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Supplementary methods 

Library preparation, read cleaning and taxonomic classification 

Details of the RNA isolation and sampling were described previously (Pfreundt et al., 2014; 

Pade et al., 2016). Primary transcriptomes were inferred by the genome-wide mapping of 

transcription start sites (TSSs). For this aim, differential RNA-Seq (dRNA-Seq) (Sharma et al., 

2010) was used, in which the primary transcripts resulting from the initiation of transcription 

are selectively sequenced. This approach relies on the 5’P-dependent terminator exonuclease 

(TEX) activity, which specifically degrades processed transcripts while primary transcripts with 

their 5’triphosphates are kept intact. Recently, we have extended this approach to the microbial 

community sampled from the Red Sea and identified the suite of active TSSs from five different 

organisms representing all three domains of life, showing the potential of this approach in a 

complex microbial community context (Hou et al., 2016). 

 For read cleaning and quality control we followed the workflow of Hou et al. (2016). Raw 

reads were checked with FastQC v0.10.1 (Andrews, 2010), adapters were removed with 

Cutadapt v1.0 (Martin, 2011), low quality reads were trimmed or removed with 

fastq_quality_trimmer from the FASTX-Toolkit v0.0.13 (available at 

http://hannonlab.cshl.edu/fastx_toolkit/), the remaining high quality reads were converted to 

fasta format, clustered if identical and rRNA reads removed using SortMeRNA v1.9 (Kopylova 

et al., 2012). The taxonomic classification of the non-rRNA reads was obtained using 

Centrifuge v1.0.3 (Kim et al., 2016) with default parameters (database updated on Dec. 6th, 

2016). The results were imported into Pavian v0.1.3 (Breitwieser and Salzberg, 2016) for 

visualization with a minimum score of 1,000 and minimum length of 60. 

 

Prediction of TSSs 

For the bioinformatic analysis of dRNA-Seq data and TSS prediction we applied a replicate-

assisted background subtraction algorithm. Reads from all libraries were aligned to the 

http://hannonlab.cshl.edu/fastx_toolkit/
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Alteromonas Te101 genome at 99% identity using segemehl v0.2.0 (Hoffmann et al., 2009), 

alignments were then converted to Artemis (Rutherford et al., 2000) compatible tabular files 

(GRP format) with genome coordinates, number of reads starting at each nucleotide position 

(“number of reads starting”, NRS), and per-nucleotide-coverage using GRPutils 

(https://github.com/housw/GRPutils). For each salinity condition, the GRP files of the dRNA-

Seq libraries and the minus-libraries were normalized against the largest library based on the 

sum of NRS values. To eliminate the noise from putative RNA-processing sites, the square-

root-scaled NRS values of the minus-libraries were subtracted from the NRS values of the 

corresponding dRNA-Seq libraries yielding subtracted NRS values. The core TSSs was defined 

separately for each condition at the nucleotide positions of read starts after background 

subtraction. To account for the multiple tightly spaced starts observed at some sites, a window 

of 5 nt up- and 5 nt downstream of the core TSS was considered, the aggregated NRS values 

calculated as the sum of NRS in this window, while the local maximum defined the TSS. To 

account for TSSs among different conditions, the core TSS defined separately for each 

condition was compared, overlapping TSSs integrated and the maximum value was taken for 

each TSS among different conditions. This produced a pseudo-count for each core TSS 

summarizing information from different libraries, biological replicates and conditions. The core 

TSS were classified into gTSS, iTSS, aTSS and nTSS based on the genomic context, and a 

quality filter of pseudoCount ≥10, covRatio ≥0.5, locCovEnrich ≥0.5 and locTssEnrich ≥0.3 to 

define the precise TSS positions. A TSS located within 200 nt upstream of an annotated protein-

coding gene, or giving rise to reads overlapping such a gene, was classified as a gene TSS 

(gTSS). TSS located within an annotated gene or antisense to it (plus 50 nt up- or downstream) 

were called iTSS and aTSS, respectively. TSS located in intergenic regions or upstream of an 

ncRNA including rRNA and tRNA genes were designated as non-coding TSS (nTSS). Finally, 

the original alignments were mapped and aggregated to these bona fide TSS positions to get the 

https://github.com/housw/GRPutils
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raw read counts initiated from these positions. The implementation of this algorithm can be 

found at https://github.com/housw/GRPutils/blob/master/tss_analysis_pipline.sh.  

 

Differential expression analysis 

For differential expression analysis, the TSS count table obtained from the TSS prediction was 

filtered for lowly expressed TSS (<10 reads from the 4 libraries combined) and TSS associated 

with rRNAs and tRNAs and then normalized using the Trimmed Mean of M-values (TMM) 

method in edgeR v3.14.0 (Robinson et al., 2010). Dispersions were estimated by treating 

samples from 37 ppt and 43 ppt as replicates using the quantile-adjusted conditional maximum 

likelihood method (qCML) and differentially expressed TSS between 43 ppt and 37 ppt were 

called using the exactTest function in edgeR with an adjusted p-value cutoff of 0.05. 

To characterize the functions of genes up-regulated at 43 ppt, GO terms were annotated for the 

whole proteome using Blast2GO v4.0.7 (Conesa et al., 2005). All the determined differentially 

expressed TSSs were selected, then the genes driven by gTSS, the genes downstream of nTSS, 

iTSS and aTSS within 1 kb were extracted as the query gene set. Enriched GO terms were 

determined using hypergeometric tests implemented in GOstats v2.38.1 (Falcon and Gentleman, 

2007) with the GO terms of the whole proteome as background. The multiple test corrections 

were performed using qvalue v2.4.2 (available at  http://github.com/jdstorey/qvalue) in R. 

Enriched GO terms were semantically clustered using the REVIGO (Supek et al., 2011) online 

server.  

 

CsrA target prediction and motif finding 

Based on predicted gTSS positions, all 5’UTRs were extracted and checked for potential CsrA 

binding sites using the regular expression “GGA[ACGT]{4,70}GGA[ACGT]{2,12}$”, similar 

to the one used in a previous study (Naghdi et al., 2017), which looks for a GGA motif 4 to 70 

nt upstream of the Shine-Dalgarno (SD) sequence within 5’UTRs. Genes without SD sequences 

https://github.com/housw/GRPutils/blob/master/tss_analysis_pipline.sh
http://github.com/jdstorey/qvalue)
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5 to 15 nt upstream of translation start sites were considered as targets when ≥3 “GGA” were 

found in their 5’UTR and the normalized frequency of “GGA” per 100 nt was ≥3. To include 

genes without gTSSs, we also applied the CSRA_TARGET (Kulkarni et al., 2014) algorithm 

to genome-wide scan intergenic regions 300 nt upstream of and 50 nt following the ORF start. 

To detect regulatory motifs in promoter regions, sequences 200 nt upstream of predicted TSSs 

were extracted and submitted to the XXmotif web server (Luehr et al., 2012) with default 

parameters except no masking, the E-value cutoff for trusted identified motifs was set to 0.001.  
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Supplementary Figures 

 

 

 

 

 

 

 

 
Figure S1. Spectral scan of pigment absorbance of the Trichodesmium cultures on day 9. 

Cells were collected on GFF and pigments were extracted using 90% boiling methanol (de 

Marsac and Houmard, 1988). Pigment absorbance scans were analyzed with Cary 300 

spectrophotometer (Agilent Technologies) between 520-760 nm in intervals of 1 nm. 
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Figure S2. Length distribution of 5’ UTRs in Alteromonas Te101.  
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Figure S3. Percentage of the different TSS fractions predicted by several published dRNA-seq 

data of other bacteria and archaea in different environments. 
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Figure S4. Principal component analysis of Alteromonas Te101 transcriptome based on 

logarithm transformed normalized count data. 
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Figure S5. Genome-wide distribution of TSS in Alteromonas Te101. 
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Figure S6. Identified promoter motifs upstream of Aln1a and other genes. The identified motif 

and flanking regions were shown in the middle, sequence alignment was shaded with an identity 

cutoff of 40%. Proposed associated TSSs were shown in bold and red font. Numbers show the 

distances between gene start/stop codons and associated TSSs, or the flanking regions when no 

TSSs were identified. The sequences within the dark blue square were used to generate the 

motif profile, which was further used to scan the A. macleodii Te101 genome to detect the other 

occurrences using FIMO (Grant et al., 2011) from MEME Suite v4.12.0 (Bailey et al., 2015). 

The probabilities and adjusted q-values of each occurrence were shown in the right columns. 

The identified motif was visualized using WebLogo v3.1 online server (Crooks et al., 2004).    
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Supplementary Tables 

Table S1. Identified flexible genomic islands of Alteromonas macleodii str. Te101 genome. 

Table S2. Detected Alteromonas TSSs associated with leaderless transcripts and 5′-UTRs ≥200 

nt. 

Table S3. All Alteromonas TSSs identified in this work. 

Table S4. All Alteromonas TSSs up-regulated at 43 ppt.  

Table S5. All Alteromonas TSSs down-regulated at 43 ppt.  

Table S6. Enriched GO terms of all up-regulated genes at 43 ppt. 

Table S7. Detected TSSs involved in the motility gene cluster.  

Table S8. TSS-based differential expression analysis of Trichodesmium erythraeum IMS101. 

Table S9. Overrepresented GO terms of down-regulated Trichodesmium genes at 43 ppt. 

Table S10. Subfamily distribution of MEROPS peptidases.  

Table S11. Predicted motifs in the promoter regions of all identified TSSs. 

Table S12. Relative abundance of carbohydrate active enzymes (CAZy). 

Table S13. Predicted CsrA targets.  

 

 

Supplementary Dataset 

Supplementary Dataset 1. Genome-wide visualization of predicted TSS and coverage for the 

genome of Alteromonas Te101. 

Supplementary Dataset 2. Genome-wide GO assignments of Alteromonas Te101 proteins. 

Supplementary dataset can be accessed at https://figshare.com/s/542f9a680bd4d4c92af7. 
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