Supporting Information

Photo-responsive hydrogels with photoswitchable mechanical properties allow timeresolved analysis of cellular responses to matrix stiffening

I-Ning Lee^{a,b,1}, Oana Dobre^{c,d,1}, David Richards^d, Christoph Ballestrem^{c,d}, Judith M. Curran^b, John A. Hunt^{e,f}, Stephen M. Richardson^{d,*}, Joe Swift^{c,d,*}, Lu Shin Wong^{a,*}

^a Manchester Institute of Biotechnology and School of Chemistry, University of Manchester,

131 Princess Street, Manchester M1 7DN, United Kingdom.

^b School of Engineering, University of Liverpool, Harrison Hughes Building, Liverpool L69
3GH, United Kingdom.

^c Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.

^d Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, United Kingdom.

^e School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.

^f Current address: School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.

¹ These authors contributed equally to this work.

* E-mail address: <u>s.richardson@manchester.ac.uk</u>, <u>joe.swift@manchester.ac.uk</u>, l.s.wong@manchester.ac.uk

Tables of prepolymer formulations.

-	Monor	mer/Cros	sslinker		Sol					
Formul	AM (M)	BIS (mM)	AZO (mM)	EtOH (µL)	DMF (µL)	DMSO (µL)	H ₂ O (µL)	PBS ^(a) (µL)	Heating ^(b)	Observation ^(c)
1	1.65	26.26	10.12		500		500	225		Х
2	1.72	27.37			225		725	225		Х
3	1.65	26.26			500		500	225		Х
4	1.84	29.22			150		725	225		hydrogel
5	1.84	29.22		225	150		500	225		hydrogel
6	1.84	29.22	11.26		150		725	225		precipitation
7	1.84	29.22	5.63	225	150		500	225		precipitation
8	1.92	30.60	2.95	225	100		500	225		precipitation
9	1.92	30.60	2.95	225	100		500	225	70°C	hydrogel
10	0.41	6.59		100			625	250		hydrogel
11	0.46	7.33		45			580	250		hydrogel
12	0.41	6.59		45	100		580	250		hydrogel
13	0.46	7.33		45	200		380	250		Х
14	0.46	7.33			625			250		Х
15	0.41	6.59		413	100		212	250		Х

^(a) PBS: phosphate buffered saline

^(b) "--" in this column indicates reaction was performed at room temperature.

а	Monor	mer/Cros	slinker		Sol	vent Sys				
[nm	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	Uppeting ^(b)	Observation ^(c)
Foi	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)	rieating	Observation
16	0.46	7.33		625				250		X
17	0.46	7.33					625	250		Х
18	2.81	0.14					765	225		hydrogel
19	2.81	0.11					765	225		hydrogel
20	2.81	0.07					765	225		hydrogel
21	2.79	0.14		225			550	225		hydrogel
22	2.79	0.03		225			550	225		X

 Table S2. Formulations with minimal AM/BIS monomers in different solvent systems.

^(b) "--" in this column indicates reaction was performed at room temperature.

я	Monor	mer/Cros	slinker		Sol	vent Sys	tem			
ormul	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	Heating ^(b)	Observation ^(c)
H	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)		
23	2.87	45.68	4.40	100			600		70°C	hydrogel
24	0.80	12.72	6.13	200			300		70°C	hydrogel
25	1.32	20.92	10.08	100			200		70°C	hydrogel
26	0.45	7.13	3.43	400			500		70°C	Х
27	0.45	7.13	3.43				900		70°C	precipitate
28	0.45	7.13	3.43			200	700		70°C	precipitate
29	0.45	7.13	3.43			200	700		70°C	precipitate
30	0.45	7.13	3.43			200	700		70°C	precipitate
31	0.45	7.13	3.43			600	300		70°C	precipitate
32	0.45	7.13	3.43			600	300		70°C	precipitate
33	0.40	6.36	3.06	100			100	800	70°C	precipitate

Table S3. Formulation of AM/BIS/AZO polymer heated during polymerisation.

^(b) "--" in this column indicates reaction was performed at room temperature.

я	Monor	mer/Cros	slinker		Sol	vent Sys	tem			
rmul	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	Uporting ^(b)	Observation ^(c)
Fo	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)	neating	Observation
34	0.50		0.35				880			precipitate
35	0.80	0.28	4.46				650			precipitate
36	0.66	0.23	3.68			350	450			Х
37	0.66	0.23	3.68			250	550			Х
38	0.66	0.23	3.68	250			550			Х
39	2.56	0.08	3.55	225			420	225		precipitate
40	2.30	0.07	3.19	325			420	225		precipitate
41	1.72	0.07	3.19	425			320	225		precipitate
42	1.15	0.07	3.19	525			220	225		precipitate
43	1.76		3.26	425			300	225		precipitate
44	1.76		3.26			225	500	225		precipitate
45	1.72	0.07	3.19			225	520	225		Х
46	0.59	0.07				225	500	225		Х
47	1.15	0.07	3.19			225	520	225		X
48	0.57	0.07	3.19			325	420	225		X

Table S4. Formulations with high concentrations of monomers.

^(b) "--" in this column indicates reaction was performed at room temperature.

ıla	Monoi	mer/Cros	slinker		Sol	vent Syst				
rmu	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	II (* (b)	O1 (°)
Fc	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)	Heating	Observation
49	2.30	0.07	1.59	325			420	225		hydrogel
50	1.72	0.07	1.59	425			320	225		hydrogel
51	1.15	0.07	1.59	525			220	225		hydrogel
52	1.76		3.26			225	500	225		hydrogel
53	1.76	0.04	1.63			225	500	225		hydrogel
54	1.17	0.04	1.63			125	600	225		precipitate
55	1.17	0.04	1.63			100	625	225		hydrogel
56	1.76		1.63			225	300	425		hydrogel
57	1.06		1.47			100	200	750		precipitate
58	1.06		1.47			100	725	225		precipitate
59	1.17		1.63			225	200	525		precipitate
60	1.06		1.47			100	725	225		hydrogel
61	0.59		1.63			100	625	225		Х
62	1.17	0.04	1.63			225	500	225		hydrogel
63	0.59		1.63			225	100	625		Х
64	1.76		0.81			225	300	425		hydrogel
65	1.17		0.41			113	200	637		hydrogel
66	1.13		0.16			45	200	737		hydrogel
67	1.17		0.81			225	200	525		hydrogel
68	1.17	0.04	0.41			113	200	637		hydrogel
69	1.17	0.04	0.16			45	200	705		hydrogel

 Table S5. Formulations of AM/BIS/AZO monomers with various solvents.

^(b) "--" in this column indicates reaction was performed at room temperature.

Table S5. Continued.

ıla	Monor	mer/Cros	slinker		Sol	vent Sys				
ormu	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	Hosting ^(b)	Observation ^(c)
F	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)	neating	Observation
70	1.76		8.14	200		225	300	225		hydrogel
71	1.59		7.37	225		100	300	425		precipitate
72	1.56		7.23	120		220	300	430		precipitate
73	1.56		7.23	220		220	300	330		precipitate
74	2.45		7.27	225		100	375	150		precipitate
75	2.20		3.40	225		100	360	225		hydrogel

^(b) "--" in this column indicates reaction was performed at room temperature.

a	Monor	mer/Cros	slinker		Sol	vent Syst	tem			
rmul	AM	BIS	AZO	EtOH	DMF	DMSO	H ₂ O	PBS ^(a)	I Leating ^(b)	Observation ^(c)
Foi	(M)	(mM)	(mM)	(µL)	(µL)	(µL)	(µL)	(µL)	Heating	Observation
										hydrogel with
76	2.20		6.79	225		100	360	225		precipitated
										particulates
										hydrogel with
77	2.20		5.10	225		100	360	225		precipitated
										particulates
78	2.20		3.40	180		60	360	310		hydrogel
										hydrogel with
79	2.20		6.79	180		60	360	310		precipitated
										particulates
										hydrogel with
80	2.20		3.40	100		60	360	390		precipitated
										particulates
81	2.20		3.40	100		80	360	370		hydrogel
										hydrogel with
82	2.03		3.13	100		80	360	450		precipitated
										particulates
83	4.05		3.13	100		80	720	90		hydrogel
84	1.01		3.13	100		80	180	630		precipitation
85	4.05		3.13	100		160	720	10		Х
86	4.40		6.79	100		80	720	10		precipitation

Table S6. Formulations of AM/AZO polymer using improved conditions based on previous formulations.

^(b) "--" in this column indicates reaction was performed at room temperature.

Figure S1. Schematic diagram of the substrate preparation for cell culture.

Figure S2. Low magnification ESEM micrographs of photo-responsive hydrogels before and after irradiation. The images were recorded following the treatments indicated in Figure 4A at the point of "stiffness measurement". (A) Control ("ctrl") sample: AZO hydrogels not subjected to irradiation. (B) "(-) blue" sample: hydrogel treated with UV (365 nm) irradiation. (C) "(+) blue" sample: hydrogel treated with UV (365 nm) and subsequent blue light (490 nm) irradiation.

Figure S3. Cell viability following UV or blue light irradiation. Live cells are indicated by green fluorescence due to the generation of free calcein by intracellular esterases, while dead cells exhibit red fluorescence from ethidium, following loss of cell membrane integrity. (A) Primary human MSCs were subjected to different durations of UV (365 nm) or blue light (490 nm) irradiation. Cell viability was assayed by ethidium and calcein staining (scale bar = 100 μ m). (B) Quantitative analysis of cell viability images. Exposure to blue light for up to 1 hour did not significantly reduce cell viability. Exposure to 10 minutes of UV irradiation significantly reduced cell viability to $18 \pm 8 \%$ (\pm S.E.M.; *n* > 177 measurements, cells from three donors; *p*-values indicated from ANOVA testing).

Figure S4. DNA damage following UV or blue light irradiation. (A) Primary human MSCs subjected to UV or blue light irradiation were imaged with the nuclei DAPI stained and immuno-stained against γ H_{2A}X pS139 (scale bar = 10 µm). (B) Quantification of the number of γ H_{2A}X pS139 foci per nucleus. Blue light exposure for up to 1 hour did not significantly increase the number of foci, but UV exposure of just 10 minutes created more foci than could be resolved with the microscope (n > 57 measurements, cells from three donors; significance from ANOVA testing).