous overnight sleep recordings has shown that spectral

power in the spindle range contributes to the ability to decode

previously learned materials [12]. It would thus be interesting

for future studies to directly compare the neural correlates of

cue-evoked versus spontaneous memory reactivation. Also,

both studies provide correlational rather than causal evidence

for spindle-mediated information processing, and electrophysio-

logical control over various spindle parameters would strongly

corroborate the relationship between spindles and memory

consolidation.

Mechanistically, modeling and empirical data suggest that

spindle oscillations induce a massive Ca2+ influx into dendrites

of pyramidal neurons, opening a molecular ‘‘gate’’ for synaptic

plasticity and, consequently, permanent network changes

[16–18]. Finely tuned windows of spindle activity, triggered by



TMR, may therefore prime or ‘‘tag’’ relevant synapses for plastic

changes during subsequent periods of sleep. Owing to the highly

robust effects of sleep (versus wake) on retention in the current

paradigm (Figure 2C), however, the comparatively subtle mne-

monic influences of TMRmay have failed to emerge immediately

after sleep. This may explain why the behavioral benefits of TMR

observed in this study did not emerge until the following day,

once the cued (tagged) representations had undergone addi-

tional overnight processing. It is important to note that the time

between TMR and the overnight sleep interval included an inter-

vening test phase (T2; Figure 1C). Given recent views on the

potential mechanistic overlap between online reactivation and

offline consolidation [19], it is also possible that T2-retrieval

modulated interactions between TMR and subsequent overnight

memory processing. In other words, the reactivation of mem-

ories at T2 might have contributed to the observable benefit of

cueing at T3. How the memory effects of TMR are influenced

by memory reprocessing during online and offline periods will

be a fruitful avenue for future research.

Owing to the limited spatial resolution of scalp EEG moni-

toring, the putative role of hippocampally generated ripples

(>80 Hz oscillations) in our paradigm remains open. This is an

important consideration as neuronal reactivations are mostly

observed in conjunction with ripple events [20–22], which are

temporally nested within the oscillatory troughs of spindles

[23–25]. The Active Systems framework postulates that these

synchronized spindle-ripple interactions enable spindle oscilla-

tions to shuttle reactivated hippocampal representations to

distributed neocortical sites during excitable SO up-states

[26–29]. Unifying our experimental paradigm with methods for

detecting hippocampal ripples in humans (e.g., intracranial

EEG) would thus provide exceptional insights into mnemonic

processing in the sleeping brain. Notably, spindle-ripple inter-

actions may reveal even greater detail on the informational

content of decoded associations than spindle oscillations

alone.

In sum, our findings suggest that experimental memory cueing

generates finely tuned windows of spindle-mediated information

processing, which underpins the selective strengthening of cued

representations. These findings not only offer mechanistic in-

sights into the mnemonic impacts of TMR but also provide

unique and highly controlled experimental evidence for the crit-

ical role of spindles in offline memory consolidation.
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periments. S.A.C. and B.P.S. analyzed the data and wrote the manuscript.

DECLARATION OF INTERESTS

The authors declare no competing interests.

Received: November 10, 2017

Revised: January 10, 2018

Accepted: January 31, 2018

Published: March 8, 2018

REFERENCES

1. Marshall, L., Helgadóttir, H., Mölle, M., and Born, J. (2006). Boosting slow

oscillations during sleep potentiates memory. Nature 444, 610–613.

2. Mednick, S.C., McDevitt, E.A., Walsh, J.K., Wamsley, E., Paulus, M.,

Kanady, J.C., and Drummond, S.P.A. (2013). The critical role of sleep

spindles in hippocampal-dependent memory: a pharmacology study.

J. Neurosci. 33, 4494–4504.

3. Ngo, H.-V.V., Martinetz, T., Born, J., andMölle, M. (2013). Auditory closed-

loop stimulation of the sleep slow oscillation enhances memory. Neuron

78, 545–553.

4. Ngo, H.-V.V., Miedema, A., Faude, I., Martinetz, T., Mölle, M., and Born, J.

(2015). Driving sleep slow oscillations by auditory closed-loop stimula-

tion-a self-limiting process. J. Neurosci. 35, 6630–6638.

5. Cairney, S.A., Sobczak, J.M., Lindsay, S., and Gaskell, M.G. (2017).

Mechanisms of memory retrieval in slow-wave sleep. Sleep 40, https://

doi.org/10.1093/sleep/zsx114.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

A total of 83 participants took part in this study. However, 15 participants were excluded because they did not meet the performance

criterion in the pre-sleep test (T1). One further participant withdrew having not understood the necessary time commitments of the

study. Of those participants remaining who took part in the nap version of the experiment, a further 21 were excluded for the following

reasons: insufficient sleep such that at least one full round of targetedmemory reactivation (TMR) could not be attained (9), exhibiting

an arousal or awakening during TMR and not returning to non-rapid eyemovement sleep stage N2/N3 (10) and computer malfunction

(2). The analyses reported in this paper were thus carried out on 46 participants, whowere assigned to a nap group (n = 27, 19 female,

mean ±SDage, 19.70 ± 1.51 years) or awake group (n = 19 females,mean ±SDage, 19.26 ± 1.15 years). Note that all results reported

in the main text were reliable when restricting the nap group to female participants only (n = 19). Pre-study screening questionnaires

indicated that participants had no history of sleep, psychiatric or neurological disorders and were not using any psychologically

activemedications. Participants were informed that theywere taking part in amemory study, but were unaware that targetedmemory

reactivation (TMR) would take place. Also, no explicit mention of the T3 memory test was provided once the first session was

completed. Written informed consent was obtained from all participants in line with the Research Ethics Committees of the Depart-

ment of Psychology, University of York and the School of Psychology, University of Birmingham.

METHOD DETAILS

Stimuli
Adjectives

250 adjectives were randomly selected from a longer list of 355 [33] for each participant. Mean (±SD) adjective length was 6.85 ± 1.84

characters and number of syllables ranged from 1-4. All adjectives were recorded in a female voice. Mean (±SD) duration of all

included adjectives was 704 ± 146 ms.

Objects and Scenes

100 images (50 objects and 50 scenes) were randomly selected from a set of 200 [34] for each participant. Objects were images of

everyday items, animals or food presented on a plain white background (e.g., an apple). Scenes were images of nameable land-

scapes or places (e.g., a bowling alley). Care was taken to ensure that scenes contained sufficient background detail to be easily

distinguishable from objects. The distinction between objects and scenes was clearly explained to participants.

Procedure
Participants completed a short practice version (10 trials) of each experimental task to ensure that they fully understood the instruc-

tions. All responses were made via keyboard press on a PC. Experimental stimuli were always presented in random order.

Familiarisation

A familiarisation phase at the beginning of the experiment was designed to facilitate learning of the adjective-image pairs in the main

encoding session. First, participants completed an adjective familiarisation task. On each trial, one of 100 adjectives (e.g., ‘‘exotic’’)

was presented acoustically and displayed for 2.5 s on the computer screen. Participants indicated whether they considered the

adjective to be emotionally positive or negative. Each trial was separated by an inter-stimulus interval (ISI) with a fixation cross for
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1.5 s (±100 ms random jitter). Next, participants completed an object/scene categorisation task. On each trial, one of 50 objects

(e.g., butterfly) or 50 scenes (e.g., golf course) was displayed for 2.5 s. Participants indicated whether they considered the image

to be an object or a scene (ISI = 1.5 s ± 100 ms).

Encoding

Participants learned randomized pairwise associations between the adjectives and images presented in the familiarisation phase

(100 adjective-image pairs). On each trial, a randomly selected adjective (e.g., ‘‘exotic’’) was presented acoustically and displayed

above an object or scene (e.g., object: butterfly) for 4.5 s. To facilitate learning, participants were instructed to form a vivid mental

image or story that closely linked the adjective and the object/scene, and then indicate whether the image they had formed was real-

istic or bizarre (ISI = 1.5 s ± 100 ms). For example, the mental image corresponding to the adjective ‘‘exotic’’ and the object butterfly

would presumably be realistic as butterflies can be exotic creatures. Participants were informed that their memory for adjective-

image pairs would be tested immediately afterward.

Immediate Test (T1)

T1 included the 100 adjectives from encoding intermixed with 50 new adjectives that participants had not seen before (foils). On each

trial, an adjective (e.g., ‘‘exotic’’) was presented acoustically and visually displayed for 2 s. Afterward, participants were asked to indi-

cate whether the adjective was ‘old’ (i.e., they recognized it from the encoding phase) or ‘new’ (i.e., it was not seen at encoding) within

10 s.When participants provided a ‘‘new’’ response, they immediately moved on to the next trial (ISI = 1.5 s ± 100ms). When an ‘‘old’’

response was provided, participants were required to indicate whether the associated image was an object or a scene, or whether

they had forgotten the target image category. In order to ensure that object or scene responses were not mere guesses, participants

also provided a typed description of the image they had remembered. Across all T1 trials where the category was correctly recalled,

participants were able to correctly describe the image on themajority of occasions (mean ± SD: 80.95 ± 14.59%), demonstrating that

the category responses reflected veridical memory.

TMR Set Up

Of the adjective-image pairs that were correctly recalled at T1 (i.e., when the adjective was correctly recognized and the associated

image category correctly recalled), half were randomly allocated to the cued condition (i.e., for TMR), whereas the other half were

assigned to the non-cued condition (object and scene pairs were equally distributed between the two conditions). This ensured

that baseline category recall performance was balanced between the cued and non-cued memories. For example, if a participant

correctly recalled 40 pairs at T1, then 20 of these would be assigned to the cued condition and the other 20 assigned to the non-

cued condition. On occasions where there were an odd number of correctly recalled pairs, the spare item was randomly allocated

to the cued or non-cued condition. To ensure that a sufficient number of stimuli were available for TMR in sleep, participants were

required to correctly recall at least 14 objects and 14 scenes at T1. Participants that did not meet this criterion were excluded (n = 15).

The adjectives from pairs assigned to the cued condition were replayed during the TMR phase. Importantly, an additional set of con-

trol adjectives that participants had not encountered at either encoding or T1 were randomly intermixed with the TMR stimuli. The

number of control adjectives was equal to half the number of stimuli in the cued condition. For example, if there were 40 adjectives

associated with correctly recalled categories in the cued condition, then a further 20 control adjectives would be added to the TMR

set (total = 60). Inclusion of the control adjectives enabled a direct comparison of brain activity during cued memory reactivation and

non-specific, matched auditory stimulation.

The mean ± SEM number of cues assigned to each condition were as follows. Nap group: 12.59 ± 0.73 object cues, 13.37 ± 0.82

scene cues, 13.63 ± 0.80 control stimuli. Wake group: 11.74 ± 0.91 object cues, 12.84 ± 0.74 scene cues, 12.53 ± 0.78 control stimuli.

However, cues were presented continuously throughout the offline period (i.e., during late non-REM sleep in the nap group), so the

mean ± SEM absolute number of cue presentations were as follows. Nap group: 69.44 ± 10.13 object cues, 74.48 ± 11.91 scene

cues, 73.82 ± 11.16 control stimuli. Wake group: 97.26 ± 5.08 object cues, 108.63 ± 6.10 scene cues, 104.84 ± 4.62 control stimuli.

Numbers of absolute cue presentations were applied to a 3 (Cue Type: Object/Scene/Control) x 2 (Group: Nap/Wake) mixed ANOVA.

Because T1 category recall was numerically greater for scenes than objects, there weremore scene than object cues assigned to the

TMR set (Cue Type main effect [Huynh-Feldt corrected]: F(1.07,46.94) = 6.94, p = 0.01). In general, there was more cueing time avail-

able in the wake delay than in the nap delay, meaning that the wake group receivedmore cues than the nap group (Groupmain effect:

F(1,44) = 5.09, p = 0.03). Despite this difference, the wake group failed to exhibit any behavioral benefit of cueing, further demon-

strating that TMR is – in the current paradigm - only effective at bolstering memory retention when delivered in sleep. There was

no Cue Type*Group interaction ([Huynh-Feldt corrected]: F(1.07,46.94) = 0.97, p = 0.34). After EEG artifact rejection in the nap group,

the corresponding numbers were: 67.63 ± 9.82 object cues, 71.74 ± 11.35 scene cues, 71.30 ± 10.65 control stimuli. There was no

significant difference in the number of artifact-rejected cues in each condition ([Huynh-Feldt corrected] F(1.14, 29.59 = 2.31, p = 0.14).

Offline Period (Nap or Wakefulness)

The offline period began at �2pm and lasted 90 min. Participants in the nap group were left to sleep in a laboratory bedroom while

their brain activity was monitored with polysomnography (set up before the study began). TMR was initiated when participants were

in late NREM stage N2/early stage N3. The TMR set was presented in a randomized order (ISI = 4 s ± 200 ms) at a sound intensity

of �40dB (as measured with a sound-level meter placed at the same position where participants laid their head on the pillow). After

each full round of cueing, the adjectives were reshuffled and immediately presented again. Cueing continued for as long as partic-

ipants were in sleep stage N2/N3, but immediately paused if they showed signs of micro-arousal or awakening, or moved into sleep

stage N1 or rapid eyemovement (REM) sleep. The cues were continued if participants re-entered sleep stage N2/N3 after an arousal.
e2 Current Biology 28, 948–954.e1–e4, March 19, 2018



Participants in the wake group played an online game (Bubble Shooter) for the first 30 min of the offline period. For the next 30 min,

the TMR cues were presented continuously while participants completed a 1-back workingmemory task. This approach reduced the

probability that participants directly attended to the cues during TMR [7, 9]. During the 1-back task, a series of random numbers be-

tween 0 and 10were presented one after another in the center of the screen. The taskwas to indicatewhether the current number was

the same as or different to the number one digit prior. After completing the 1-back task, participants played Bubble Shooter again for

the remaining 30 min of the offline period.

Follow-Up Tests (T2 and T3)

Participants returned 6 hours later for a follow-up test (T2). This followed the same procedures as T1 with the single exception that

new foil adjectives were used. The next morning (after a night of sleep), participants completed another test (T3). Again, this followed

the same procedures as T1 and T2, but with a new set of foils.

Discrimination Task

After completing T3, participants were informed of the true purpose of the study and asked if they had been aware of the auditory

cues in the offline period. To assess their explicit knowledge of the cues, participants were asked to complete an adjective discrim-

ination task. On each trial, one of 100 adjectives from the encoding phase was presented acoustically and visually displayed for 10 s.

Participants were asked to indicate whether or not the adjective had been replayed during the offline period.

Equipment
Experimental Tasks and TMR

All experimental tasks and TMR algorithms were implemented on a PC with MATLAB 2015a and Psychtoolbox 3.0.13 [30]. In the

wake group, adjective cues were presented via speakers connected to the task PC. In the nap group, cues were presented via a

speaker mounted �1.5 m above the bed, which was connected to an amplifier in a separate control room.

Polysomnography

An Embla N7000 PSG systemwith RemLogic 3.4 software was used to monitor sleep. After the scalp was cleaned with NuPrep exfo-

liating agent (Weave and Company), gold plated electrodes were attached using EC2 electrode cream (Grass Technologies). EEG

scalp electrodes were attached according to the international 10-20 system at 8 locations: frontal (F3, F4), central (C3, C4), parietal

(P3, P4) and occipital (O1, O2), and each was referenced to an electrode on the contralateral mastoid (A1 or A2). Left and right elec-

trooculography electrodes were attached, as were electromyography electrodes at the mentalis and submentalis bilaterally, and a

ground electrode was attached to the forehead. Each electrode had a connection impedance of < 5 kU. All online signals were unfil-

tered and digitally sampled at 200Hz. Sleep scoringwas carried out in accordancewith the criteria of the American Academy of Sleep

Medicine [35].

QUANTIFICATION AND STATISTICAL ANALYSIS

Data Analysis
Behavioral Data Analysis

Category recall was our primary measure of memory accuracy. We calculated for each participant: 1) the proportion of target cat-

egories recalled at T1 that were subsequently recalled at T2, and 2) the proportion of target categories recalled at T2 that were sub-

sequently recalled at T3 (i.e., following a night of sleep). To avoid any ambiguity related to category memory, we excluded from our

analyses any item that was incorrectly classified during the object/scene categorisation task. Across all participants, we excluded

162 items out of a possible 4600 (3.52%). Category recall scores at T1, T2 and T3 were normally distributed in both the nap and

wake groups (Kolmogorov-Smirnov test, p > .05), and thus met the assumptions of analysis of variance (ANOVA). As such, the

data were subjected to a 2 (TMR: Cued/Not-Cued) X 2 (Group: Nap/Wake) mixed ANOVA. The statistical significance threshold

was set at p < .05. Behavioral data were analyzed with SPSS statistics 24.

EEG Data Analysis

EEG data were analyzed withMATLAB, using the FieldTrip [31] (v.06/02/2017) and CircStat [32] (v.1) toolboxes. The continuous sleep

data were segmented into epochs from�1 s to 3 s around cue onset and subjected to a two-step artifact rejection procedure. In the

first step, artifacts were automatically detected and removed based on themedian ± 3.5 inter-quartile ranges of both signal amplitude

and gradients (the difference between two adjacent samples) of all epochs. In the second step, the remaining epochs were manually

screened via FieldTrip’s visual summary functions and epochs containing amplitude, variance or kurtosis outliers were additionally

removed. For TMR-cue-locked analysis of event-related potentials (ERPs), data were high-pass filtered at 0.5 Hz and baseline-cor-

rected with respect to the �200 ms to 0 ms window before cue onset. For time-frequency representations (TFRs), data were

convolved with a 5-cycles hanning taper and spectral power was obtained from 4-30 Hz in 0.5 Hz frequency steps and 5 ms time

steps. For analyses, participant-specific TFRs were converted into percent power change relative to a�300 ms to�100 ms pre-cue

window. Because our TFR analysis relied on extended data windows to fit 5 cycles per frequency (e.g., 15 Hz x 5 cycles = 333 ms),

a �300 ms to �100 ms baseline window was chosen to mitigate baseline contamination by post-stimulus activity while preserving

proximity to cue onset. Note though that TFR comparison of old cues versus control stimuli (Figure 3) revealed the same significant

13-16 Hz power increase when the TFR baseline window matched that of the ERP analysis (�200 to 0 ms).

For representational similarity analysis (RSA) of within- versus between-category processing, a sliding window of 200 ms (in steps

of 10 ms) was applied to the 0.5 Hz high-pass filtered raw EEG data to obtain, for each trial, a series of 8-channel-by-41-time points
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(200 Hz/5ms sampling rate) EEG feature vectors [36]. Using these feature vectors, Spearman correlationswere then used to quantify,

for each time point, the representational similarity across all pairwise combinations of trials, resulting in an n trials x n trials correlation

matrix. This matrix is symmetrical around the diagonal, and all cells below the diagonal as well as the diagonal itself were removed.

Additionally, same-adjective correlations across multiple cueing rounds were removed (that is, we excluded correlations between

e.g., adjective x, cueing round 1 and adjective x, cueing round 2). Next, within-category similarity was obtained by averaging across

all remaining object-object and scene-scene cells. Between-category similarity was obtained by averaging across all object-scene

cells. The numbers of within-category and between-category cells were equated by randomly sub-selecting cells from the majority

class in each participant. Each participant’s within-category and between-category correlation time series were Fisher z-transformed

to adjust for non-normality of correlation coefficients.

All ERP, TFR and RSA analyses were performed as random-effects analyses (paired-samples t tests) and corrected for multiple

comparisons using FieldTrip’s nonparametric cluster-based permutation method (1000 randomizations), including channel x time

(ERP), channel x time x frequency (TFR) and time (RSA) as cluster-defining features. The statistical significance threshold was set

at p < .05.

EEG Event Detection

Sleep data were partitioned according to the time (minutes) spent in each stage of sleep (N1, N2, N3 and REM sleep). Data scored as

N2 or N3 were extracted from all EEG channels for spindle and slow oscillation analysis. For spindles, data were first bandpass

filtered from 10-13 Hz (slow spindles) or 13-16 Hz (fast spindles) using a 4th order two-pass Butterworth filter. We focus on

13-16 Hz because the significant cluster resulting from contrasting old cues versus control stimuli starts at 13 Hz (Figure 3B).

Although that cluster slightly leaks into higher frequencies up to 19 Hz, we set 16 Hz as the upper limit to conform to the more con-

ventional 12-16 Hz band for fast spindles [37]. Next, we took the envelope of the resulting signal and determined an amplitude

threshold as mean + 1.25 SD. A spindle was then defined as an event that surpassed that threshold for a minimum of 0.5 s and a

maximum of 3 s. For SO detection, data were filtered from 0.5-2 Hz using a 4th order two-pass Butterworth filter. Next, zeros cross-

ings were detected in the resulting signal and events with two successive positive-to-negative crossings spanning 0.8-2 s were taken

forward to the next step. Here, the resulting candidate events’ trough and trough-to-peak amplitudes were calculated and events

surpassing mean + 1.25 SD of both these metrics were considered SOs. In both event detection procedures, automatically detected

artifact samples (see above) were padded for ± 1 s and those samples were excluded prior to event detection.

SO-Spindle Coupling

For determining the preferred phase of SO-spindle modulation, we first identified spindles whose maximum occurred from 1.5-2.5 s

after onset of old memory cues (encompassing the interval in which we observed the spindle increase, Figure 3B). We then extracted

a ± 1.5 s raw data segment around the spindle maximum (accommodating the maximum spindle duration of 3 s) and created one

signal by filtering the data between 0.5 and 2 Hz and another signal by filtering the data between 13 and 16 Hz. For the lower fre-

quency signal, instantaneous phase was extracted via the Hilbert transform. For the higher frequency signal, phase of the power en-

velope was extracted, again using the Hilbert transform. For each sample (601 samples, i.e., 3 s at 200 Hz sampling rate), the circular

distance between the two phase time series was calculated and the mean resulting angle (‘preferred phase’) determined. For

instance, if the spindle amplitude were to systematically peak at the SO down state (trough), the preferred phase would be 180�.
Conversely, if the spindle amplitude was to – as hypothesized - systematically peak at the SO up state (peak), the preferred phase

would be 0� (see also [25, 38]). Each participant’s preferred phase of SO-spindle modulation was obtained from averaging all indi-

vidual events’ preferred phases, and the resulting distribution across participants was then tested against uniformity (Rayleigh test)

as well as against uniformity with an a priori defined mean direction (V test).

DATA AND SOFTWARE AVAILABILITY

EEG and behavioral data are available upon request by contracting the Lead Contact, Bernhard Staresina (b.staresina@bham.ac.uk).
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Figure S1: Event Related Potentials (ERPs) in Response to Auditory Cues, Related to Figure 2B Left: 

Traces show mean ± SEM across participants, collapsed across all electrodes. Right: Condition means across 

participants, shown for each electrode separately. A repeated-measures ANOVA revealed no significant 

condition effects comparing object cues, scene cues and control stimuli after controlling for multiple 

comparisons across time and electrodes.  

 

 

 

 
 

 

 
 

Figure S2: Grand Average Slow Oscillations, Related to Figures 2 and 3. Algorithmically detected slow 

oscillations (see STAR Methods) whose maximum trough (‘down state’) fell between 0-1 s (left) or 1-2 s (right) 

post cue onset, shown for electrode C3. Traces show grand average ± SEM across participants. ± 1 s raw data 

segments around the SO trough (time 0) were extracted to accommodate the maximum SO duration of 2 s. Note 

that both early and late SOs surpass the standard peak-to-peak amplitude criterion of 75µV [S2]. 



 

 

 
 

Figure S3: Discrete Spindle Events from 1.5-2.5 s post cue onset, Related to Figure 3 A. Relative count of 

algorithmically detected fast spindles (13-16 Hz) for old memory cues and new control stimuli, averaged across 

left hemisphere electrodes. Star indicates significant difference (t(26)=3.33, P=.003) B. Across-participant 

correlation between (i) relative spindle increase for old cues vs. control stimuli (cf. panel A) and (ii) category 

distinctiveness of object- and scene-related cues (Spearman’s rho=.47, P=.014). 

 

 

 

 

 
 

Figure S4: Linear Discriminant Analysis (LDA) decoding of object vs. scene cues, related to Figure 4A 

Classification was performed analogously to the RSA analysis described in the main text. At each timepoint (-.2 

s to 2.5 s relative to cue onset, 10 ms steps), k-fold cross-validation was performed on an 8 channels x 41 

timepoints (200 ms) feature vector. K was set to 5 and 5 repetitions were included to provide stability across 

different partitions of training and testing trials. Unequal trial numbers for object- vs. scene-related cues were 

handled by oversampling the minority class, i.e. a random sub-selection of trials from the smaller category was 

duplicated to match the number of trials in the larger category. Critically, this was only done during training and 

not during testing, avoiding any bias in cross-validation but using the whole range of data. The outcome 

measure was % area under the curve (AUC) of a classification Receiver Operating Characteristic (ROC), shown 

to be more sensitive than simple accuracy measures [S3, S4]. Chance classification would be 50%. Each 

participant thus provides a single cue-locked classification time course. Second-level significance was tested via 

FieldTrip’s cluster-based permutation method (correcting for multiple comparisons across time), where initial 

clusters were obtained by one-tailed t-test of classification exceeding chance levels. Results show significant 

above-chance classification from 1.79 s to 1.99 s post cue onset (P<.05, corrected; red line), replicating the RSA 



 

 

effects shown in Figure 4A. Note that classification is also significantly above chance when using the exact time 

window of significant RSA effects (1.76s-2.06s, t(26)=2.9, P=.004, one-tailed). 

 

 

 

 

 

 T1 (%) 

 Hit Miss CR FA d’ 

Nap 
84.04 

(± 2.10) 

15.96 

(± 2.10) 

96.37 

(± 0.69) 

3.63 

(± 0.69) 

2.89 

(± 0.10) 

      

Wake 
89.74 

± (1.71) 

10.26 

± (1.71) 

96.42 

(± 0.77) 

3.58 

(± 0.77) 

3.15 

(± 0.14) 

 
 

T2 (%) 

 Hit Miss CR FA d’ 

Nap 
77.70 

(± 2.54) 

22.30 

(± 2.54) 

96.67 

(± 0.72) 

3.33 

(± 0.72) 

2.67 

(± 0.11) 

      

Wake 
79.32 

(± 3.27) 

20.68 

(± 3.27) 

94.95 

(± 1.98) 

5.05 

(± 1.98) 

2.78 

(± 0.16) 

 
 

T3 (%) 

 Hit Miss CR FA d’ 

Nap 
79.74 

(± 2.86) 

20.26 

(± 2.86) 

96.52 

(± 0.87) 

3.48 

(± 0.87) 

2.83 

(± 0.10) 

      

Wake 
80.11 

(± 3.38) 

19.89 

(± 3.38) 

94.95 

(± 2.46) 

5.05 

(± 2.46) 

2.78 

(± 0.11) 

 

Table S1: Adjective Recognition, Related to Behavioural Results The data (means ± SEM) refer to hits, 

misses, correct rejections (CR) and false alarms (FA) at each test phase. The sensitivity index (d’) [Normalized 

(hits/(hits + misses)) – Normalized (false alarms/(false alarms + correct rejections))] was calculated for adjective 

recognition memory. We adopted a log-linear approach to safeguard this analysis against errors arising from 0 

and 1 values: for each participant, 0.5 was added to the total hits and total false alarms, and 1 was added to the 

total signal (old) trials and total noise (new) trials [S1]. Adjective recognition scores (d’) were applied to a 3 

(Test: T1/T2/T3) X 2 (Group: Nap/Wake) mixed ANOVA. Recognition performance initially declined between 

T1 and T2, but then stabilised between T2 and T3 (Test main effect [Huynh-Feldt corrected]: 

F(1.78,78.41)=9.00, P=.001). However, these changes in performance were not modulated by the type of offline 

activity (Group*Session interaction [Huynh-Feldt corrected]: F(1.78,78.41)=2.36, P=.11). There was also no 

main effect of Group (F(1,44)=0.53, P=.47), indicating that overall adjective recognition performance was 

equivalent in the nap and wake groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

All  T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
50.15 

(± 2.97) 

 79.57 

(± 2.14) 

80.69 

(± 2.45) 

88.48 

(± 1.58) 

94.36 

(± 0.84) 

       

Wake 
46.84 

(± 2.89) 

 64.17 

(± 4.10) 

64.75 

(± 3.66) 

82.52 

(± 3.61) 

82.76 

(± 3.14) 

 

Objects T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
48.96 

(± 2.92) 

 80.86 

(± 2.36) 

80.20 

(± 3.16) 

90.09 

(± 2.03) 

96.14 

(± 1.76) 

       

Wake 
47.37 

(± 3.51) 

 67.47 

(± 4.51) 

68.01 

(± 4.32) 

84.54 

(± 4.02) 

88.72 

(± 3.55) 

 

Scenes T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
51.33 

(± 3.18) 

 78.14 

(± 2.70) 

80.78 

(± 2.69) 

87.77 

(± 1.85) 

92.27 

(± 1.50) 

       

Wake 
46.32 

(± 2.77) 

 61.40 

(± 4.57) 

61.61 

(± 4.53) 

79.14 

(± 4.90) 

76.14 

(± 5.62) 

 

Table S2: Category Recall, Related to Behavioural Results Data (means ± SEM) are shown for all items 

(top) and then separated for object and scenes. *Refers to the proportion (%) of T1-recalled categories that were 

also recalled at T2. **Refers to the proportion (%) of T2-recalled categories that were also recalled at T3. Note: 

50% accuracy is not to be mistaken as chance performance given that participants had a “?” response option (see 

Figure 1A). We repeated the analyses reported in the main text to examine objects and scenes separately. A 2 

(Type: Object/Scene) X 2 (Group: Nap/Wake) mixed ANOVA showed that object and scene recall did not differ 

at T1 (Type main effect: F(1,44)=0.23, P=.64), for either the nap group or the wake group (Type*Group 

interaction: F(1,44)=1.54, P=.22). Again, there was no main effect of Group (F(1,44)=0.59, P=.45). At T3, a 

main effect of Type F(1,44)=6.88, P=.01) indicated that objects were generally better recalled than scenes. 

However, there was no interaction between Type and any other factor(s) (all P>.05), suggesting that the 

memory effects of sleep and TMR observed in this study did not vary according to category membership. 

Objects were also better recalled than scenes at T2 (Type main effect: F(1,44)=4.11, P=.05). Again, there was 

no interaction between Type and any other factor(s) (all P>.05).  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

All  T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
83.48 

(± 2.10) 

 84.93 

(± 1.98) 

84.54 

(± 2.01) 

94.06 

(± 1.11) 

96.43 

(± 0.66) 

       

Wake 
77.35 

(± 4.21) 

 68.45 

(± 4.18) 

70.74 

(± 4.20) 

89.17 

(± 3.94) 

87.52 

(± 2.58) 

 

Objects T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
86.01 

(± 2.29) 

 87.16 

(± 2.41) 

85.16 

(± 2.78) 

94.31 

(± 1.64) 

98.32 

(± 0.82) 

       

Wake 
79.71 

(± 4.32) 

 73.36 

(± 4.85) 

73.72 

(± 4.89) 

91.21 

(± 3.61) 

94.96 

(± 2.39) 

 

Scenes T1 (%)  T2 (%)* T3 (%)** 

   Not Cued Cued Not Cued Cued 

Nap 
81.02 

(± 2.45) 

 82.48 

(± 2.61) 

82.90 

(± 2.22) 

93.66 

(± 1.43) 

94.53 

(± 1.33) 

       

Wake 
75.09 

(± 4.44) 

 64.51 

(± 5.05) 

68.38 

(± 5.15) 

84.97 

(± 5.61) 

76.40 

(± 7.22) 

 

Table S3: Exemplar Recall, Related to Behavioural Results Data (means ± SEM) are shown for all items 

(top) and then separated for object and scenes. *Refers to the proportion (%) of T1-recalled items that were also 

recalled at T2. **Refers to the proportion (%) of T2-recalled items that were also recalled at T3. Note: the 

exemplar recall analysis was restricted to trials for which the category (object or scene) was correctly retrieved. 
At T1, more object exemplars were recalled than scene exemplars (Type (Object/Scene) main effect: 

F(1,44)=8.92, P=.005). There was no main effect of Group (Nap/Wake) (F(1,44)=1.99, P=.17) and no 

Type*Group Interaction (F(1,44)=0.01, P=.91). At T2, the nap group strongly outperformed the wake group 

(Group main effect: F(1,44)=18.46, P<.0001) and objects were better recalled than scenes (Type main effect: 

F(1,44)=7.37, P=.009). There was no main effect of TMR (F(1,44)=0.07, P=.80) and no interactions between 

factors (P>.05). At T3, there was again a main effect of Group (F(1,44)=7.90, P=.007) and a main effect of 

Type (F(1,44)=9.64, P=.003). There was also a Type*Group Interaction (F(1,44)=4.67, P=.04): objects were 

better recalled than scenes in the wake group but not in the nap group. While the TMR*Group interaction did 

not reach significance (F(1,44)=2.57, P=.12) in this analysis, planned t-tests revealed a strong trend towards 

superior recall for cued relative to non-cued items in the nap group (t(26)=2.01, P=.06, two-tailed), but not in 

the wake group (t(18)=0.48, P=.64). Taken together with our other findings, these results suggest that category 

level recall is most sensitive to the memory-enhancing effects of TMR. There were no other interactions 

between factors (P>.05). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

A N1 N2 N3 REM TST  

 14.52 

(± 1.38) 

35.78 

(± 3.09) 

14.85 

(± 2.32) 

20.70 

(±2.84) 

90.89 

(± 2.47) 

 

B Overall F3 F4 C3 C4 P3 P4 O1 O2 

Slow 

Spindle 

Density 

2.00 

(± 0.10) 

2.80 

(± 0.18) 

2.74 

(± 0.17) 

2.12 

(± 0.14) 

2.04 

(± 0.14) 

1.66 

(± 0.09) 

1.59 

(± 0.10) 

1.52 

(± 0.06) 

1.50 

(± 0.06) 

          
Fast 

Spindle 

density 

3.37 

(± 0.09) 

3.10 

(± 0.10) 

3.04 

(± 0.12) 

3.70 

(± 0.09) 

3.45 

(± 0.14) 

3.92 

(± 0.10) 

3.66 

(± 0.17) 

2.99 

(± 0.16) 

3.12 

(± 0.14) 

          
SO 

Density 

2.69 

(± 0.08) 

2.63 

(± 0.11) 

2.68 

(± 0.10) 

2.60 

(± 0.09) 

2.64 

(± 0.08) 

2.64 

(± 0.10) 

2.65 

(± 0.08) 

2.82 

(± 0.08) 

2.88 

(± 0.07) 

 

Table S4: Sleep EEG data, Related to EEG Results A. Time (min) spent in each stage of sleep and total sleep 

time (TST). B. Event density measures for slow spindles (10-13 Hz), fast spindles (13-16 Hz) and slow 

oscillations (SOs, 0.5-2 Hz) at each EEG channel. Density is calculated as the number of electrophysiological 

events divided by time (min) spent in non-rapid eye movement (NREM) sleep stages N2 and N3. Data are 

shown as means ± SEM. 
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