SUPPORTING INFORMATION

Total Synthesis of Scytonemide A Employing Weinreb AM Solid-Phase Resin

Tyler A. Wilson,^{†§} Robert J. Tokarski II, ^{†§} Peter Sullivan, [‡] Robert M. Demoret, [†] Jimmy Orjala,[‡] L. Harinantenaina Rakotondraibe,[†] James R. Fuchs[†]*

[†]Division of Medicinal Chemistry & Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, United States

^{*}Department of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60612, United States

Corresponding Author

*Email: fuchs.42@osu.edu

[§]These authors contributed equally to the work presented herein.

Table of Contents

Determination of loading efficiency ^{S1-S2}	S 2
Tyr(OtBu) ₁ -Gly ₂ -DGln(Trt) ₃ -Ile ₄ -Ser-(OtBu) ₅ -Val ₆ -Leu ₇ cyclic imine (6a)	
¹ H NMR spectra (CDCl ₃)	S 3
13 C NMR spectra (CDCl ₃)	S 4
HSQC NMR spectra (CDCl ₃)	S5
HMBC NMR spectra (CDCl ₃)	S 6
Synthesis of Fmoc-Ser(OTBS)-OH intermediates 8 and 9	
¹ H NMR spectra of 8 (CDCl ₃)	S 7
13 C NMR spectra of 8 (CDCl ₃)	S 8
¹ H NMR spectra of 9 (CDCl ₃)	S 9
13 C NMR spectra of 9 (CDCl ₃)	S10
<u>Tyr(OTBS)₁-Gly₂-DGln₃-Ile₄-Ser₅-Val₆-Leu₇ cyclic imine (12a)</u>	
¹ H NMR spectra (DMSO- d_6)	S 11
13 C NMR spectra (DMSO- d_6)	S12
HSQC NMR spectra (DMSO- d_6)	S13
HMBC NMR spectra (DMSO- d_6)	S14
Figure S1. Assignment of –NH and –OH protons in ¹ HNMR	S15
Figure S2. Selective NOESY for TBS-Me (0.16 ppm)	S16
Figure S3. D-Gln ₃ backbone –NH HMBC correlations	S17
Figure S4. Val ₆ and Ile ₄ backbone –NH HMBC correlations	S18
Figure S5. Leu ₇ and Gly ₂ backbone –NH HMBC correlations	S19
Figure S6. Ser ₅ backbone –NH HMBC correlations	S20
Figure S7A. D-Gln ₃ side chain –NH HMBC correlations	S21
Figure S7B. D-Gln ₃ side chain –NH HMBC correlations (continued)	S22
Figure S8. Ser ₅ side chain -OH HMBC correlations	S23
<u>Tyr(OTBS)₁-Gly₂-DGln₃-Ile₄-Ser(OTIPS)₅-Val₆-Leu₇ cyclic imine (12b)</u>	
¹ H NMR spectra (DMSO- d_6)	S24
13 C NMR spectra (DMSO- d_6)	S25
Scytonemide A (1)	
¹ H NMR spectra (DMSO- d_6)	S26
13 C NMR spectra (DMSO- d_6)	S27
HSQC NMR spectra (DMSO- d_6)	S28
¹ H NMR spectra (methanol- d_4)	S29
Figure S9. Selective TOCSY experiments for amino acid residues	S 30
Figure S10. ¹ H NMR spectra for 1 from Krunic et al. ^{S3} , Malins et al. ^{S1} , and present work	S31
References	S32

Determination of Loading Efficiency^{S1}

The Fmoc-Leu loaded Weinreb resin (100 mg, substitution = 0.44 mmol/g for synthesis of **6a**, 0.73 mmol/g for synthesis of **12a/b**) was shaken in a solution of piperidine/DMF (3 mL, 1:9 v/v) for 5 min and then repeated for 10 min. The deprotection solutions were combined and an aliquot (150 μ L) was diluted 20-fold to 3 mL. 300 μ L of this solution was then diluted 10-fold to 3 mL and placed in a quartz cuvette to measure UV absorbance of the piperidine-fulvene adduct ($\lambda = 289.8$ nm, $\epsilon_c = 6089$ M⁻¹ cm⁻¹ as recommended by Eissler et al^{S2}) for quantification of Leu loaded onto the resin.

Equation for Loading Efficiency:

Loading
$$\left(\frac{mmol}{g}\right) = \frac{(Abs_{289.8} * v_{cuvette} * D)}{(e_c * l * m^{resin})}$$

where $V_{cuvette} = 3 \text{ mL}$ D (dilution factor) = 200 $\varepsilon_c^{S2} = 6089 \text{ mL*mmol}^{-1}\text{ cm}^{-1}$ l (path length) = 1 cm m^{resin} = 100 mg

Weinreb Resin, substitution = 0.44 mmol/g: Abs_{298.8} = 0.336, loading = 0.331 mmol/g

Weinreb Resin, substitution = 0.73 mmol/g: Abs_{298.8} = 0.299, loading = 0.295 mmol/g

¹H NMR (CDCl₃, 400 MHz) of compound **6a.**

 ^{13}C NMR (CDCl₃, 101 MHz) of compound **6a.**

¹H NMR (CDCl₃, 400 MHz) of compound **8.**

¹³C NMR (CDCl₃, 101 MHz) of compound 8.

0

¹H NMR (CDCl₃, 400 MHz) of compound **9**.

¹³C NMR (CDCl₃, 101 MHz) of compound **9**.

¹H NMR (d_6 -DMSO, 400 MHz) of compound **12a**.

S11

HSQC NMR (d_6 -DMSO, 400 MHz) of compound **12a**.

HMBC NMR (d_6 -DMSO, 400 MHz) of compound **12a**.

Figure S1. Assignment of –NH and –OH protons in ¹HNMR for 12a.

Figure S2. Selective NOESY for TBS-Me (0.16 ppm) for 12a.

Figure S3. D-Gln₃ backbone –NH HMBC correlations for **12a**.

Figure S4. Val_6 and Ile_4 backbone –NH HMBC correlations for **12a**.

Figure S5. Leu₇ and Gly₂ backbone –NH HMBC correlations for 12a.

Figure S6. Ser₅ backbone –NH HMBC correlations for 12a.

Figure S7A. D-Gln₃ side chain –NH HMBC correlations for **12a**.

Figure S8. Ser₅ side chain -OH HMBC correlations for 12a.

¹H NMR (d_6 -DMSO, 400 MHz) of compound **12b**.

HSQC NMR (d_6 -DMSO, 700 MHz) of scytonemide A (1).

synthesized **1** (Malins et al.^{S2} middle; present work, bottom).

References

(S1) Malins, L. R.; deGruyter, J. N.; Robbins, K. J.; Scola, P. M.; Eastgate, M. D.; Ghadiri, M. R.; Baran, P. S. J. Am. Chem. Soc. **2017**, *139*, 5233-5241.

(S2) Eissler, S.; Kley, M.; Bächle, D.; Loidl, G.; Meier, T.; Samson, D. J. Pept. Sci. 2017, 23, 757–762.

(S3) Krunic, A.; Vallat, A.; Mo, S.; Lantvit, D. D.; Swanson, S. M.; Orjala, J. J. Nat. Prod. **2010**, 73, 1927–1932.