## **Details of Phylogenetic Results**

All morphological species were paraphyletic at all loci, though they tended to be monophyletic on the coast and paraphyletic in the Salish Sea. Monophyletic clades with moderate bootstrap support (>65%) containing all coastal individuals were found for *S. auriculatus* and *S. caurinus* at *Cytb* (Figure A) and *S. auriculatus* at *Ets* (Figure B) and *S7* (Figure C). Monophyletic clades, though with low bootstrap support, were also found for coastal *S. auriculatus* at *Mep* (clade G, Figure D) and coastal *S. maliger* at *Cytb* (clade B, Figure A). In contrast, Salish Sea populations had more shared haplotypes and discordant haplotypes. At *Ets, Mep*, and *Mdh*, haplotypes shared among the three focal species were also shared with an ingroup control or the outgroup species (Figures B, D, and E).

The *Cytb* tree had 30 unique haplotypes with strong bootstrap support for two distinct clades (A and C, Figure A). The *S. Caurinus*, clade C had 92% bootstrap support and grouped most morphological *S. caurinus*. The nine discordant haplotypes were Salish Sea *S. caurinus* and were shared with a common coastal *S. maliger* haplotype (haplotype18, clade B, Figure A, S3 Table). The *S. auriculatus*, clade A had 86% bootstrap support and included all but two haplotypes from the morphological *S. auriculatus*. Those discordant haplotypes (haplotype 20 and 23) were from Salish Sea *S. auriculatus* and clustered with common *S. maliger* haplotypes (clade B, Figure A, S3 Table), though haplotype 23 was not shared between the two species. Interestingly, clade A2 grouped all Salish Sea *S. auriculatus* with 75% bootstrap support (Figure A), with the exception of the two non-conforming haplotypes mentioned above. Clade B grouped the majority of *S. maliger* morphological species (Figure A) except for a few discordant haplotypes from Salish Sea *S. auriculatus* (clade C) (haplotypes 22 and 12, Figure A, S3 Table).



**Figure A.** *Cytb* (**717 nucleotides and HKY+G mutation model**). Maximum likelihood phylogenetic tree with >50% support indicated beside branch. Node label coded with the following information: unique haplotype identifier, species, population, haplotype count. Species are coded by two letters: species (Sa–*S. auriculatus*, Sc–*S. caurinus*, Sm–*S. maliger*). The next two letters are the population code (Co – Coastal, SS – Salish Sea). The discordant haplotypes that were shared are marked with a solid square and clades are labeled by the letters A, A2, B, and C. Open circle represents discordant haplotype that was not shared. The tree is rooted with outgroup *Sebastes elongatus*.

Trees from nuclear loci were generally less resolved among coastal morphological species, complicating the distinction of hybridization and ancestral polymorphism. The *Ets* tree had 15 haplotypes with 68% support for clade D that grouped all morphological *S. auriculatus* (Figure B). Morphological *S. maliger* and *S. caurinus* shared one haplotype with each other (haplotype 3, Figure B) and one haplotype both with each other and the ingroup control *S. atrovirens* (haplotype 8, Figure B). Although morphological *S. maliger* and *S. caurinus* were not completely resolved into monophyletic clades, haplotype 3 was mostly *S. caurinus* and haplotype 8 was mostly *S. maliger*.



**Figure B.** *Ets* (**293 nucleotides and K80+I mutation model**). Maximum likelihood phylogenetic tree with >50% support indicated beside branch. Node label coded with the following information: unique haplotype identifier, species, population, haplotype count. Species are coded by two letters: species (Sa – *S. auriculatus,* Sc – *S. caurinus,* Sm – *S. maliger*). The next two letters are the population code (Co – Coastal, SS – Salish Sea). The shared haplotypes are marked with an open square and the distinct clade is labeled with D. The tree is rooted with outgroup *Sebastes elongatus*.

The *S7* tree had 20 haplotypes with 97% support for clade F that grouped all morphological *S. auriculatus* haplotypes except two and the ingroup control *S. dallii* (Figure C). The two discordant haplotypes were Salish Sea *S. auriculatus* that were shared with common coastal *S. maliger* haplotypes (4 and 6, Figure C). Clade E grouped most morphological *S. caurinus* haplotypes except for six discordant haplotypes that grouped with common coastal *S. maliger* haplotypes from morphological *S. maliger* haplotypes (4 and 5, Figure C). Although haplotypes from morphological *S. maliger* did not form a distinct clade at *S7*, they were not grouped with the other morphological species in clade F or E, with the exception of a single haplotype from a coastal *S. maliger* found in clade E (Figure C).



**Figure C.** *S7* (560 nucleotides and F81+I+G mutation model). Maximum likelihood phylogenetic tree with >50% support indicated beside branch. Node label coded with the following information: unique haplotype identifier, species, population, haplotype count. Species are coded by two letters: species (Sa – S. auriculatus, Sc – S. caurinus, Sm – S. maliger). The next two letters are the population code (Co – Coastal, SS – Salish Sea). The discordant haplotypes that were shared are marked with a solid square and distinct clades are labeled E and F. The open square marks a shared haplotype. The tree is rooted with outgroup *Sebastes elongatus* 

The *Mep* tree had 32 haplotypes (Figure D) with clade G that grouped most haplotypes from morphological *S*. *auriculatus* and the ingroup control, *S. dallii*. Three shared haplotypes were from Salish Sea *S. auriculatus* and did not cluster with the rest of the morphological species in clade G (5, 9, 28, Figure D), though haplotype 28 was a unique haplotype.

G



**Figure D.** *Mep* (**785 nucleotides and HKY+I+G mutation model**). Maximum likelihood phylogenetic tree with >50% support indicated beside branch. Node label coded with the following information: unique haplotype identifier, species, population, haplotype count. Species are coded by two letters: species (Sa – *S. auriculatus,* Sc – *S. caurinus,* Sm – *S. maliger*). The next two letters are the population code (Co – Coastal, SS –Salish Sea. The discordant species haplotypes are marked with a solid square and the distinct clade is labeled G. The open circle represents a discordant haplotype that was not shared. The open square marks a shared haplotype. The tree is rooted with outgroup *Sebastes elongatus*.

The *Mdh* tree had 8 haplotypes and appeared to be polyphyletic for all morphological species; however, there is a single shared haplotype that represented almost all the morphological *S. caurinus* (2, Figure E). The *S. caurinus* shared this haplotype with two coastal *S. maliger* morphological species, one Salish Sea *S. auriculatus*, and the outgroup *S. elongatus*. The nine haplotypes from Salish Sea *S. caurinus*, which did not share haplotype 2, were shared among two common haplotypes (1 and 3) found in the other morphological species plus both ingroup controls (Figure E).



**Figure E.** *Mdh* (730 nucleotides and HKY mutation model). Maximum likelihood phylogenetic tree with >50% support indicated beside branch. Node label coded with the following information: unique haplotype identifier, species, population, haplotype count. Species are coded by two letters: species (Sa – S. auriculatus, Sc – S. caurinus, Sm – S. maliger). The next two letters are the population code (Co – Coastal, SS - Salish Sea). Shared haplotypes are marked with an open square. The tree is rooted with outgroup *Sebastes elongatus*.