Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

for Adv. Sci., DOI: 10.1002/advs.201700481

Enhanced Photodynamic Cancer Treatment by Mitochondria-Targeting and Brominated Near-Infrared Fluorophores

Ilkoo Noh, DaeYong Lee, Heegon Kim, Chan-Uk Jeong, Yunsoo Lee, Jung-Oh Ahn, Hoon Hyun, Ji-Ho Park, and Yeu-Chun Kim*

Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2017.

Supporting Information

Enhanced photodynamic cancer treatment by mitochondria-targeting and brominated near-infrared fluorophores

Ilkoo Noh, DaeYong Lee, Heegon Kim, Chan-Uk Jeong, Yunsoo Lee, Jung-Oh Ahn, Hoon Hyun, Ji-Ho Park, and Yeu-Chun Kim *

Synthesis of the Pre-MitDt group: The 5-bromo-2,3,3-trimethyl-3H-indole and R substituted indolenine groups were prepared in accord with previous literature.^[1] The prepared trimethylindolenine groups were reacted with 1,3-propane sultone and alkylating agent, (3-bromopropyl)trimethylammonium bromide and 3-bromopropionic acid in ACN for 48 h at 82 °C. After the mixture was cooled, the solvent was precipitated with toluene and washed with ether to afford a deep red product, which was used in the next step without further purification. The R substituted indolenine groups were reacted with Vilsmeier-Haack reagent (0.5 eq. with respect to the R substituted indolenine group) and sodium acetate in ethanol for 12 h at 70 °C.^[2] The reaction mixture was cooled to room temperature; then precipitated in diethyl ether, and purified using preparative HPLC on a symmetry C18 column (5µm, 30×100 mm) at 25 °C. The mobile phase was water-ethanol in gradient mode. The MitDt group was used after confirming the peak detected at excitation wavelength 780 nm and emission wavelength 800 nm.

Synthesis of the MitDt group: The various synthesized pre-MitDt groups were reacted with (3-aminopropyl)triphenylphosphonium (TPP-NH₂) and TEA (3 eq. with respect to Pre-MitDt group) in DMSO (procedure 1) and DMSO/methanol (procedure 2) (1:1,v/v) 85 °C for 5 h.^[3] The reaction mixture was precipitated in diethyl ether, and purified using preparative HPLC on a Symmetry C18 column (5 μ m, 30 × 100 mm) at 25 °C. The mobile phase was water-methanol with 0.1% TFA (v/v) in gradient mode. The MitDt group was used after confirming the peak detected at excitation wavelength 640 nm and emission wavelength 750 nm. The purified MitDt fluorophores were analyzed using ultra-performance liquid chromatography (UPLC, Waters, USA) equipped with micrOTOF-Q II (Bruker, Germany) and structures were confirmed using ¹H NMR (Agilent 400MHz 54mm NMR DD2, Agilent, USA); see Figure S9-S20.

MitDt-1. Procedure 1 (brownish gold, yields: 30%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.2 ppm (s, 2 H), 8.00-7.75 ppm (m, 21 H), 5.8 (d, J=12.7 Hz, 2 H), 3.99 (t, J = 7.0 Hz, 4 H),

3.81 – 3.70 (m, 6 H), 3.56 (m, 2 H), 3.01 (m, 2 H), 3.12 (s, 18 H), 2.89 (t, J=7.0, 2 H), 2.73 (m, 6H), 1.90 – 1.81 (m, 2 H), 1.54 (s, 12 H).

MitDt-2. Procedure 2 (Dark blue, yields: 21%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.28 ppm (br-s, 2 H), 8.00-7.54 ppm (m, 21 H), 5.64 (d, J=12.7 Hz, 1 H), 5.53 (d, J=12.7 Hz, 1 H), 4.70 (t, J = 7.0 Hz, 4 H), 3.78 (m, 2 H), 3.59 (m, 2 H), 2.00 – 1.70(m, 2 H), 1.60 (m, 2 H), 1.47 (m, 12 H).

MitDt-3. Procedure 1 (Dark blue, yields: 14%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.30 ppm (br-s, 2 H), 8.00-7.54 ppm (m, 21 H), 5.63 (d, J=13.3 Hz, 1 H), 5.11 (d, J=13.3 Hz, 1 H), 3.760 (t, J = 7.0 Hz, 4 H), 3.65 (m, 2 H), 3.08 (m, 2 H), 2.44 – 2.36(m, 4 H), 1.50 (m, 2H), 1.43 (m, 2 H), 1.33 (m, 12 H), 1.17 (m, 2 H), 1.47-1.40 (m, 2 H).

MitDt-4. Procedure 1 (Brownish gold, yields: 30%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.16 ppm (s, 2 H), 8.00-7.75 ppm (m, 23 H), 5.8 (d, J=12.7 Hz, 2 H), 4.12 (t, J = 7.3 Hz, 4 H), 3.74 – 3.71 (m, 6 H), 3.0 (m, 2H), 3.4 (m, 2 H), 3.12 (s, 18 H), 3.01 (t, J=7.3, 2 H), 2.89 (m, 4 H), 2.73 (m, 2 H), 1.90 – 1.83 (m, 2 H), 1.51 (s, 12 H).

MitDt-5. Procedure 2 (Dark blue, yields: 17%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.56 ppm (br-s, 2 H), 8.00-7.54 ppm (m, 23 H), 5.67 (d, J=13.4 Hz, 1 H), 5.57 (d, J=13.4 Hz, 1 H), 4.78 (t, J = 7.0 Hz, 4 H), 3.76 (m, 2 H), 3.66 (m, 2 H), 2.12 - 1.82 (m, 4H), 1.55 (m, 2 H), 1.45 (m, 12 H).

MitDt-6. Procedure 1 (Dark blue, yields: 15%). ¹H NMR (400 MHz, DMSO-d6, δ): 8.26 ppm (br-s, 2 H), 8.00-7.54 ppm (m, 23 H), 5.63 (d, J=12.5 Hz, 1 H), 5.11 (d, J=12.5 Hz, 1 H), 3.84 (t, J = 7.0 Hz, 4 H), 3.77 (m, 2 H), 3.3 (m, 2 H), 2.44 – 2.36(m, 4 H), 1.56 (m, 2H), 1.49 (m, 2 H), 1.47-1.40 (m, 2 H), 1.37 (m, 12 H), 1.21 (m, 2 H).

3

Figure S1. Excitation and emission spectra of MitDt compounds in methanol.

Figure S2. Hydrophobicity map and pH dependent solubility parameters of MitDt compounds: all the data were calculated using MarvinSpace. (ChemAxon)

Table S1. Comparison of chemical properties of various cyanine dye derivatives: All the parameters were calculated using the Marvin and JChem calculator plug-ins. (ChemAxon).

Properties	MitDt-1	MitDt-2	MitDt-3	MitDt-4	MitDt-5	MitDt-6
MW [Da]	1098.15	1142.05	1041.90	940.356	984.26	884.113
Net charge [pH 7.4]	+ 4	0	0	+ 4	0	0
Net charge [pH 5.5]	+ 4	0	0	+ 4	0	0
Net charge [pH 3.5]	+ 4	0	+ 2	+ 4	0	+ 2
Log P	5.52	11.55	13.12	3.99	10.31	11.58
Polarizability	122.74	117.64	109.09	115.05	110.04	101.59
Polar surface area [Å ²]	22.86	137.26	103.12	22.86	137.26	103.12
Hydrogen bonding donors / acceptors [pH 7.4]	1.95 / 7.05	1.95 / 21.05	1.95 / 17.05	1.95 / 1.05	1.95 / 15.05	1.95 / 11.05
Hückel molecular orbital π energy [pH 7.4]	59.38	77.19	71.50	59.38	77.19	71.50

Figure S3. Fluorescence lifetime of Pre-MitDt compounds at solid state.

Figure S4. Cellular uptake efficiency of MitDt compounds (10 μ M) in NCI-H460 (A), MCF-7 (B) cell lines after 3 h of uptake.

Figure S5. ROS production of brominated MitDt compounds (10 μ M) in MCF-7 cells compared to a non-treated group using 2',7'-Dichlorofluorescin diacetate (DCFH-DA) without laser, or after 5 min NIR laser irradiation. (100 mW/cm²)

Figure S6. Visualization of in vitro ROS production of brominated MitDt group (10 μ M) using DCFH-DA without laser in MCF-7, measured by confocal laser scanning microscopy. (Scale bar = 10 μ m)

Figure S7. Visualization of in vitro ROS production of brominated MitDt group (10 μ M) using DCFH-DA after 5 min NIR laser irradiation (100 mW/cm²) in MCF-7, measured by confocal laser scanning microscopy. (Scale bar = 10 μ m)

Figure S8. Cellular uptake mechanism of MitDt-1 in NCI-H460 (A) and MCF-7 (B) Cell lines determined using flow cytometry after pre-treatment with various agents: I) 37 °C, II) 4 °C, III) sulfobromophthalein (BSP, 250 mM, for 5 min), IV) 2-Deoxy-D-glucose (2-DG, $(150 \times 10^{-3} \text{ M}, 45 \text{ min})$, V) Chlorpromazine (CPZ, 30 μM, 1 h), VI) 5-(N-ethyl-N-isopropyl)-amiloride (EIPA, 20 μM, 1 h), VII) Hypertonic sucrose (HS, 0.4 M, 1 h), and VIII) Methyl-β-cyclodextrin (MβCD, 10 mM, 1 h).

Figure S10. ¹H NMR of MitDt-1.

Figure S11. HR-MS of MitDt-2.

Figure S12. ¹H NMR of MitDt-2.

Figure S13. HR-MS of MitDt-3.

Figure S14. ¹H NMR of MitDt-3.

Figure S15. HR-MS of MitDt-4.

Figure S16. ¹H NMR of MitDt-4.

Figure S17. HR-MS of MitDt-5.

Figure S18. ¹H NMR of MitDt-5.

Figure S19. HR-MS of MitDt-6.

Figure S21. Blood compatibility confirmation. The hemolytic activity assay was conducted using 5% horse blood agar plates treated with triton X-100, PBS, and MitDt-1 (100 μ M, 200 μ l in PBS). Triton X-100 was used as a negative control.

Figure S22. H&E staining images of extracted organs (heart, kidneys, spleen, lungs, and liver) treated with 100 μ M of MitDt-1 (200 μ l in PBS) after 24 h of injection (200x).

References

- [1] a) A. Punzi, M. Capozzi, V. Fino, C. Carlucci, M. Suriano, E. Mesto, E. Schingaro, E. Orgiu, S. Bonacchi, T. Leydecker, *J. Mater. Chem. C* 2016, *4*, 3138; b) E. A. Owens, H. Hyun, S. H. Kim, J. H. Lee, G. Park, Y. Ashitate, J. Choi, G. H. Hong, S. Alyabyev, S. J. Lee, *Biomed. Mater.* 2013, *8*, 014109.
- a) H. Hyun, M. W. Bordo, K. Nasr, D. Feith, J. H. Lee, S. H. Kim, Y. Ashitate, L. A.
 Moffitt, M. Rosenberg, M. Henary, *Contrast Media Mol. Imaging* 2012, *7*, 516.
- [3] A. Kaur, K. W. L. Brigden, T. F. Cashman, S. T. Fraser, E. J. New, Org. Biomol. Chem. 2015, 13, 6686.