

1 SUPPLEMENTARY FIGURE LEGENDS

2 Supplementary Figure 1. Ca_v1.2 and CaMKII are co-expressed in PFC neurons,

3 present in dendritic shafts and dendritic spines, and are affiliated with the

4 postsynaptic density and extra- and perisynaptic plasma membrane.

5 (a) Electron micrograph showing the soma of a PFC neuron that expresses

6 immunoperoxidase labeling for $Ca_v 1.2$ and silver-gold labeling for CaMKII. As shown in the dashed box, labeling for each protein is associated with a Golgi complex (Gc) 7 8 adjacent to the nucleus (nuc). The Gc is shown at a higher magnification in the insert to 9 better visualize Ca_v1.2 (green arrow heads) and CaMKII (red arrows) labeled vesicles. 10 Unlabeled vesicles (gray arrow heads) are shown for comparison. (b) A small dendritic 11 shaft shows labeling for both Ca_v1.2 and CaMKII (cav-cam-d). This profile illustrates 12 dense immunoperoxidase reaction product for Ca_v1.2 within the postsynaptic density 13 (green arrow head) and an immunogold-silver aggregate for CaMKII (red arrow) located 14 near the extrasynaptic plasma membrane. Dendritic spines (us) devoid of postsynaptic 15 $Ca_v 1.2$ labeling are seen in the nearby neuropil. (c) A dendritic profile and a spine profile 16 are each co-labeled for Ca_v1.2 and CaMKII. The dendritic profile (cav-cam-d) shows 17 immunoperoxidase labeling for $Ca_v 1.2$ in the postsynaptic density (green arrow head) and 18 also displays an immunogold-silver aggregate near the adjacent perisynaptic region of the 19 plasma membrane (red arrow). The nearby neuropil contains a dually labeled spine (cav-20 cam-s) showing labeling for $Ca_v 1.2$ on the postsynaptic density (green arrow head) and 21 CaMKII beneath this Ca_v1.2 labeled structure (red arrow). Scale bars: 500 nm. 22

23 Supplementary Figure 2. *Cacna1c* fbKO mice display impaired learning and

24 memory but normal working memory.

25	(a) Compared to WT mice, fbKO mice displayed fewer successes in locating the
26	submerged platform in the Y-maze during training (Two-way ANOVA, main effect of
27	genotype, $F_{1,75} = 4.841$, p = 0.0309; WT n = 9, fbKO n = 8). (b) Compared to WT mice,
28	fbKO mice displayed a trend towards fewer successes in locating the submerged platform
29	in the Y-maze at 1 hour (Student's <i>t</i> -test, $t(15) = 1.775$, $p = 0.0962$) and significantly
30	lower success at 24 hours (Student's <i>t</i> -test with Welch's correction, $t(9) = 2.73$, p < 0.05)
31	but not 7 days post-training (WT n = 9, fbKO n = 8). (\mathbf{c} , \mathbf{d}) WT and fbKO mice displayed
32	similar number of spontaneous alternations (c) and total arm entries (d) during the
33	working memory task in the Y-maze (WT n = 8, fbKO n = 8). $*p < 0.05$ vs WT. Error
34	bars represent mean \pm SEM.
35	
36	Supplementary Figure 3. Knockdown of <i>cacna1c</i> in the adult PFC of mice does not
36 37	Supplementary Figure 3. Knockdown of <i>cacna1c</i> in the adult PFC of mice does not impair learning and memory or working memory.
37	impair learning and memory or working memory.
37 38	impair learning and memory or working memory. (a) Lower <i>cacnalc</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$,
37 38 39	impair learning and memory or working memory. (a) Lower <i>cacna1c</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$, $p = 0.0004$; GFP n = 8, Cre n= 7). (b, c) GFP and Cre mice displayed similar level of
37 38 39 40	impair learning and memory or working memory. (a) Lower <i>cacna1c</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$, $p = 0.0004$; GFP n = 8, Cre n= 7). (b, c) GFP and Cre mice displayed similar level of successes in locating the submerged platform in the Y-maze during training (b) and the 1
37 38 39 40 41	impair learning and memory or working memory. (a) Lower <i>cacna1c</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$, $p = 0.0004$; GFP n = 8, Cre n= 7). (b, c) GFP and Cre mice displayed similar level of successes in locating the submerged platform in the Y-maze during training (b) and the 1 hour and 24 hour memory tests (c; GFP n = 9, Cre n = 8). (d, e) GFP and Cre mice
 37 38 39 40 41 42 	impair learning and memory or working memory. (a) Lower <i>cacna1c</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$, $p = 0.0004$; GFP n = 8, Cre n= 7). (b, c) GFP and Cre mice displayed similar level of successes in locating the submerged platform in the Y-maze during training (b) and the 1 hour and 24 hour memory tests (c; GFP n = 9, Cre n = 8). (d, e) GFP and Cre mice displayed similar number of spontaneous alternations (d) and total arm entries (e) during
 37 38 39 40 41 42 43 	impair learning and memory or working memory. (a) Lower <i>cacna1c</i> mRNA levels in the PFC of Cre mice (Student's <i>t</i> -test, $t(13) = 4.673$, $p = 0.0004$; GFP n = 8, Cre n= 7). (b, c) GFP and Cre mice displayed similar level of successes in locating the submerged platform in the Y-maze during training (b) and the 1 hour and 24 hour memory tests (c; GFP n = 9, Cre n = 8). (d, e) GFP and Cre mice displayed similar number of spontaneous alternations (d) and total arm entries (e) during the working memory task in the Y-maze (GFP n = 8, Cre n = 8). Error bars represent

47 calcium currents.

48(a) Pulse protocol used (top) and representative traces (bottom) of L-type calcium49channel currents from layer 5 pyramidal neurons of the PFC with the L-type calcium50channel blocker nifedipine. (b) Current-voltage relationship measured from subfigure a51(WT n = 2, fbKO n = 4). (c) fbKO mice have significantly lower levels of Ca_v1.2 protein52in the synaptoneurosomes from the PFC (Student's *t*-test, t(11) = 4.192, p < 0.01). **p <</td>530.01 vs WT. Error bars represent mean ± SEM.

54

55 Supplementary Figure 5. ISRIB corrects the decreased protein levels of VGAT in

56 the PFC of cacnalc fbKO mice

57 (a) Outline of experimental design. Adult WT and fbKO mice were given a single

58 systemic injection of either ISRIB (2.5 mg/kg, i.p) or vehicle and ninety minutes later

59 sacrificed. (b) fbKO and WT mice have similar levels of synaptoneurosomal VGLUT1 in

60 the PFC that remain unaltered with ISRIB treatment (Two-way ANOVA, main effect of

61 genotype, $F_{1, 24} = 8.468$, p = 0.0077; main effect of treatment, $F_{1, 24} = 5.679$, p = 0.0254).

62 (c) Vehicle treated fbKO mice have significantly lower levels of synaptoneurosomal

63 VGAT protein in the PFC compared to WT vehicle mice that is normalized with ISRIB

64 (Two-way ANOVA, main effect of genotype, $F_{1, 24} = 12.63$, p = 0.0016; genotype x

65 treatment, $F_{1, 24} = 4.201$, p = 0.0516; Bonferroni *post-hoc* test, **p < 0.01 vs WT Veh;

66 Veh n = 6/ genotype, ISRIB n = 6/ genotype). Error bars represent mean \pm SEM.

1 SUPPLEMENTARY METHODS

Animals. Homozygous *cacnalc* floxed mice (*cacnalc*^{fl/fl;1}) were crossed with mice 2 3 expressing Cre recombinase under the control of the Camk2a (calcium/calmodulindependent protein kinase II alpha) promoter (*Camk2a*-Cre T29-1;² Jackson Laboratories, 4 Bar Harbor, Maine) to generate heterozygous fbKO (Cre^{+/-}, cacna1c^{fl/fl}) mice. Male and 5 female Cre^{+/-}, *cacna1c*^{fl/fl} mice were bred to generate homozygous fbKO (Cre^{+/-}, 6 cacnalc^{fl/fl}) and WT (Cre^{+/-}, cacnalc^{WT/WT}) experimental mice. Mice were provided food 7 8 and water *ad libitum* and maintained on a 12 hour light/dark cycle (from 6 A.M. to 6 9 P.M.). 10

11 Electron Microscopy (EM). Brains from WT mice were processed and dual labeled by 12 immunocytochemistry using immunoperoxidase and immunogold-silver markers³ as 13 described below. Brains were fixed by transcardial perfusion sequentially with 2 ml of 14 2% heparin in 0.9% saline (1,000 U/ml) and 50 ml of a fixative consisting of 3.75% acrolein / 2% paraformaldehyde in 0.1 M phosphate buffer (PB; pH 7.4)³. Brains were 15 16 dissected from the cranium and post-fixed in acrolein / paraformaldehyde for 30 minutes³. The methods for tissue processing and dual labeling immunocytochemistry 17 18 using immunoperoxidase and immunogold-silver markers were performed as previously described³. Labeling of Ca_v1.2 and CaMKII was performed by incubating PFC sections 19 20 for 48 hour in a cocktail consisting of rabbit anti- $Ca_v 1.2$ (1:15,000; antibody generated 21 by Prosci Incorporated, against Ca_v1.2 peptide sequence CKYTTKINMDDLQPSENEDKS as previously published⁴) and goat anti-CaMKII- α 22 23 (1:1000; Abcam, Cambridge, MA) antisera. Characterization of these reagents is as

previously reported^{4, 5}. For EM imaging, sections were examined using a Tecnai Biotwin 24 25 12 transmission electron microscope (FEI, Hillsboro, OR) interfaced with a digital 26 camera (Advanced Microscopy Techniques, Danvers, MA) using procedures as previously described⁶. Images were collected at magnifications ranging from 10,000-27 28 19,000x. Immunoperoxidase labeling was identified by a diffuse brown/black precipitate, 29 while gold-silver labeling was characterized by dense uniformly black granules. Both 30 markers are readily distinguishable by visual inspection. Profiles containing Ca_v1.2 31 and/or CaMKII immunoreactivity were classified as neuronal (soma, dendrites, axons, terminals) or glial based on criteria previously described⁷. Criteria for field selection 32 33 included good morphological preservation, the presence of immunolabeling in the field, 34 and proximity to the tissue-plastic interface (i.e., the tissue surface) to minimize 35 differences in antisera penetration. For preparation of figures, images were adjusted for 36 contrast and brightness using Adobe Photoshop CS4 software.

37

38 **Stereotaxic Surgery**. Adult mice were anesthetized with a xylazine (20mg/ml) and 39 ketamine (100mg/ml) cocktail, and mounted in a stereotaxic surgical apparatus (David 40 Kopf Instruments, Tujunga, CA). An incision was made in the scalp along the midline, 41 the skin was retracted, and the head was leveled based on the horizontal positions of 42 bregma and lambda. Two holes were formed through the skull using a 25-gauge needle 43 and AAV2/2-GFP or AAV2/2-Cre-GFP (Vector Biolabs, Malvern, PA) was delivered into the PFC with a 2.5ul, 30-gauge Hamilton syringe at a rate of 0.1ul/min for a total 44 45 volume of 0.8ul/hemisphere. Stereotaxic coordinates for the PFC were anteroposterior 46 (AP): +2.3 mm, mediolateral (MV): ±1.7 mm, dorsoventral (DV): -2.8 mm; angled 30°

47 toward the midline in the coronal plane, adopted from Paxinos and Franklin⁸. Mice were
48 allowed to recover in their home-cage for five weeks prior to behavioral testing.

49

50 Green Fluorescent Protein (GFP) immunohistochemistry. GFP immunocytochemistry 51 was used to confirm placement of surgical injections as described previously⁹. Briefly, 52 animals were anaesthetized with euthasol and perfused transcardially with 4% 53 paraformaldehyde (PFC). Brains were dissected, post-fixed overnight in 4% PFA, and 54 cryo-protected in 30% sucrose at 4°C for at least 72 hours. Brains were sectioned at a 55 thickness of 40µm using a sliding microtome and sections containing the PFC were 56 incubated in chicken anti-GFP (1:5000; Aves Lab Inc., Tigard, OR) primary antibody for 57 24 hours at 4°C. The sections were rinsed in 0.1M phosphate-buffer (PB) and incubated 58 with donkey anti-chicken Alexa Fluor 488 (1:500; Life Technology, Carlsbad, CA) 59 antibody for 1 hour at room temperature. Sections were imaged using an epifluorescent 60 microscope (Leica DM550B with Leica Application Suite Advanced Fluorescence 3.0.0 61 build 8134 software, Leica Microsystems, Wetzlar, Germany). Animals with improper 62 bilateral injection placement were excluded from behavioral data analysis. 63

64 Behavioral testing.

65 *Three-chambered social approach test*. The test apparatus consisted of a white

rectangular apparatus measuring 26.5"x16.5"x 9" that was divided into three equal-sized
chambers with openings that allowed animals free access to all chambers (Figure 1a).
Before the start of the test, the experimental animal was habituated to the central chamber
of the apparatus for 5 minutes followed by an additional 5-minute habituation to all three

70	chambers. Following habituation, the experimental mouse was contained in the center
71	chamber for 1 minute while the experimenter placed an inverted pencil cup containing a
72	never-before-met age-matched male C57BL6/J stranger mouse in one end chamber and a
73	novel object in another pencil cup in the other end chamber. The experimental mouse was
74	then allowed access to all three chambers and "sociability" was tested during a 5 minute
75	test using two individual measures: 1) time in the chamber containing the stranger mouse
76	and the novel object, and 2) time in the contact zones (a 1.5" zone surrounding the pencil
77	cups) of the stranger mouse and novel object. The experiment was recorded using a
78	video-camera mounted above the apparatus and the position of the experimental mouse
79	was tracked using Any-maze software (Stoelting Co., Wood Dale, IL). All measurements
80	were obtained via automated analyses using AnyMaze (Stoelting Co.,Wood Dale, IL).
01	
81	
81	Fear conditioning. All experiments were performed in a sound-attenuated box
	<i>Fear conditioning</i> . All experiments were performed in a sound-attenuated box (Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber
82	
82 83	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber
82 83 84	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones
82 83 84 85	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones (85dB, 30 seconds, with incrementally increasing inter-trial interval (ITI)) that co-
82 83 84 85 86	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones (85dB, 30 seconds, with incrementally increasing inter-trial interval (ITI)) that co- terminated with a shock (0.7mA, 1 second). For the cue fear memory test, animals were
82 83 84 85 86 87	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones (85dB, 30 seconds, with incrementally increasing inter-trial interval (ITI)) that co- terminated with a shock (0.7mA, 1 second). For the cue fear memory test, animals were placed in a novel chamber (context B, circular in shape with white walls and scented with
82 83 84 85 86 87 88	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones (85dB, 30 seconds, with incrementally increasing inter-trial interval (ITI)) that co- terminated with a shock (0.7mA, 1 second). For the cue fear memory test, animals were placed in a novel chamber (context B, circular in shape with white walls and scented with 0.1% lemon odor) and exposed to 5 tones (85dB, 30 seconds, ITI = 30 seconds) during
82 83 84 85 86 87 88 88 89	(Coulbourn, Whitehall, PA). On day 1, mice were placed in a mouse shock-chamber (context A) that was scented with 0.1% peppermint odor and presented with five tones (85dB, 30 seconds, with incrementally increasing inter-trial interval (ITI)) that co- terminated with a shock (0.7mA, 1 second). For the cue fear memory test, animals were placed in a novel chamber (context B, circular in shape with white walls and scented with 0.1% lemon odor) and exposed to 5 tones (85dB, 30 seconds, ITI = 30 seconds) during which their freezing was measured. Data is presented as the percent freezing during

was recorded using FreezeFrame software and the time of freezing was measured viaautomated analysis using FreezeView (Coulbourn Instruments, Whitehall, PA).

95

96 *Water-based Y-maze*. The Y-maze consisted of three equal sized arms with a 120° angle 97 between each arm (Figure 1g). The maze was filled with water (25-26°C) to a height of 98 approximately 9" and clouded with non-toxic white tempura paint. On day 1, mice were 99 placed in the center of the maze and allowed free access to all arms for a total of 6 100 minutes. The number of arm entries and the number of triads were recorded to calculate 101 the percent of spontaneous alternations, to measure working memory. On day 2, mice 102 were subjected to 5 training trials to locate a submerged platform in one arm of the Y-103 maze. This was followed by short- (1 hour) and long-term (24 hour and 7 day) memory 104 tests, each of which consisted of 5 trials. The start position and the location of the 105 platform were randomized across mice used in the behavioral test. However for each 106 mouse the chosen start position and location of the platform remained consistent 107 throughout the entire experiment. During each trial the mouse was allowed free access to 108 the maze for a total of 1 minute and the latency to locate the submerged platform and 109 errors made during each trial were recorded. If the platform was not found after 1 minute, 110 the mouse was picked up and placed on the platform for an additional 15 seconds and 111 then rescued from the platform. Successes for each animal was calculated based on the 112 errors made during each trial. An animal that went into the correct arm (the arm that had 113 the submerged platform) without entering the incorrect arm was given a score of 1 while 114 an animal that went into the incorrect arm before entering the correct arm was given a 115 score of 0. For the memory tests, data is presented as an average of the five trials.

117	<i>Morris water maze (MWM).</i> MWM was performed as previously published ¹⁰ with slight
118	modifications. The maze consisted of a circular stainless steel pool with a diameter of 6'
119	and a depth of 14.5" (Figure 1k) that was filled with water (25-26°C) and clouded with
120	non-toxic white tempura paint. Four different start positions were designated. Spatial
121	cues were placed on the wall one foot from the edge of the pool. The maze was virtually
122	divided into four equal quadrants with one quadrant designated as the "goal" for each
123	individual mouse. The other quadrants were designated as clockwise, counter-clockwise
124	and opposite relative to the goal quadrant. The start position and goal quadrant was
125	randomized across mice used in the behavioral test. On day 1, animals were habituated to
126	the pool for a total of 4 trials of 1 minute each, during which the mouse was placed in the
127	center of the pool and allowed free access throughout the pool. On days 2 through 7, mice
128	received a total of 24 trials (4/ day). During each training trial, the mouse was released
129	from a different start position and allowed to swim for a maximum of 1 minute to locate a
130	submerged platform placed in the goal quadrant. Although the start position for each
131	mouse varied from trial-to-trial, the goal always remained the same throughout the length
132	of the training. Animals that successfully located the submerged platform were rescued
133	from the platform and returned to their home cage; those that failed to locate it within 1
134	minute were placed on the platform for an additional 15 seconds and then returned to
135	their home cage. During training trials, latency to locate the hidden platform was
136	measured. Probe tests were performed 1 hour (for short-term memory), 24 hours, and 7
137	days (for long-term memory) post-training. During each probe test, the mice were placed
138	in the pool from the exact opposite end of the designated goal quadrant and the amount of

time the animal spent in the "goal" quadrant compared to that in the other quadrants was
measured for a total of 1 minute. During the probe trials, the amount of time the animal
spent in the goal quadrant (quadrant that had the submerged platform during training)
compared to each of the other quadrants was measured. All trials were recorded using a
video-camera mounted above the maze and the position was tracked using Any-maze
software (Stoelting Co., Wood Dale, IL).

145

146 Electrophysiological methods.

147 Acute brain slice preparation. Postnatal day (P) 30-P45 mice were anesthetized with

148 isoflurane and decapitated. Brains were dissected and immersed in ice-cold oxygenated

149 (95%O₂ and 5%CO₂) dissection buffer containing (in mM): 83 NaCl, 2.5 KCl, 1

150 NaH₂PO₄, 26.2 NaHCO₃, 22 glucose, 72 sucrose, 0.5 CaCl₂, and 3.3 MgCl₂. Coronal

151 slices (400 μm) were cut using a vibratome (VT1200S, Leica, Wetzlar, Germany),

152 incubated in dissection buffer for 40 min at 34°C, and then stored at room temperature.

153 All slice recordings were performed at 34°C unless otherwise specified. Slices were

154 visualized using IR differential interference microscopy (DIC; BX51, Olympus, Tokyo,

155 Japan) and a CMOS camera (Orca-Flash4.0LT, Hamamatsu, Japan). Individual cells were

156 visualized with a 60x Olympus water immersion (1.0 NA) objective.

157

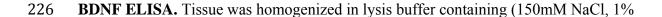
158 Whole-cell recording. For all experiments, external recording buffer was oxygenated

159 (95%O₂ and 5%CO₂) and contained (in mM): 125 NaCl, 25 NaHCO₃, 1.25 NaH₂PO₄, 3

160 KCl, 25 dextrose, 1 MgCl₂, and 2 CaCl₂. Patch pipettes were fabricated from borosilicate

161 glass (Sutter Instrument, Novato, CA) to a measured tip resistance of 2-5 M Ω . Signals

162	were amplified with a Multiclamp 700A amplifier (Molecular Devices, Sunnyvale, CA),
163	digitized with an ITC-18 digitizer (HEKA Instruments Inc., Bellmore, NY) and filtered at
164	2 KHz. Data were monitored, acquired and in some cases analyzed using AxoGraph X
165	software (Berkeley, CA). Series resistance was monitored throughout the experiments by
166	applying a small test voltage step and measuring the capacitive current. Series resistance
167	was 5~25 M\Omega and only cells with <20% change in series resistance and holding current
168	were included for analysis. Liquid junction potential was not corrected.
169	To measure spontaneous mini excitatory postsynaptic currents (mEPSCs),
170	recording pipettes were filled with an internal solution containing (in mM): 125
171	potassium gluconate (or CsCl for recording mIPSCs), 10 KCl, 10 HEPES, 4 Mg-ATP,
172	0.3 Na-GTP, 0.1 EGTA, 10 phosphocreatine, 0.05% biocytin, adjusted to pH 7.3 with
173	KOH and to 278 mOsm with double-distilled H ₂ O. Spontaneous mEPSCs were measured
174	at -80 mV, in the presence of the GABAA receptor blocker SR-95531 (Gabazine, $5\mu M$,
175	Abcam, Cambridge, MA) to isolate α -amino-3-hydroxy-5-methyl-4-isoxazolepropionic
176	acid receptor (AMPAR)-mediated events. Spontaneous mIPSCs were measured at 0 mV.
177	To detect events, a variable amplitude template was slid through the 180s chart
178	recordings ¹¹ . The parameters of the template, including amplitude, 10-90% rise time, and
179	decay time, were determined based on an average of real events as well as previously
180	reported values. The detection threshold was 3 to 7 times of the noise standard deviation,
181	and events with large baseline error were rejected. Data analysis was performed using
182	Axograph X built-in analysis and IGOR Pro software (Wavemetrics) on a Macintosh
183	computer.
104	


185 Molecular methods.

186 SUNSET. Adult mice were anesthetized with an isoflurane vaporizer (at 1.5%) and 187 mounted in a stereotaxic surgical apparatus (David Kopf Instruments, Tujunga, CA). The 188 head was leveled based on the horizontal positions of bregma and lambda, and an 189 incision was made in the scalp along the midline. The skin was retracted and a single hole 190 was formed through the skull using a 25-gauge needle using the following coordinates for 191 the lateral ventricle (AP: -0.2; ML: -1.0; DV: -2.4). Puromycin (Sigma, St. Louis, MO), 192 at a concentration of $10\mu g/\mu l$, was injected into the lateral ventricle at a rate of $0.4\mu l/min$ 193 for a total volume of 2.5ul. Animals were sutured and allowed to recover. For basal 194 protein synthesis measurments, animals were euthanized one-hour post injection, and the 195 PFC, somatosensory cortex and hippocampus were dissected on dry ice. For general 196 protein synthesis measurements with acute ISRIB treatment, ISRIB was injected 197 intraperitoneally at the start of puromycin infusion and animals were euthanized 90 198 minutes later. Western blot analysis using total fractions was performed as described 199 below. 100µg total protein was separated on a 10% gel and probed with an antibody 200 against puromycin (#MABE343, Millipore, Temecula, CA) at a dilution of 1:500 for the 201 primary antibody and 1:5000 for the secondary. Tubulin was used as a loading control at 202 a dilution of 1:60,000 for the primary and 1:100,000 for the secondary.

203

Subcellular fractionation and immunoblotting. Adult mice were decapitated, brains
were dissected, and crude dissections of the PFC were performed using a 17-gauge
stainless steel stylet. For total protein lysates, tissue was sonicated in SDS lysis buffer
(1%SDS in 1X TE, pH 7.4) containing protease and phosphatase inhibitors as previously

described¹². Synaptoneurosomes were generated as previously published¹³. Briefly, tissue 208 209 was homogenized in 0.3M sucrose/ 0.01mM HEPES buffer containing protease and 210 phosphatase inhibitors and centrifuged at 1000xg. The supernatant was spun again at 211 1000xg. The obtained supernatant was spun at 12,000xg and the resulting pellet was 212 resuspended in 4mM HEPES/ 1mM EDTA buffer and used as the synaptoneurosome 213 fraction. Protein concentrations were determined using the BCA assay and protein lysates 214 were separated on a 10% SDS gel along with a Kaleidoscope-prestained protein standard 215 (Bio-Rad, Hercules, CA). Blots were blocked in 5% non-fat dry milk for 1 hour and 216 incubated in primary antibody (see Supplementary Table 1) for 12-48 hours on a shaker 217 at 4°C. Incubation in secondary antibody (see Supplementary Table 1) was performed at 218 room temperature for 1 hour in horseradish peroxidase-linked IgG conjugated antibody. 219 Membranes were visualized using Western Lightning Chemiluminescence solution 220 (Perkin Elmer Life Science, Boston, MA) and optical density was analyzed using NIH 221 Image (NIH, Bethesda, MD). Proteins were normalized to either GAPDH or tubulin, 222 which was used as a loading control. Data in figures 3a and 3e were analyzed from 223 images obtained with the ChemiDoc Imaging System (Bio-Rad, Hercules, CA). All other 224 western analyses were done using X-ray film. 225

227 Triton X-100, 25mM HEPES, 2mM NaF) and incubated on a rotating nutator at 4°C for 1

- hour. Homogenized tissue was centrifuged at 20,000xg and the supernatant containing
- total protein was quantified using the BCA protein assay. Mature BDNF protein was

- measured using the BDNF Emax ImmunoAssay System (Promega, Madison, WI) as
 previously published¹⁴.
- 232

233	Quantitative Real-Time I	PFC (QPCR). RNA wa	s extracted and QPCR w	as performed
-----	---------------------------------	--------------------	------------------------	--------------

- as previously described¹⁵. *Cacna1c* (QuantiTect Primer assay QT00150752; Qiagen)
- 235 mRNA levels were measured using mRNA-specific primers and normalized to *GapDH*
- 236 (QuantiTect Primer assay QT01658692; Qiagen). All samples were performed in
- triplicate, and the values were averaged.
- 238
- 239

REFERENCES

242	1.	Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Müller J et
243		al. Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent
244		synaptic plasticity and spatial memory. The Journal of neuroscience : the official
245		journal of the Society for Neuroscience 2005; 25 (43): 9883-9892.
246		
247	2.	Tsien JZ, Chen DF, Gerber D, Tom C, Mercer EH, Anderson DJ et al. Subregion-
248		and cell type-restricted gene knockout in mouse brain. Cell 1996; 87(7): 1317-
249		1326.
250		
251	3.	Glass MJ, Wang G, Coleman CG, Chan J, Ogorodnik E, Van Kempen TA et al.
252		NMDA Receptor Plasticity in the Hypothalamic Paraventricular Nucleus
253		Contributes to the Elevated Blood Pressure Produced by Angiotensin II. The
254		Journal of neuroscience : the official journal of the Society for Neuroscience
255		2015; 35 (26): 9558-9567.
256		
257	4.	Tippens AL, Pare JF, Langwieser N, Moosmang S, Milner TA, Smith Y et al.
258		Ultrastructural evidence for pre- and postsynaptic localization of Cav1.2 L-type
259		Ca2+ channels in the rat hippocampus. <i>J Comp Neurol</i> 2008; 506 (4): 569-583.
260		
261	5.	Gan JO, Bowline E, Lourenco FS, Pickel VM. Adolescent social isolation
262		enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines

263		of principal neurons in the basolateral amygdala of adult mice. Neuroscience
264		2014; 258: 174-183.
265		
266	6.	Beckerman MA, Van Kempen TA, Justice NJ, Milner TA, Glass MJ.
267		Corticotropin-releasing factor in the mouse central nucleus of the amygdala:
268		ultrastructural distribution in NMDA-NR1 receptor subunit expressing neurons as
269		well as projection neurons to the bed nucleus of the stria terminalis. Exp Neurol
270		2013; 239: 120-132.
271		
272	7.	Peters A, Palay SL, Webster HD. The fine structure of the nervous system. 1991.
273		
274	8.	Paxinos G, Franklin KBJ. The Mouse Brain in Stereotaxic Coordinates. 2nd
275		Edition. Academic Press2001.
276		
277	9.	Lee AS, Ra S, Rajadhyaksha AM, Britt JK, De Jesus-Cortes H, Gonzales KL et
278		al. Forebrain elimination of cacna1c mediates anxiety-like behavior in mice. Mol
279		Psychiatry 2012; 17(11): 1054-1055.
280		
281	10.	Vorhees CV, Williams MT. Morris water maze: procedures for assessing spatial
282		and related forms of learning and memory. Nat Protoc 2006; 1(2): 848-858.
283		
284	11.	Clements JD, Bekkers JM. Detection of spontaneous synaptic events with an
285		optimally scaled template. Biophys J 1997; 73(1): 220-229.

287	12.	Tropea TF, Kabir ZD, Kaur G, Rajadhyaksha AM, Kosofsky BE. Enhanced
288		dopamine D1 and BDNF signaling in the adult dorsal striatum but not nucleus
289		accumbens of prenatal cocaine treated mice. Front Psychiatry 2011; 2: 67.
290		
291	13.	Knackstedt LA, Moussawi K, Lalumiere R, Schwendt M, Klugmann M, Kalivas
292		PW. Extinction training after cocaine self-administration induces glutamatergic
293		plasticity to inhibit cocaine seeking. The Journal of neuroscience : the official
294		journal of the Society for Neuroscience 2010; 30 (23): 7984-7992.
295		
296	14.	Kabir ZD, Katzman AC, Kosofsky BE. Molecular mechanisms mediating a
297		deficit in recall of fear extinction in adult mice exposed to cocaine in utero. <i>PloS</i>
298		one 2013; 8 (12): e84165.
299		
300	15.	Schierberl K, Hao J, Tropea TF, Ra S, Giordano TP, Xu Q et al. Cav1.2 L-type
301		Ca ²⁺ channels mediate cocaine-induced GluA1 trafficking in the nucleus
302		accumbens, a long-term adaptation dependent on ventral tegmental area Ca(v)1.3
303		channels. The Journal of neuroscience : the official journal of the Society for
304		Neuroscience 2011; 31 (38): 13562-13575.
305		
306		
307		

			Dilutions		
			(primary/		Mol Wt
Antibody	Company	Cat #	secondary)	Secondary	(kDa)
mTOR	Cell Signaling, Danvers, MA	2972	1:1000/ 1:5000	HRP α Rb	289
P-mTOR		2971			
S2448	Cell Signaling, Danvers, MA	2971	1:1000/ 1:5000	HRP α Rb	289
4EBP1	Cell Signaling, Danvers, MA	9459	1:1000/ 1:5000	HRP a Rb	15-25
P-4EBP1		0.450			
T37/46	Cell Signaling, Danvers, MA	9459	1:1000/ 1:5000	HRP α Rb	15-25
eIF4B	Cell Signaling, Danvers, MA	3592	1:1000/ 1:5000	HRP α Rb	80
P-eIF4B		2501			
S422	Cell Signaling, Danvers, MA	3591	1:1000/ 1:5000	HRP α Rb	80
eEF2	Cell Signaling, Danvers, MA	2332	1:1000/ 1:5000	HRP a Rb	95
P-eEF2		2221			
T56	Cell Signaling, Danvers, MA	2331	1:1000/ 1:5000	HRP α Rb	95
rpS6	Cell Signaling, Danvers, MA	2217	1:1000/ 1:5000	HRP a Rb	32
P-rpS6		2211			
S235/236	Cell Signaling, Danvers, MA	2211	1:500/ 1:5000	HRP α Rb	32
P-rpS6		2215			
S240/244	Cell Signaling, Danvers, MA	2213	1:1000/ 1:5000	HRP α Rb	32
eIF2a	Cell Signaling, Danvers, MA	9722	1:1000/ 1:5000	HRP a Rb	38
P-eIF2α	Cell Signaling, Danvers, MA	3398	1:1000/ 1:5000	HRP α Rb	38

Supplementary Table 1. List of antibodies used for immunoblotting.

S51					
		ab2255	1:20,000/		
GAPDH	Abcam, Cambridge, MA	5	1:40,000	HRP α Rb	37
		T5168	1:10,000/		
Tubulin	Sigma, St. Louis, MO	15108	1:30,000	HRP α Ms	50
	Alomone Labs, Jerusalem,	AGP-		HRP a	
Ca _v 1.2	Israel	001	1:300/ 1:5000	Guinea pig	250
		Clone			
VGlut	Neuromab, Davis, CA	N28/9	1:1000/ 1:5000	HRP α Rb	52
		131			
VGat	Synaptic Systems, Germany	002	1:1000/ 1:5000	HRP α Rb	57