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Anatomical Mesh Regularization with aMSM
In the original MSM algorithm (1) flexible cortical surface regis-
tration is achieved via projection of convoluted brain surfaces to
a sphere. This is a common simplification inherent to other popu-
lar spherical algorithms (e.g., FreeSurfer and Spherical Demons)
(2) and can be beneficial under some circumstances (e.g., remov-
ing the influence of cortical shape on cross-subject alignments
of brain function). For the case of longitudinal (intrasubject)
registration, however, accurate quantification of physical distor-
tion becomes vital. For this paper, we therefore propose aMSM
(available at https://github.com/ecr05/MSM HOCR macOSX).
In this modified algorithm, correspondences between surfaces
are constrained by estimated distortions between the anatomical
(midthickness) surfaces. With this process, we use the locations
and spacing of anatomical landmarks to obtain physically reason-
able deformation gradients. Although the mathematical details
of our approach have been described in ref. 3, a brief synopsis is
provided below for convenience.

Strain Energy Density as an Improved, Higher-Order Regularization
Penalty. Soft materials like brain tissue are often modeled as
hyperelastic (the relationship between loading and deformation
is nonlinear) and slightly compressible (total volume can change
under loading) (4–8). These properties can be described via a
strain energy density function, such as Eq. 1 of the main text,
which captures the effects of 2D or 3D deformations in a scalar
quantity. Because strain energy density functions represent a
clear physical concept (work done by deformation-producing
loads), they often separate the energies produced by isochoric
deformations (change in shape) and volumetric deformations
(change in size). The relationship between deformation and
energy for each component can be experimentally determined
and associated with shear modulus (µ) and bulk modulus (κ′),
for isochoric and volumetric deformations, respectively.

In this study, we seek to minimize energetically unfavorable
(thus, unlikely) deformations via a physically relevant strain
energy density function, replacing the original scalar regulariza-
tion penalty term in MSM. In 3D, one popular form used to
describe biological soft tissues, including brain, is the classic com-
pressible neo-Hookean model,

W3D =
µ

2
(Ī1,3D − 3) +

κ′

2
(J3D − 1)2, [S1]

where I1,3D = trace(FT
3D · F3D), J3D = det(F3D), and Ī1,3D =

I1,3D/J
2/3
3D , and F3D is the 3D deformation tensor. These

terms are invariant with respect to coordinate transformation.
Ī1,3D can be also written in terms of the (invariant) principal
stretches as (λ2

1 + λ2
2 + λ2

3)/(λ1λ2λ3), and J3D can be written
as J3D =λ1λ2λ3.

Note that Ī1,3D − 3 is greater than zero for shape-changing
(“shear”) deformations but not changes in volume. Similarly,
(J3D − 1)2 is greater than zero for size-changing (“bulk”) defor-
mations but not changes in shape. A limitation of the classic neo-
Hookean form is that (J3D − 1)2 approaches infinity as volume
increases (J3D → ∞) but just 1 as volume decreases to zero
(J3D → 0). To better match physical observations and improve
numerical stability, this volumetric term is often modified to a
form that also approaches infinity as volume decreases. Further-
more, for our surface analysis, modifications are necessary to
approximate strain energy in 2D. To address both of these issues,

we used the following modified, compressible 2D neo-Hookean
form in our analysis,

W2D,mod =
µ
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(Ī1,2D − 2) +
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)
, [S2]

where I1,2D = trace(FT
2D · F2D), J = det(F2D) = λ1λ2, and

Ī1,2D = I1,2D/J = (λ2
1 + λ2

2)/(λ1λ2). In the main text, we have
rewritten Ī1,2D as λ1/λ2 +λ2/λ1 =R+1/R for easier conceptu-
alization. R =λ1/λ2 represents a new variable that conveniently
describes change in 2D shape (e.g., aspect Ratio). The new form
of the right-hand side was chosen to (i) penalize area shrink-
age and expansion similarly and (ii) conceptually match the neo-
Hookean function on the left-hand side (R and J are penalized
using the same equation). The isochoric term, modulated by µ,
now describes strain energy due to change in surface shape; and
the volumetric term, modulated by κ, describes strain energy due
to change in surface area.

In mechanical studies of actual brain tissue (3D), both gray
and white matter have been found to behave as nearly incom-
pressible materials (κ′≥ 1,000µ) (5). However, our 2D analysis
requires adjustment of the 3D bulk modulus into a 2D effec-
tive bulk modulus (κ) based on assumptions of either “plane
stress” or “plane strain” (9). Under the assumption of plane
strain, thickness of the cortex cannot deform due to in-plane
forces (λ3 = 1), and change in area relates directly to a change in
volume (κ≈κ′). Under the assumption of plane stress, thickness
of the cortex must deform to ensure zero stress in the thickness
direction; for κ′≥ 1,000µ, it can be shown that the 2D effective
bulk modulus is κ≈ 3µ (9). In reality, behavior of the cortical
midthickness likely falls between these extremes: Cortical thick-
ness is not rigidly constrained to prevent deformation, but cross-
sectional models of folding also reveal developing stresses nor-
mal to the cortical surface (6). Fig. S1B′ illustrates the effect of
κ/µ on strain energy minimization throughout this range.

We also note that 2D strain energy minimization involves
only in-plane surface distortions and displacements—it does not
introduce changes in surface curvature or penalize bending. In
shells, 3D strains are due to a combination of membrane strains
(uniform across the shell thickness) and bending strains which
vary across the thickness (higher on the outer curvature, lower
on the inner curvature). Here, we have focused on membrane
strain energy, considering the cortical midthickness as a rough
approximation for the neutral surface (the surface at which bend-
ing strains are zero).

Using Projection to Minimize Anatomical Deformations Within a
Spherical Framework. A procedure for minimizing anatomical
deformations within a spherical framework was first described in
ref. 4. As in that study, here we describe 3D deformation between
the younger and older anatomical surfaces with F3D = ∂x/∂X,
where x and X represent vertex coordinates on the older and
younger anatomical surfaces, respectively. (Surface strain energy
is calculated from F2D by considering the in-plane deforma-
tion of each anatomical face.) Similarly, projection from the
younger anatomical surface to its corresponding spherical sur-
face can be described by H3D = ∂Y/∂X, where Y represents ver-
tex coordinates on the younger spherical surface. Projection from
the older anatomical surface to its corresponding spherical sur-
face can be described by h3D = ∂y/∂x, where y represents ver-
tex coordinates on the older spherical surface. Deformations on
the sphere—which are typically considered in spherical registra-
tion algorithms—can be defined as G3D = ∂y/∂Y. Note that a
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spherical deformation of G3D = I (the identity matrix, no defor-
mation) will not correspond to F3D = I unless x = X and h3D =
H3D. Helpful schematics and further mathematical description of
this process are available in ref. 4.

In Fig. 2 we defined the younger surface as the input: Its
vertices will be repositioned to obtain accurate point correspon-
dence with the older reference surface. Therefore, let us con-
sider a second configuration, Y∗, to represent a potential pertur-
bation of the younger spherical surface. (Registration can also be
performed in the opposite direction, which would simply reverse
the terminology. We choose to denote the younger, initial sur-
face using uppercase letters for consistency with standard nota-
tion of continuum mechanics.) Since y, Y, and Y∗ represent coor-
dinates on a sphere of a set radius, we switch from Cartesian
coordinates (Y1,Y2,Y3) to spherical coordinates (Θ,Φ,R), such
that we need only to consider rotations in Θ and Φ directions
(r =R =R∗). Shifted positions, Θ∗= Θ+∆Θ and Φ∗= Φ+∆Φ,
are projected as new anatomical locations constrained to the
original anatomical surface geometry (X∗), using barycentric
interpolation. For each potential perturbation of the spherical
surface (Y∗), an average surface strain penalty is calculated from
the resulting in-plane anatomical deformations (X∗ to x) of the
surrounding faces.

aMSM Validation
To evaluate how aMSM performs under specific circumstances,
we used simple geometries to test specific aspects of the regis-
tration technique. These served to validate aMSM under cases
where the correct result is known and provided a starting point
for optimization of more complex registration cases.

First, we validated the behavior of our strain energy mini-
mization term (W ) in the absence of data matching. For com-
parison with past work, we considered the same geometry as in
ref. 4: a spherical surface that deforms into a “pumpkin” shape
according to

r = 1.1(R + 0.1sin(4Θ)cosΦ), φ = Φ, θ = Θ, [S3]

shown in Fig. S1A. Note that, since curvature is uniform across
the spherical surface, curvature matching is irrelevant in this
example. However, the deformation produces strains that are not
optimized (minimized) across the surface. Based on W , surface
strains will be minimized differently depending on the input val-
ues for bulk (κ) and shear (µ) moduli.

Fig. S1B, Top shows the areal (J ) and shape (R) compo-
nents of this initial deformation. If areal and shape changes are
penalized equally in aMSM (κ/µ= 1; Fig. S1B, Bottom), both
J and R are reduced and smoothed slightly. Conversely, if areal
changes are penalized more heavily (κ/µ= 10; Fig. S1B, Middle),
J becomes much smoother at the expense of higher R variabil-
ity. Despite algorithmic differences between aMSM and previ-
ously described finite-element approaches (4), both approaches
produce similar results (Fig. S1B′). In keeping with evidence that
3 / κ/µ/ 1,000 in real brain tissues (5), we choose an interme-
diate value of κ/µ = 10, which produces an intermediate behav-
ior, throughout our analysis.

Next, we consider the efficacy of curvature matching with
strain energy minimization as a regularizing term (weighted by
MSM input parameter Λ) to accurately align undulations on our
pumpkin surface. For this, we created a second pumpkin, shift-
ing the deformation field in Eq. S3 by ∆Θ = π/8. As illustrated
in Fig. S1C, this results in a surface with the same geometry as
before but with misaligned vertices. The vertex denoted with a
black star is located on an outward fold (“gyrus”) on the left sur-
face but on an inward fold (“sulcus”) on the right surface.

As shown in Fig. S1E, Top, the initial configuration leads to
nonzero values of strain energy density (W ) and differences in
curvature (∆kmin). For this simple case, we know that the dif-
ference between surfaces can be best described as a global affine

rotation (∆Θ =π/8), which results in no deformation (W = 0)
and no differences in curvature (∆kmin = 0). However, since
global rotation is insufficient for more complicated cases such
as the folding brain, our discrete approach must be capable of
producing the same alignment and deformations.

By setting regularization weight extremely high (Λ≥ 10), we
approach the result of strain minimization alone (Fig. S1E, Bot-
tom, top row). In this case, deformations and strain energy are
drastically reduced, but points are not pushed toward the cor-
rect gyri and sulci (as illustrated by the remaining differences in
kmin). Conversely, unconstrained curvature matching with very
low regularization (Λ≤ 0.001) induces unrealistic deformations
(Fig. S1E, Bottom, bottom row). A reasonable balance of curva-
ture matching and strain energy minimization (optimal Λ = 0.1
for this case) achieves accurate alignment (∆kmin = 0, ∆K = 0)
and minimal distortion (W = 0, J = 1). An order of magnitude
parameter sweep for the regularizing parameter, Λ, is shown in
Fig. S1D.

aMSM Implementation Details
For the simple case described above, we saw that an optimal
value of the regularizer weight parameter, Λ, could be obtained
through trial and error. However, optimal balance depends on
both the magnitude of deformations and the magnitude of cur-
vature differences between surfaces, which varies for different
time spans and different subjects. Furthermore, in complex brain
geometries, where different areas grow and fold at different
rates, the optimal balance can vary spatially within each regis-
tration. This presents a new practical issue: Too much regular-
ization may prevent a subset of points from moving to the cor-
rect fold/position, but too little allows unrealistic deformations
to develop.

For complex, variable geometries such as the brain, we mod-
ified our approach to perform two-step registration. First, we
applied the lowest acceptable regularization weight (Λ = 0.01)
which consistently allows each point to reach the correct gyrus or
sulcus for each time span considered in this study (such that the
same parameters could be used for all time spans in this study).
Then we applied a heavy regularization weight (Λ = 10,000)
to allow relaxation of unrealistic deformations, including those
induced by spherical projection and overalignment of curvatures.
In (a)MSM, registration of complex surfaces also progresses in
a coarse-to-fine fashion, as described in Fig. S2, and Λ can be
altered and optimized for each resolution level.

Since curvature matching was considered only to obtain gen-
eral, initial alignment between gyri and sulci, we performed
our two-step registration (balanced and then high Λ) only at
low resolution levels. At higher resolution levels, after qualita-
tive alignment had been obtained between gyri and sulci, the
emphasis was shifted to strain energy minimization only (high Λ).
This successfully matched each gyrus and sulcus while providing
robust, smooth deformation maps at high resolution, as quanti-
fied in Table S1. Nondefault configuration parameters used in
this study are shown below. With these parameters, over half
of registrations completed in less than 12 h and 97% of reg-
istrations completed in less than 24 h when run on a single
processor:

–CPgrid = 2,2,3,3,4,5 (Fig. S2)
–SGgrid = 4,4,5,5,6,6 (Fig. S2)
–datagrid = 4,4,5,5,6,6 (Fig. S2)
–lambda = 0.01,10000, 0.01,10000,10000,10000 (Fig. S2)
–bulkmod = 10 (Fig. S1 A and B)
–shearmod = 1 (Fig. S1 A and B)
–regoption = 3 (aMSM)
–IN (histogram matching)
–regexp = 1 (exponent on W penalty)
–kexp = 1 (exponent on R and J )
–dopt = HOCR (higher-order clique reduction)
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–rescaleL (rescaled grid options at each iteration)
–it = 50,50,50,50,50,50∗
∗MSM stops running each level once it reaches convergence,

usually between 10 and 20 iterations for registrations consid-
ered in this study. Here, we set an excessively high number of
iterations to ensure consistent, fully converged solutions, but
future optimization could consider limiting each level to fewer
iterations.

Minimizing Directional Registration Bias for Accurate Growth
Measurements
Finally, we address the issue that the basic MSM algorithm pro-
duces a unidirectional registration of an input surface to a ref-
erence surface. As such, differences are likely to exist between
a registration of a younger surface to an older surface (forward
registration) vs. registration of an older surface to a younger sur-
face (reverse registration). To minimize any bias, we ran forward
and reverse registrations for each longitudinal case. All growth
maps reported in the main text represent the average of forward
and reverse registrations, accomplished via a series of projec-
tions and averages in Connectome Workbench (10) (https://www.
humanconnectome.org/software/get-connectome-workbench).
(Each direction of registration produces a deformed version of
its input sphere. To average these relationships, the inverse of
the reverse registration was applied to the reference sphere. The
coordinates of this sphere’s vertices were then averaged with
the forward registration’s deformed sphere, to reduce the direc-
tional bias of registration. The inverse-reverse registration was
also used to resample the growth map—always calculated from
younger to older—from reverse registration into the forward
framework, where it was averaged with the growth map from
forward registration. The opposite of this procedure can also be
used to obtain averages in the reverse framework.)

Fig. S3 quantifies observed differences between forward and
reverse registrations for our largest subject group and longest
time step: 30–38 wk PMA (n = 20). As in the main text, mean
relative expansion maps are plotted for each, as well as regions
of significantly higher (red) or lower (blue) expansion. As shown
in Fig. S3 A and B, patterns were similar but not identi-
cal between forward and reverse aMSM registrations. Further-
more, discrepancies appear to flip for right vs. left hemisphere:
e.g., relative expansion is high on the forward-registered left
frontal lobe and the reverse-registered right frontal lobe. As
shown in Fig. S3C, a paired t test in PALM (11) (https://fsl.
fmrib.ox.ac.uk/fsl/fslwiki/PALM) revealed significant trends in
the difference between forward and reverse registrations. These
differences also appear to roughly flip for right vs. left hemi-
sphere: reverse registration leads to higher relative expansion on
the right lateral surface but the left medial surface. Note, how-
ever, that these differences largely cancel out when forward and
reverse registrations are averaged, such that unbiased results for
right and left hemispheres show nearly identical trends Fig. S3C.

It is important to note that right and left hemispheres were
analyzed independently throughout this study. Furthermore, lat-
eral coordinates were consistently defined such that a positive
value on the right hemisphere is negative on the left hemisphere.
These differences may have introduced subtle biases during sur-
face generation (12), spherical projection, and/or optimization.
As such, left and right hemispheres serve as a valuable check for
consistency. Although general trends reported in this study are
robust, studies which combine analysis of right and left hemi-
spheres should carefully consider this issue and ensure proper
validation.

Effect of Strain Energy Minimization on Quality of Alignment
Since the parameters for registration in this paper allow strong
strain energy regularization, we performed additional tests to
determine whether this could adversely affect the quality of

alignment between folds; i.e., Can unconstrained minimization
of strain energy (using κ= 10µ) push initially aligned points off
of the correct fold? If so, will regional differences in surface
expansion dissipate under the fully converged solution? To illus-
trate this theoretical issue, we considered strong, regional fold-
ing of a sphere defined by r = 1.1(R+0.2sin(7Θ)cosΦ) if Θ≥ 0,
else r = 1.1R (Fig. S4A). (In this case, the regional difference in
relative surface expansion was designed to be on the order of
results in Fig. 3.) By solving the problem via mechanical equa-
tions of motion, again using code modified from ref. 4, we can
see the solution approaches convergence as a function of time
(Fig. S4C). At t = 70 s, clear differences in relative expansion
are still visible (Fig. S4B, Right). Despite large regional differ-
ences in expansion, we observe only a slight shift at the border
between static and folding regions, and the distribution within
each gyrus and sulcus remains reasonable (Fig. S4D).

While these theoretical results are useful for conceptualiza-
tion, they do not prove that alignment will be maintained in
discrete optimization of more complex surfaces. To examine
whether alignment is maintained on an actual set of midthickness
surfaces using aMSM, we revisit the representative subject in Fig.
3. Specifically, we examine the large time period (representing a
more drastic change in folding) from 31 wk to 37 wk PMA (Fig.
S4E). Fig. S4F plots mean curvature from the younger surface
on the older surface after forward, reverse, and average aMSM
registrations. In all cases, common sulci (blue) and gyri (orange)
remain correctly positioned despite strong strain energy regular-
ization at levels 2, 4, 5, and 6.

Although strong regularization via strain energy minimization
worked well for these surfaces, we recognize that this solution
may not be ideal for all cases. In particular, cortical midthickness
reconstructions in this study had undergone careful manual edit-
ing to remove topological “holes” and other artifacts. The pres-
ence of artifactual irregularities could skew strain energy mini-
mization and lead to unrealistic results. Furthermore, constraints
on computational time may dictate the need for faster registra-
tion. These issues have been considered in ref. 3, which obtained
strikingly similar results from 30 wk to term equivalent using
different parameters and fewer iterations. Consistency between
these results, with different surface reconstruction methods and
different regularization parameters, suggests that aMSM is a
robust tool for longitudinal analysis of growth.

Growth Estimates for Short and Long Time Steps
As shown in Table S4, subjects in this analysis were scanned at
a variety of ages, with varying time steps between scans. To con-
firm that growth maps were accurate for larger time steps, we
compared relative expansion maps from 30 ± 1 wk to 38 ± 2 wk
PMA with and without an intermediate registration time point
(34 ± 2 wk PMA). As shown in Fig. S5A, average expansion
maps were qualitatively similar with and without the intermedi-
ate time points (n = 8 per group). For the case with an inter-
mediate step, relative expansion maps (30–34 wk and 34–38 wk)
were multiplied. Therefore, the higher and lower peaks observed
in this case may represent multiplication of “noise” in discrete
registration, rather than true growth. A paired t test in PALM
revealed only small regions of statistically significant difference
(Fig. S5B).

Atlas Generation
For group analysis, a 30-wk PMA group atlas was created
through the following steps, as outlined in Fig. S6: In Fig.
S6A, cortical surfaces from 18 noninjured subjects (30 ± 1 wk
PMA) were affine aligned at the anterior and posterior commis-
sures and projected to a corresponding spherical surface using
CARET (13). In Fig. S6B, using Connectome Workbench (10),
cortical surfaces were resampled to a standard 40,962-vertex
mesh and averaged to create a proto-atlas. In Fig. S6C, individual
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surfaces were registered to the proto-atlas with aMSM using the
same parameters described above. In Fig. S6D, registered sur-
faces were averaged in Connectome Workbench to create a final
30-wk atlas. Note that this final atlas conserves greater anatom-
ical detail and reduces 3D dispersion (minimizes SD of the dis-
tance of subjects’ vertices to the mean 3D coordinate) (Fig. S6E).
For group analysis, all individual surfaces (time point closest to
30 wk PMA) were registered to this final 30-wk atlas.

All atlas registrations in this study used the individual’s scan
closest to 30 wk, so that variability between age groups did not
affect our individual-to-atlas registrations. At 30 wk, variability
was small between our subjects, as illustrated in Fig. S6. In future
studies using multiple or different subject groups, investigators
should assess variability between groups when deciding whether
to use this (or another existing) atlas or whether to develop mul-
tiple group atlases for their specific research question.
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Fig. S1. aMSM parameter effects on simple undulating geometry. (A) Effect of bulk-shear ratio (κ/µ) was explored by minimizing surface strain energy
between a sphere and pumpkin. (B) Areal changes (J) and shape changes (R) are not minimized in the initial, mathematically generated pumpkin shape
(Top). Using aMSM, equal values of κ and µ smooth both J and R moderately (Bottom). By contrast, increasing κ reduces J at the expense of more variable
R (Top). (B′) For comparison, J and R distributions for the full theoretical range of κ/µ were calculated using code modified from ref. 1. (C) Effect of
regularization weight (Λ) was explored by aligning a shape shifted by affine rotation. (D) Parameter sweep reveals an optimal range of Λ that minimizes
both strain energy (W) and mean curvature differences (∆K). For registration at each Λ, distribution of vertex values is represented by boxplots, with
outliers denoted by red + symbols and optimal solution denoted by #. (E) Distributions of strain energy, curvature differences, and J before (Top) and
after (Bottom) registration. Solutions near the optimal Λ (Bottom, middle row) accurately moved points to approximate the true affine rotation solution
(W = 0, ∆kmin = 0, J = 1). Note that for illustration we show change in minimum curvature, kmin, which appeared most pronounced. Changes were similar
for K = 0.5(kmin + kmax).

1. Knutsen AK, et al. (2010) A new method to measure cortical growth in the developing brain. J Biomech Eng 132:101004.
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Fig. S2. aMSM optimized for complex, variable geometries. For speed and robustness, MSM aligns complex surfaces in “levels,” starting with a coarse (low
resolution) representation of the input and reference surfaces and then progressively moving to higher resolutions. From Left to Right in black box: (Left)
The internal control point grid (CPgrid, points to be moved/optimized) begins as a very basic representation of the cortex. Illustration of how this grid is
distributed on a cortex is shown in parentheses to Right. (Center) The corresponding sampling grid (SGgrid, set of locations to which control points can move)
is typically set to a higher resolution. (Right) For increased accuracy, anatomical strains were calculated at a default resolution (anatgrid) of 10,242 vertices,
the maximum for our final CPgrid for all levels, for each level within aMSM optimization. Low resolutions were optimized twice: first with a “balanced”
Λ = 0.01, the highest value that consistently allowed each point to reach the correct gyri and sulci, and then with a high Λ = 10,000 to minimize unrealistic
deformations after accurate alignment had been achieved.
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Fig. S3. Averaging forward and reverse registrations to eliminate bias. (A) For forward (Left) and reverse (Right) registration, a map of mean relative
expansion is shown for 30 wk PMA to 38 wk PMA (n = 20). (B) Areas of statistical significance corresponding to the relative expansion maps shown in A,
where red is significantly higher than the global average and blue is significantly lower than the global average. Since here we are interested in the effects
of registration, which includes registration of the noncortical medial wall, the medial wall was not excluded from this statistical analysis. (C) Testing paired
differences between forward (Left) and reverse (Right) registrations reveals significant regional differences. Note similarity between the right lateral and left
medial walls, as well as dissimilarity between corresponding right and left regions. (D) Averaging forward and reverse registration effectively eliminates this
bias, resulting in similar maps for Right and Left.
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Fig. S4. Strain energy minimization does not adversely affect alignment of folds. (A) Effect of strain energy minimization on drift was explored by considering
asymmetric (regional) folding of a sphere. (B and C) Strain energy minimization (using κ = 10µ) approximates the converged solution at t = 70 s, shown in
B as the average and SD of strain energy density, W̄ and σ(W), approach a constant value. (D) Two artificial segmentations (based on original angle Φ) are
shown for the aligned geometry before and after strain energy minimization to visualize the final locations of points. (E and F) Effects of aMSM strain energy
minimization do not appear to impede qualitative alignment of folds. Regional expansion patterns for this subject are shown in Fig. 3. By plotting K for early
folds, we see that reasonable alignment of these early folds is maintained on the corresponding older surface after aMSM including strong regularization
(strain energy minimization). (F, Inset) Older folding pattern is shown for reference.

Fig. S5. Effect of time interval between scans. (A) For registration with (Left) and without (Right) an intermediate time point, maps of mean relative
expansion are shown for 30 ± 1 wk PMA to 38 ± 2 wk PMA (n = 8, noninjured1–8 in Table S4). (B) Testing paired differences with and without the
intermediate step reveals only a few small areas of statistical significance. Green denotes areas where relative expansion was higher without an intermediate
step, and yellow denotes areas where relative expansion was lower without an intermediate step. Note that to visualize small differences that do exist, and
account for low sample size, the threshold for plotting has been raised to P = 0.1. Only the dark green region of the right temporal lobe was significant with
P < 0.05.
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Fig. S6. (A–E) Atlas generation and aMSM improvement (reduction in 3D dispersion). Individual surfaces (A) are resampled and averaged to form a proto-
atlas (B). Individual surfaces are then registered to the proto-atlas (C), and averaged to form the final atlas surface (D). (E) The final atlas surface exhibits
reduced variability with respect to individual surfaces than the proto-atlas.

Table S1. Statistical improvements due to aMSM alignment (n = 10 for each column)

Wk, PMA

Parameter 28–30 30–34 34–38 30–38

P before, affine registration only 0.31 ± 0.09 0.32 ± 0.07 0.27 ± 0.13 0.14 ± 0.08
P after, aMSM registration 0.70 ± 0.14 0.81 ± 0.06 0.87 ± 0.03 0.68 ± 0.08
E/µA before, affine registration only 1.92 ± 0.45 1.83 ± 0.33 1.87 ± 0.37 3.70 ± 0.65
E/µA after, aMSM registration 0.59 ± 0.29 0.61 ± 0.26 0.60 ± 0.33 2.19 ± 0.58

For statistical analysis of aMSM performance, right and left hemisphere results are combined from five subjects
scanned at all four time points (n = 10 per group). This includes one injured subject (small focal hemorrhagic lesion)
that was excluded from analysis of noninjured development in the main results (n = 4 in Fig. 5A). P represents
Pearson’s correlation coefficient between curvatures, such that this value approaches 1 with improved alignment.
E =

∫
W(A) dA represents total strain energy across the anatomical surface, here normalized by shear modulus

(µ) and total surface area (A). Values are reported as mean ± SD.

Table S2. Linear fits for vertices 1–10 in Fig. 6: growth rate (ġ, %/wk) vs. PMA

Vertex Description ġ28, L ġ28, R g̈L g̈R PL PR pL pR L/R

1 Prefrontal cortex, lateral 11 12 0.14 0.00 0.15 0.00 0.449 0.995 —
2 Frontal lobe, lateral 13 14 0.20 −0.06 0.16 −0.05 0.436 0.806 —
3 Early somatosensory-motor cortex, lateral 16 17 −0.45 −0.71 −0.43 −0.57 0.026 0.002 */**
4 Parietal lobe, lateral 13 17 0.31 −0.13 0.27 −0.09 0.174 0.646 —
5 Occipital lobe, lateral 15 16 −0.20 −0.25 −0.18 −0.22 0.377 0.275 —
6 Parietal lobe, lateral 12 15 0.30 −0.12 0.33 −0.18 0.088 0.376 —
7 Insula, lateral 14 18 −0.53 −0.97 −0.50 −0.64 0.007 <0.001 **/**
8 Early somatosensory-motor cortex, medial 16 15 −0.57 −0.62 −0.53 −0.48 0.004 0.011 **/*
9 Early visual cortex, medial 17 19 −0.63 −0.99 −0.41 −0.64 0.033 <0.001 */**
10 Frontal lobe, medial 11 12 0.08 −0.19 0.10 −0.21 0.629 0.290 —

Labels 1–10 correspond to locations denoted in Fig. 6 for left (L) and right (R) hemispheres. Values are shown for 28-wk intercept (ġ28), slope (g̈), Pearson’s
correlation coefficient, and P-value. Trend significance for L/R hemispheres is denoted in rightmost column with *P < 0.05, **P < 0.01.
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Table S3. Demographic information for studied cohort (n = 30)

Variable No significant injury, n = 24 Injured, n = 6

Gestational age at birth, wk 27 ± 1 26 ± 2
Birth weight, g 976 ± 226 898 ± 239
Head circumference at birth, cm 25 ± 2 24 ± 2
Male 50% (12) 50% (3)
Caucasian 46% (11) 67% (4)
CRIB score at birth 10 ± 2 12 ± 3
Time on ventilator, h 24 (0–792) 1104 (24–1,176)
Sepsis 16% (4) 50% (3)
Intrauterine growth restriction 13% (3) 0% (0)
Head circumference at final scan, cm 33 ± 2 33 ± 2
PMA at final scan, wk 37 ± 1 37 ± 1

The above statistics are formatted to denote one of the following: mean ± SD% (n) or median (min–max).
Subjects were excluded from group analysis due to (i) small grade IV IVH and focal cerebellar hemorrhage on
left hemisphere (used in Table S1), (ii) grade IV IVH on right hemisphere, (iii) grade II IVH and below average
cortical surface area/delayed folding, (iv) bilateral grade IV IVH (used in Fig. 6B), (v) bilateral grade IV IVH, or
(vi) left ventricular dilation. CRIB, Clinical Risk Index for Babies.

Table S4. PMAs and time steps for individuals (n = 30)

Subject PMA1 PMA2 PMA3 PMA4 PMA2–PMA1 PMA3–PMA2 PMA4–PMA3 PMA4–PMA2

Noninjured1 28 30 33 38 2.3 2.7 5.3 8.0
Noninjured2 27 31 33 37 4.1 2.0 3.9 5.9
Noninjured3 27 29 33 36 2.0 3.1 3.6 6.7
Noninjured4′ 27 30 34 36 2.9 4.1 2.1 6.3
Noninjured5 29 32 37 3.0 5.0 8.0
Noninjured6 31 33 37 2.0 4.1 6.1
Noninjured7 30 34 38 4.1 3.7 7.9
Noninjured8 29 33 36 4.1 2.9 7.0
Noninjured9 33 37 4.7
Noninjured10 36 39 3.3
Noninjured11 35 40 4.6
Noninjured12 33 36 3.0
Noninjured13 32 39 7.0
Noninjured14 29 38 8.9
Noninjured15 30 38 8.4
Noninjured16′ 30 40 10.1
Noninjured17 30 37 7.7
Noninjured18 29 36 7.6
Noninjured19 30 36 5.6
Noninjured20 31 38 7.0
Noninjured21′ 29 37 8.3
Noninjured22 30 35.9 5.1
Noninjured23 30 40 10.0
Noninjured24 32 37 4.9
Injured1 27 31 34 37 3.3 3.4 3.4 6.9
Injured2 31 34 38 3.4 3.6 7.0
Injured3 33 38 4.9 4.3 9.1
Injured4 35 37 2.0
Injured5 34 37 3.0
Injured6 31 36 5.7

′denotes noncystic white matter injury in noninjured subject.
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