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SI Materials and Methods
Data Processing. The imaging phenotype comprised the baseline
brain cortical thickness maps estimated with FreeSurfer 5.3 (1)
and the bilateral radial thickness maps for hippocampi, amygdalae,
thalami, caudate, putamen, globus pallidus, and nucleus accum-
bens. In detail, radial thickness of each subcortical surface model
was based on the distance to amedial curve.We fit themedial curve
using curve evolution individually for each shape (2). Surfaces are
then registered parametrically to achieve point-to-point corre-
spondence bymatching curvature andmedial curve-based features.
The procedure resembles the cortical surface registration on the
sphere performed in FreeSurfer. Finally, the full imaging com-
ponent comprises 327,684 cortical and 27,120 subcortical features
per subject.
SNP genotype data (Illumina Human610-Quad BeadChip for

ADNI-1 and IlluminaHumanOmni Express forADNI-GO/2) were
downloaded from the ADNI website and preprocessed with PLINK
(3). Standard quality control (QC) parameters were used to filter
SNPs: minor allele frequency (MAF) < 0.01, genotype call rate
<95%, and Hardy–Weinberg equilibrium P value < 1 × 10−6. Fi-
nally, genotyped SNPs passing QC were used to impute SNPs in
the HapMap III reference panel. Imputed SNPs underwent a
separate QC regarding MAF (>0.01) and imputation quality (im-
putation r2 > 0.3) to exclude poorly imputed SNPs. For the anal-
ysis, the individuals’ minor allele counts for each of the resulting
1,167,126 SNPs in the 22 autosomes were used.
Data matrices were preprocessed to remove effects from con-

founding variables (such as age) and make them eligible for PLS
analysis. The influence of age, total intracranial volume, and sex was
regressed from the raw thickness values. Next, they were stan-
dardized by groupwise mean and SD computed in the discovery set.
On the genetic input, missing individual SNPs were replaced by

the groupwise median of the discovery set. In concordance with
the phenotype input, the resulting allele counts were standardized
by groupwise mean and SD in the discovery set.

PLS Modeling and Relevance Assessment. PLS was applied for mod-
eling the joint variation between phenotype and genotype observed
in the discovery set. The first five PLS components v = {vi

g, vi
p}, i ∈

{1,2,3,4,5}, of joint genotype (vi
g) and phenotype (vi

p) variation
were initially estimated, and their reproducibility and robustness
were assessed through a stability selection scheme with split-half
cross-validation based on 1 million repetitions (Fig. 1). Briefly, the
639 participants in the discovery set were randomly partitioned into
two nonoverlapping subgroups of equal size (here denoted as
G1 and G2). On each subgroup, PLS was independently estimated
to compute the first five components of joint phenotype and genotype
variation: uG1 = {uj

p1, uj
g1} and uG2 = {uj

p2, uj
g2}, j ∈ {1,2,3,4,5}.

Although the main patterns are often preserved, changes to the
dataset may alter the order of the latent components with respect
to the ones estimated in the whole cohort ({vi

g, vi
p}). Thus,

component mappings f1( j) and f2( j) between v and the sets uG1
and uG2, respectively, were assessed by evaluating the similarity in
the phenotype components (i.e., by measuring the absolute value
of the dot product):

f1ðjÞ= argmaxi
����vpi · up1j j

�
,

f2ðjÞ= argmaxi
����vpi · up2j j

�
.

This quantity takes values in [0,1]. It is equal to one in the case
that the components vi

p and uj
p are parallel (maximally similar);

it equals zero in the case that the components are orthogonal
(maximally dissimilar). No matching was declared if no index j
could fulfill the condition jvip · uj

pj > 0.6 (i.e., no component
estimated on a data split could be mapped with sufficient simi-
larity to one of the original components).

Assessing the Importance of a Genetic Locus. After mapping the
components of the splits G1 and G2 to the components identified
on all of the data, important and stable genetic loci were iden-
tified. First, the chromosomes were partitioned into 10-kb-sized
bins. Among the resulting 277,889 bins, 90% of them contained at
least 1 SNP, with, on average, 4.7 SNPs per bin.
Second, if a bin contained an SNP that received a large PLS

weight (top 10% of absolute values) for both components ul
g1 and

uk
g2 with f1(l) = f2(k), then the bin was labeled one; otherwise, it

was labeled zero (Fig. 1A). In particular, under the null hy-
pothesis of independence between loci, the 10% threshold
translates, by definition, to 0.1 probability for selecting a locus.
Consequently, the chance to identify a locus in both split-half is
0.12 = 0.01.
The resulting array averaged across all repetitions takes values

in [0,1] and provides us with the null sampling distribution via
permutation testing. This value thus indicates for each bin the
selection probability in the PLS model in both independent
random splits (Fig. 2) and serves as a measure of importance of
the genomic location.

Methodological Considerations. The experimental setting proposed
in this study is based on the investigation of potential genetic
candidates in the AD and healthy training populations and on
their testing in the MCI cohort. This experimental choice was
motivated by clinical and practical considerations.
From the clinical point of view, although we cannot exclude

that the imaging–genetics association patterns could be modu-
lated by state-specific factors throughout the development of the
disease (4), the heterogeneity of the MCI label is likely to lead to
the inclusion in the discovery dataset of individuals with non-AD
pathologies. Thus, including MCIs in the discovery cohort bears
the risk of diluting the gene finding (especially considering the
relatively low sample size of the study cohort). Likewise, GWAS
in AD carried out to date focus on comparing healthy controls
(CT) with AD. Moreover, the paradigm proposed in this study is
rather conservative, since it explores associations present
throughout the progression of the pathology (i.e., associations
were discovered by comparing CT and AD subjects and validated
on disease progression in the intermediate MCI cohort). This
consideration, while being more conservative, may play in favor
of the robustness of the reported results. From a practical point
of view, the proposed scheme allowed for the validation of the
model on a clinically relevant testing cohort by taking advantage
of the full sample available in the ADNI dataset. Splitting the
available AD and CT subjects into discovery and validation co-
horts would have dramatically reduced the sample size, thus
increasing the uncertainty of the PLS findings.
Concerning the number of components analyzed in the PLS

model, we limited the study to the exploration of the first five
eigenmodes. As shown in the experimental results, the stability of
PLS parameters of the high-order components was generally quite
low and did not lead to any significant results after permutation
testing. For this reason, we believe that extending the analysis to
higher-order components (e.g., components 6–10) would not
change the proposed analysis and subsequent results.
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The relevance assessment procedure proposed in this study
relies on the choice of statistical significance thresholds, such as
the 10% cutoff on the magnitude of the PLS weights and P <
0.05 for the selection frequency over the 1 million folds. These
thresholds were not optimized to maximize specific statistical
outcomes (e.g., the ratio between true and false positives). In-
deed, the optimization of these parameters may lead to impor-
tant methodological issues, such as overfitting and selection bias
(5), and ultimately, they may lead to poor generalization of the

statistical findings. This is particularly true in the challenging
setting proposed in this work characterized by large dimensions
and low sample size. For this reason, we chose to use standard
cutoffs for significance assessment as a compromise between
minimizing this important source of bias and still identifying
meaningful genotype and phenotype features. Furthermore, we
believe that the ultimate approach to assess the validity of the
findings is through testing on genuinely independent data, such
as the MCI cohort proposed in this study.
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Fig. S1. PLS framework. PLS modeling rationale. The latent PLS components are obtained through the singular value decomposition (SVD) of the covariance
matrix (C) between genetic features X and phenotype features Y: C = XTY. C has the dimension “number of SNPs” × “number of brain features” (∼106 × ∼105).
SVD can be used decompose C = XTY = P Λ QT. The diagonal matrix Λ contains the eigenvalues, and the columns pi of P (columns qi of Q) are the principal
eigencomponents that will be subsequently analyzed as detailed in the text. The projection of X (or Y) is achieved through multiplication with P (Q): Px =
XP (Py = YQ).
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Fig. S2. First PLS component. The outer circular plots show the probability of a given genetic locus being associated with the phenotype component 1. The inner circular plots show the PLS weights associated with each
genetic locus (red, positive; blue, negative). The genes close to the important loci (P > 0.95) are listed in the innermost circle depending on their genomic position; genes with eQTL are highlighted in red. The red radial lines
are located in correspondence of known AD genes.
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Fig. S3. Second PLS component. The outer circular plots show the probability of a given genetic locus being associated with the phenotype component 2. The inner circular plots show the PLS weights associated with each
genetic locus (red, positive; blue, negative). The genes close to the important loci (P > 0.95) are listed in the innermost circle depending on their genomic position; genes with eQTL are highlighted in red. The red radial lines
are located in correspondence of known AD genes.
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Fig. S4. Third PLS component. The outer circular plots show the probability of a given genetic locus being associated with the phenotype component 3. The
inner circular plots show the PLS weights associated with each genetic locus (red, positive; blue, negative). The genes close to the important loci (P > 0.95) are
listed in the innermost circle depending on their genomic position; genes with eQTL are highlighted in red. The red radial lines are located in correspondence
of known AD genes.
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Fig. S5. Gene expression by SNP for 14 genes from GTEx. The y axes depict rank normalized gene expression, while on the x axes, the status and sample size for each allele are provided. The caption of each subfigure states
the tissue, rs number of the SNP, and gene (Ensembl identifier). The genes in left to right and top to bottom order with corresponding P values in parentheses are CAPN9 (P = 5.3e−9), CRYL1 (P = 1.5e−5), FAM135B (P = 2.1e−8),
IL10RA (P = 1.5e−14), IP6K3 (P = 5.7e−16), ITGA1 (P = 4.8e−10), KIN (P = 1.6e−5), LAMC1 (P = 1.5e−15), LINC00941 (P = 7.1e−13), LYSMD4 (P = 2.9e−24), RBPMS2 (P = 2.0e−38), RP11-181K3.4 (P = 1.5e−25), TM2D1 (P = 1.2e−6),
and TRIB3 (P = 6.3e−12). Het, heterozygous; Homo Alt, homozygote for the alternative allele; Homo Ref, homozygote for the reference allele used in GTEx.
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Fig. S6. Association strength with AD status for the genetic neighborhood of rs4813620. Regional association plot generated with LocusZoom (1) for the
neighborhood (±30 kb) of rs4813620. P values were obtained from the stage 1 results from the International Genomics of Alzheimer’s Project Study comprising
17,008 cases and 37,154 controls (2). The y axis shows the −log10 P value of the case–control association test, and the x axis shows the genomic location. The
target SNP (rs4813620) is colored purple, and other SNPs are colored corresponding to the LD with the target SNP.

1. Pruim RJ, et al. (2010) LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337.
2. Lambert JC, et al.; European Alzheimer’s Disease Initiative (EADI); Genetic and Environmental Risk in Alzheimer’s Disease; Alzheimer’s Disease Genetic Consortium; Cohorts for Heart

and Aging Research in Genomic Epidemiology (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45:1452–1458.
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Fig. S7. Detailed eQTL overview of TRIB3 provided by GTEx. Right shows the association strength between SNPs upstream of TRIB3 and TRIB3 expression in 17 tissues. Association direction is color-
coded, and association strength is expressed in bubble sizes. Tissues are ordered with respect to the effect size of rs62191440, which is also highlighted in bold. The SNP identified in the PLS model
(rs4813620) is marked with a blue triangle. Transcription start site and transcription end site of TRIB3 are highlighted in the lower part. Left depicts the LD structure of the upstream region of TRIB3.
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Fig. S8. Regional association with type 2 diabetes. Regional association plot generated with LocusZoom (1) for the neighborhood (±30 kb) of rs1555318. P
values were obtained from stage 1 of a large GWAS for type 2 diabetes comprising 12,171 cases and 56,862 controls (2). The y axis shows the −log10 P value of
the case–control association test, and the x axis shows the genomic location. The target SNP (rs1555318) is colored purple, and other SNPs are colored cor-
responding to the LD with the target SNP.

1. Pruim RJ, et al. (2010) LocusZoom: Regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337.
2. Morris AP, et al. (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44:981–990.
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Fig. S9. Gene expression of Il10ra in transgenic mouse models from MOUSEAC. Il10ra gene expression (Left) and AD pathology (Right) in transgenic and wild-
type mice were obtained from MOUSEAC (1). Data are shown for wild-type mice (black), transgenic mice with MAPT mutation P301L (blue), and transgenic
mice with homozygous mutations in APP (K670N and M671L) and PSEN1 (M146V; red). The x axes depict age in months, and the y axes show gene expression
(Left) and plague/tangle density (Right).

1. Matarin M, et al. (2015) A genome-wide gene-expression analysis and database in transgenic mice during development of amyloid or tau pathology. Cell Rep 10:633–644.
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Table S1. Statistical testing (P values) of prioritized genes with
respect to the models estimated on the amyloid-positive
subcohort

Gene Full Amyloid positive

TM2D1 0.0528 0.0717
IL10RA 0.6198 0.0777
TRIB3 0.0034 0.0134
ZBTB7A 0.9135 0.557
LYSMD4 0.2057 0.7208
CRYL1 0.1176 0.1176
FAM135B 0.5588 0.0506
IP6K3 0.4646 0.2907
ITGA1 0.731 0.9677
KIN 0.2061 0.1736
LAMC1 0.0618 0.0665
LINC00941 0.6896 0.17
RBPMS2 0.2149 0.3547
RP11-181K3.4 0.0527 0.0756

When using the model estimated on the amyloid-positive individuals
only, TRIB3 still leads to significant differences between progressing and
stable MCIs, although it was not significant after Bonferroni correction for
multiple comparison.

Dataset S1. GENCODE gene annotation results

Dataset S1

Dataset S2. Functional prioritization through eQTL analysis based on the GTEx data GTEx-based eQTL

Dataset S2
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