

Figure S1. Phylogenetic analysis of SPL orthologs in *Arabidopsis*, rice and *M. truncatula*. The analysis indicated that *M. truncatula* SPL8 (*Medtr8g005960*, red star) is a homolog of AtSPL8 and is also close to AtSPL3, 4 and 5.

Figure S2. Expression patterns of *SPL8* in *M. truncatula*, produced from the *M. truncatula* Gene Expression Atlas (https://mtgea.noble.org/v2/index.php).

Figure S3. Comparison of branch development between control and the three *Tnt1* mutants of *SPL8* in *M. truncatula*. Values represent means \pm S.D. of three biological replicates and are analyzed by Student's t-test (* *P* < 0.05, ** *P* < 0.01, *** *P* < 0.001).

Figure S4. PCR analysis of regenerated *M. truncatula* plants after *Agrobacterium*-mediated transformation with the *SPL8* overexpression vector. (a) PCR screening of regenerated T0 plants using promoter and target gene-specific primers. (b) Relative expression levels of *SPL8* in the transgenic plants. Expression is shown relative to that of the control, which is set to 1. (c) PCR verification of 15 T1 transgenic plants. C, wild-type control; M, PCR 50-2,000bp marker (Sigma); P, plasmid DNA as positive control. Numbers represent individual regenerated plants.

Figure S5. Branching and shoot architecture were significantly altered in *SPL8* knockout mutants and overexpression transgenics in *M. truncatula*. (a) Two-month-old plants of *SPL8* knockout mutant (*spl8-2*), control and overexpression transgenics (SPL8OE-18). (b) Plant height of *spl8-2*, control and SPL8OE-18. (c) Total number of various branches that are produced in each main stem. Pb, primary branch. Sb, secondary branch. Tb, tertiary branch. Values represent means \pm S.D. of three biological replicates and are analyzed by Student's t-test (* *P* < 0.05, *** *P* < 0.001).

Figure S6. Relative expression levels of candidate genes in *spl8* mutants, control and *SPL8* overexpression lines (SPL8OE) in *M. truncatula*. Values represent means \pm S.D. of three biological replicates.

Figure S7. Phytohormone accumulation in *spl8* mutants, control and *SPL8* overexpression lines (SPL8OE). Values represent means \pm S.D. of five biological replicates and are analyzed by Student's t-test (* P < 0.05, ** P < 0.01).

ntity	1	10	20	30	40	50	60	70	80	90	100	110	120	130	140	150
AsSPL8	AAAG	AAAGAAAGA	GTETETETE	TETETETGAG		AGT	GAGAGAGAG	TGTGTGATAA	TAGACTTAAT	GTACACGCCA		ACTG	TCTGAATCAA	ATGAAATGAG	TAGATAG	
SPL8	AGAAAG		170	180	190	AGT TATAGTG	AGAGAGAGTG	TGTGTGATAA 220	TAGACTTAAT 230	GTACACGCCA 240	250	260	270	280	290	GGATGG 300
										-1-		1	1			
.8	ATAGAT	AAAGTCTC	CTCCCC		TTCCTGCAA	AT	T		GTIGGACTAT	GAATGGGGTA					TCCGCCGCA	GCAGCA
	ALAGA	310	320	330	340	350	360	370	380	390	400	410	420	430	440	450
	GCCTCC	GATCAAGCO GATCAAGCO	CACCGTCAA CACCGTCAA	AT-TTCGACC/ ATCTTCGACC/	ACTACGCTTC ACTATGCTTC	TCAAGCTATG	TATCCGACA	ACTACCTTAA ACTACCTTAA	CGGACCTGGT CGGACCTGGT	GTGGACCCA	CCATCGACAT	AAACAGTGGT AAACAGTGGT	GATTITACTCA GATTITACTCA	ATCATAATAAG AT	CACCACCAC	CACCAC
	1	460	470	480	490	500	510	520	530	540	550	560	570	580	590	600
	CACCAC	AACCAG	AGCCAACAG	GCCCAGCAGC	ACCATATC	CATCAGTCC		ACGGGC	CCATGGTGGG			CCCTCCACCT	CAACCACAACC	TCCTTCC	ATGCTCTCC	CTTGAC
	CACCAC	AACCAGT	AGCCCACAC	GCCCAGCAGC	ACCATAATAT	CCATCAGTCC	TTCTTCGACCO	CACGGGCTTT	TCATGGAGGG	TCATCAACTG					ATGCTCTCC	CTTGAC
		610	620	630	640	650	660	670	680	690	700	710	720	/30	740	/50
	сстет	CCTGGTCAT	GGACATGGA	ATGGCCCTG	GATTCCTCCT	GTACCAAAA	TCCGAGGATG	TTAACAGGCC	CATAGACTIC	GTGGGCTCTA	GACTT-GGAC		GTGGCCGCAC/		TCCGAAGACG	ACTICG
	CCTCT	760	TGGACATGGA	CATGGACATGO 780	5ATTCCTCCTC 790	800	810	TAACAGACC 820	EATTGACTTC 830	STGGGCTCTA 840	SACTTGGGAC 850	READ 860	STGGCCGCACC 870	880	ECCGAAGATG 890	ACTTCG 900
		1								,			1	1	1	Ĺ
		GCCTTTACC	GTCGGTCTA	GACCACCTGA			GAACTCGCC		GCCGAAGGTT							ACTCCA
		910	920	930	940	950	960	970	980	990	1,000	1,010	1,020	1,030	1,040	1,050
	AGGCAG	CCACCGTCC	STIGCAGCIG	GGTTGACTCA	GCGGTTCTGC	CAGCAA GCA	GCAGGTTCCA	TCTTCTATCT	GAGTITGATA GAGTITGATA	ATGGAAAACG ATGGAAAACG		AAGAGATTGG AAGAGATTGG			AGAAAAACTC AGAAAAAACTC	AGCACC
		1,060	1,070	1,080	1,090	1,100	1,110	1,120	1,130	1,140	1,150	1,160	1,170	1,180	1,190	1,200
	CAAATA	CTCAAGATA			GGATAAT		GATECCO	AGAGTETGGA		ATCGTCGGT	SACAGTOGO	GITTOTCOACO	GGALLA	GACAAAGG	CGTACCAAA	GCCCAA
	CTAATA	CTCAAGATA	TTCACAAAT	CTCACAATAC	TIGGATAGT	TCTGCCACAA	GATCCCCTCC	GGAGTCTGGA	ACTCAATCTA	ATCTTCTGT	GACTGTGGCC	GTATCTCCAC	GGATTATTT	GACAAAGG		CCCCAA
		1,210	1,220	1,230	1,240	1,250	1,260	1,270	1,280	1,290	1,300	1,310	1,320	1,330	1,340	1,350
	GCCCT	CAACAACT	C-AGCTCAA	GTTTTCTC	CACCGGGTAG	GAACCTACG	TACGCAACCA	ATGTGTAGCT	ATTAACTAGG	AGCATGCATA	ATATCCCAGT				GCTAATTAA	
	GCCCT	CAACAACT 1,360	1.370	1,380	1.390	1.400	1,410	ATGTGTAGCT 1.420	ATTAACTAGT 1.430	AGCATGC 1,440	ATTCCAGT 1,450	1,460	1,470	1.480	1.490	1.496
										1				2.122	1	
	ACTATA													TCATTITAAGO		TA

Figure S8. Sequence comparison of *MsSPL8 (M. sativa* SY4D) with *SPL8 (M. truncatula* R108).

Figure S9. Amino acid alignment of MsSPL8 and SPL8 proteins and their ortholog in soybean (*Glycine max*). The red box highlights the SBP domain (206-285). *M. truncatula* SPL8 and MsSPL8 have 89.9% similarity.

Figure S10. PCR analysis of regenerated alfalfa plants after *Agrobacterium*-mediated transformation with the *MsSPL8* RNAi vector. A pair of promoter and target gene-specific primers were used for PCR analysis. C, wild-type control; M, PCR 50-2,000bp marker (Sigma); P, plasmid DNA as positive control. Numbers represent individual regenerated plants.

Figure S11. Relative expression levels of *MsSPL8* in the transgenic downregulation plants of alfalfa (MsSPL8Ri). Expression is shown relative to that of the control, which is set to 1.

Figure S12. Transgenic alfalfa showing increased biomass phenotype with downregulation of *MsSPL8*. (a) Mature plants of control and *MsSPL8* downregulation transgenics (MsSPL8Ri). (b) *MsSPL8* relative expression levels. (c) Fresh biomass yield of control and MsSPL8Ri plants. (d) Dry biomass yield of control and MsSPL8Ri plants. Values represent means \pm S.D. of three biological replicates and are analyzed by Student's t-test (* P < 0.05, ** P < 0.01).

Figure S13. PCR analysis of regenerated alfalfa plants after *Agrobacterium*-mediated transformation with the *MsSPL8* overexpression vector. A pair of promoter and target gene-specific primers were used for PCR analysis, see Experimental procedures. C, wild-type control; M, PCR 50-2,000 bp marker (Sigma); P, plasmid DNA as positive control: Numbers represent individually regenerated plants.

Figure S14. Transgenic alfalfa showing decreased biomass phenotype with overexpression of *MsSPL8*. (a) Mature plants of control and *MsSPL8* overexpression transgenics (SPL8OE). (b) *MsSPL8* relative expression levels. (c) Fresh biomass yield of control and MsSPL8OE plants. (d) Dry biomass yield of control and MsSPL8OE plants. Values represent means \pm S.D. of three biological replicates and are analyzed by Student's t-test (*** *P* < 0.001).

Figure S15. Effects of abiotic stresses on *MsSPL8* transgenic alfalfa plants. (a) Relative expression levels of *MsSPL8, MsCHS, MsPAP1* and *MsDFR* in different alfalfa lines. (b) Survival rate after salt and drought treatments. Values represent mean \pm S.D. of four biological replicates.