Electronic Supplementary Information for

Deformylation Reaction-Based Probe for *in vivo* Imaging of HOCI

Peng Wei,[†] Wei Yuan,[†] Fengfeng Xue,[†] Wei Zhou,[†] Ruohan Li,[†] Datong Zhang, [‡] and Tao Yi^{*, †}

[†]Department of Chemistry and Collaborative Innovation Center of Chemistry for Energy Materials, Fudan University, 220 Handan Road, Shanghai 200433, China
[‡]Shandong Provincial Key Laboratory of Fine Chemicals, School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan 250353, Shandong, China

Content

1 Experiment Section	2
1.3 The synthesis of FDOCI-1	2
1.4 The synthesis of FDOCI-2	3
1.5 The synthesis of FDOCI-3	4
1.6 The synthesis of FDOCI-4	5
2 Additional tables	7
3 Additional images and figures	15
4 NMR and HRMS spectra	
5 References	35

1 Experiment Section

1.1 The synthesis of FDOCI-1

Scheme S1. The synthesis route of FDOCI-1.

To a stirred solution of dried DMF (0.5 mL) in 10 mL dichloromethane, thionyl chloride (1.78 g, 15 mmol, 4.0 eq) dissolved in 5 mL dichloromethane was added dropwise at room temperature. After addition the mixture was stirred at 60°C under nitrogen atmosphere for 15 minutes and evaporated on a rotary evaporator to afford the Vilsmeier-Haack Reagent.

To a solution of methylene blue (1.12 g, 3.75 mmol, 1.0 eq) in 5 mL of water, dichloromethane (10 mL) and Na₂CO₃ (1.59 g, 15.00 mmol, 4.0 eq) were added and the mixture was stirred at 40°C under nitrogen atmosphere. Sodium dithionite (2.61 g, 15.00 mmol, 4.0 eq) was dissolved in 5 mL water and injected to the solution directly using a syringe device. After addition the mixture was stirred at 40°C under nitrogen atmosphere until the solution became yellow (typically within 15-30 min). The dichloromethane layer was separated from water layer and dried with anhydrous sodium sulfate quickly. After sodium sulfate was removed by filtration, the solution was added dropwise to a mixture of Vilsmeier-Haack Reagent, DMAP (0.46 g, 3.75

mmol, 1.0 eq), Na_2CO_3 (1.19 g, 11.25 mmol, 3.0 eq) in 5 mL dichloromethane. After addition the mixture was stirred in an ice-water bath for 1 h and then at room temperature until the reaction completed as indicated by TLC analysis.

Removing the undissolved substance by filtration, the solution was poured into 200 mL of ice-water while stirring, and the resulting mixture was extracted with 3 × 100 mL portions of ethyl acetate. The combined extracts were washed with brine, dried over anhydrous sodium sulfate and evaporated on a rotary evaporator to afford a solid residue, which was purified by column chromatography (ethyl acetate/n-hexane = 1/5) to yield **FDOCI-1** as a white solid. Yield 0.53 g, 45%. M. p. 192.8 ~ 193.8°C; ¹H NMR (400 MHz, DMSO-d₆) δ 8.52 (s, 1H), 7.42 (d, *J* = 8.4 Hz, 1H), 7.29 (d, *J* = 8.8 Hz, 1H), 6.75 (d, *J* = 2.8 Hz, 1H), 6.76 - 6.66 (m, 3H), 2.90 (s, 12H). ¹³C NMR (100 MHz, DMSO-d₆) δ 160.97, 149.11, 148.84, 130.23, 129.47, 126.64, 125.66, 124.53, 122.70, 111.21, 110.54, 110.11, 109.64, 40.19. HRMS (ESI): [M + H]⁺ calcd for C₁₇H₂₀N₃OS: 314.1322; found: 314.1319.

1.2 The synthesis of FDOCI-2

Scheme S2. The synthesis route of FDOCI-2.

To a solution of methylene blue (5.00 g, 15.63 mmol, 1.0 eq) in 50 mL of water, dichloromethane (25 mL) and Na₂CO₃ (6.63 g, 62.52 mmol, 4.0 eq) were added and the mixture was stirred at 40°C under nitrogen atmosphere. Sodium dithionite (10.89 g, 62.52 mmol, 4 eq) dissolved in 70 mL water was injected to the solution directly

using a syringe device. After addition the mixture was stirred at 40°C under nitrogen atmosphere until the solution became yellow (typically within 15-30 min). The mixture was cooled with an ice-water bath, to which bis(trichloromethyl)carbonate (2.78 g, 9.38 mmol, 0.6 eq) in 20 mL of dichloromethane was added dropwise. After addition the mixture was stirred for another 1 h. The solution was poured into 200 mL of ice-water while stirring, and the resulting mixture was extracted with 3 × 100 mL portions of dichloromethane. The combined extracts were washed with brine, dried over anhydrous sodium sulfate and evaporated on a rotary evaporator then purified by column chromatography (ethyl acetate/n-hexane = 1/10) to yield **FDOCI-2** as a white solid. Yield 2.83 g, 52%. ¹H NMR (400 MHz, DMSO-d₆) δ 7.42 (d, *J* = 9.2 Hz, 2H), 6.78 (d, *J* = 2.8 Hz, 2H), 6.70 (dd, *J* = 8.8, 2.8 Hz, 2H), 2.92 (s, 12H). ¹³C NMR (100 MHz, CDCl₃) δ 149.97, 149.45, 134.09, 128.06, 110.85, 110.36, 77.37, 40.66. HRMS (ESI): [M + H]⁺ calcd for C₁₇H₁₉ClN₃OS: 348.0932; found: 348.0927.

1.3 The synthesis of FDOCI-3

Scheme S3. The synthesis route of FDOCI-3.

FDOCI-2 (1.0 g, 2.87 mmol, 1.0 eq), Na_2CO_3 (0.91 g, 8.61 mmol, 3.0 eq), DMAP (0.35 g, 2.87 mmol, 1.0 eq) were dissolved in 10 mL of methanol and the resulting mixture was stirred in an ice-water bath until the reaction completed as indicated by TLC analysis which was conducted at 1 h intervals.

The reaction mixture was poured into 200 mL of ice-water while stirring, and was extracted with 3×100 mL portions of ethyl acetate. The combined extracts were washed with brine, dried over anhydrous sodium sulfate and evaporated on a rotary

evaporator to afford a solid residue, which was purified by column chromatography (ethyl acetate/petroleum ether = 1/5) to yield **FDOCI-3** as a white solid. Yield 0.59 g, 60%. M. p. 155.3 ~ 156.0°C. ¹H NMR (400 MHz, DMSO-d₆) δ 7.30 (d, *J* = 8.4 Hz, 2H), 6.68 – 6.65 (m, 4H), 3.65 (s, 3H), 2.89 (s, 12H). ¹³C NMR (100 MHz, DMSO-d₆) δ 154.19, 148.60, 131.96, 127.61, 127.00, 110.94, 109.69, 53.03, 40.21. HRMS (ESI): [M + H]⁺ calcd for C₁₈H₂₂N₃O₂S: 344.1427; found: 344.1434.

1.4 The synthesis of FDOCI-4

Scheme S4. The synthesis route of FDOCI-4.

FDOCI-2 (1.0 g, 2.87 mmol, 1.0 eq), Na₂CO₃ (0.91 g, 8.61 mmol, 3.0 eq) were dissolved in 10 mL of dichloromethane, the resulting mixture was stirred in an ice-water bath. Dimethylamine (0.52 g, 11.48 mmol, 4.0 eq) in 5 mL of dichloromethane was added dropwise. After addition, the mixture was stirred at room temperature until the reaction completed as indicated by TLC analysis which was conducted at 1 h intervals.

The reaction mixture was poured into 200 mL of ice-water while stirring, and the resulting mixture was extracted with 3 × 150 mL portions of ethyl acetate. The combined extracts were washed with brine, dried over anhydrous sodium sulfate and evaporated on a rotary evaporator to afford an oily residue, which was purified by column chromatography (ethyl acetate/petroleum ether = 1/5) to yield **FDOCI-4** as a white solid. Yield 0.36 g, 35%. M. p. 154.7 ~ 155.3°C. ¹H NMR (400 MHz, DMSO-d₆) δ 7.42 (d, *J* = 8.8 Hz, 2H), 6.68 (d, *J* = 2.8 Hz, 2H), 6.63 (dd, *J* = 8.8, 2.8 Hz, 2H), 2.86 (s, 12H), 2.64 (s, 6H). ¹³C NMR (101 MHz, DMSO-d₆) δ 157.98, 147.78, 131.11, 129.81, 122.85, 111.40, 110.44, 40.30, 37.49. HRMS (ESI): [M + H]⁺ calcd for

 $C_{19}H_{25}N_4OS:$ 357.1744; found: 357.1757.

2 Additional tables

Sensitivity^c Selectivity^d Detection mechanisms Probes Absorbance change Detection limit/nM^b In vivo application 19-fold (10 μM HOCl / 10 μM 1079-fold (1.0 equiv) HKOCl-11 ---------ONOO-) 2-fold decrease (10 µM >20-fold (10 µM HOC1 / 100 µM HKOCl-2b² 908-fold (2.0 equiv) 18 --probe / 20 µM HOCl) ONOO⁻) Fluorescent imaging 83-fold (100 μ M HOCl / 100 μ M of HOCl in live Oxidation of substituted 358-fold (1.0 equiv) HKOCl-3³ Red shift <50nm 0.33 ONOO-) phenol analogues zebrafish embryos Fluorescent imaging of accumulated 36-fold over ONOO⁻ (5 μ M HOCl / FCN2⁴ 1643.4-fold (3.3 equiv) HOCl in specific 6.68 ---50 µM ONOO⁻) organelles using a zebrafish model Phenanthroimi 9.8-fold (ratio, 1509/I439, >5-fold (ratio, I509/I439, 300 µM dazole-Red shift > 20nm -----30 equiv) HOC1 / 300 µM H₂O₂) oxime5 Deoximation of >20-fold (20 µM HOC1 / 40 µM luminescent oximes 61-fold (20 equiv) Flu-1⁶ --------- H_2O_2) BOD-OXINE⁷ 9-fold (50 equiv) >5-fold (100 µM HOCl / 100 µM 17.7 ------

Table S1 Some recently published fluorescet probes based on different detection mechanism for HOCl imaging^a

					ONOO ⁻)	
	HCH ⁸	Blue shift 6 nm	58	14.1-fold (25 equiv)	>10-fold (250 µM HOCl / 250 µM •OH)	
	Cou-Rho- HOCl ⁹	> 200-fold increase (5 μM probe / 30 equiv HOCl)	52	> 50-fold (ratio, 1594/1473, 30 equiv)	>10-fold (ratio, I594/I473, 5 μM HOCl / 5 equiv 'OH)	
	Ru-Fc ¹⁰		38.6	60-fold (6.0 equiv)	>20-fold (60 µM HOCl / 60 µM •OH)	Fluorescent imaging of HOCl in daphnia magna and zebrafish
Chlorination of thioesters or amides	R19-S ^{11, 12}			> 50-fold (1.0 equiv)	>20-fold (10 μM HOCl / 200 μM •OH)	Fluorescent imaging of intestinal HOCl production in the drosophila system
	FBS ¹³	>5-fold increase (2 μM probe / 20 μM HOCl)	200	> 50-fold (9.5 equiv)	>20-fold (19 μΜ HOCl / 22 μΜ ΟΝΟΟ ⁻)	Fluorescent imaging of intestinal HOCl production in the drosophila system
	HySOx ¹⁴	>10-fold increase (5 μM probe / 5 μM HOCl)		> 50-fold (2.5 equiv)	10-fold over 'OH (5 μM HOC1/100 μM)	
Oxidation of thioethers to sulfonates or selenides to selenoxides	MMSiR ¹⁵	>10-fold increase (5 μM probe / 5 μM HOCl)		> 50-fold (1.0 equiv)	>20-fold (5 µM HOCl / 5 µM ONOO⁻)	Fluorescent imaging of HOCl generation in a PMA induced mouse peritonitis model
	MITO-TP ¹⁶		17.2	634-fold (20.0 equiv)	>50-fold (100 µM HOCl / 100 µM	Fluorescent imaging

					ONOO ⁻)	of LPS-dependent
						HOCl generation in
						inflammation tissues
						Fluorescent imaging
	LVCO TD16		10.6	(10, 0.11, (20, 0.11, 1.1))	${>}50\text{-}fold$ (100 μM HOCl / 100 μM	of LPS-dependent
	LYS0-1P ¹⁰		19.0	610-101d (20.0 equiv)	ONOO ⁻)	HOCl generation in
						inflammation tissues
	C) (1117	>5-fold increase (4 µM	10	> 50 (11/7.0	>20-fold (100 µM HOCl / 200 µM	
	CMIT	probe / 100 µM HOCl)	10	> 50-101d (7.0 equiv)	ONOO ⁻)	
						Fluorescent imaging
		Blue shift 42 nm	71	> 5-fold (5.0 equiv)	>5-fold (10 µM HOCl / 200 µM •OH)	of HOCl using fresh
	PIS ¹⁰					rat hippocampal
						slice
						Fluorescent imaging
	SeCy7 ¹⁹			19.4-fold (2.0 equiv)	4.8-fold over ¹ O ₂ (30 μM HOCl / 600 μM · OH)	of LPS and PMA
			310			induced HOCl
						production in living
						mice
						Fluorescent imaging
	NI-Se ²⁰		596	> 10-fold (10.0 equiv)	$>$ 10-fold (100 μM HOCl / 200 μM	of LPS induced
			586		ONOO ⁻)	HOCl production in
						living mice
	FO-PSe ²¹				> 10 fold (10 μ M HOCl / 100 μ M	Fluorescent imaging
			350	> 10-fold (1.0 equiv)	 2 10-1010 (10 μM HOCI / 100 μM ONOC=) 	of HOCl in
					01000)	zebrafish and mice

	PFOBT ₃₆ SeT BT ₅ Pdots ²²	Blue shift 42 nm	500	40-fold (ratio, 1540/1680, 250 μΜ HOCl)	>6-fold (100 μM HOCl / 1 mM •OH)	Fluorescent imaging of LPS-induced HOCl generation in peritonitis of living mice
	9-AEF ²³	>3-fold decrease (100 μM probe / 500 μM HOCl)	300	160-fold (1.0 equiv)	>100-fold 'OH (100 μM HOCl /100 μM)	
Cleavage of carbon- carbon double bonds	hCy3- csUCNP:Nd ²⁴	>10-fold decrease (probe 0.1 mg mL ⁻¹ / 20 μM HOCl at 550 nm)	500	>5-fold probe 0.1 mg mL ⁻¹ / 20 μ M at 550 nm	>5-fold •OH (20 μM HOCl /20 μM •OH)	Fluorescent imaging of λ-carrageenan induced HOCl generation in mouse model of arthritis
Deformylation reaction (this work)	FDOCI-1	577-fold increase (10 μM probe / 25 μM HOCl)	UV: 3.98 nM; FL: 2.62 nM	2068-fold (2.5 equiv)	313-fold •OH (25 µM HOCl /100 µM •OH)	Fluorescent and naked eye imaging of λ-carrageenan induced HOCl generation in mouse model of arthritis

^{*a*} If no actual data were provided in the references, data were estimated according to the original published figures.

^b Reported detection limit provided in the references.

^c Fluorescence intensity or emission ratio changes before and after treated with HOCl.

^{*d*} Fluorescence intensity or emission ratio changes before and after treated with HOCl.

	FDOCI-1	FDOCI-4
Identification code	mo_51231ba	mo_70223a
Empirical formula	C17 H19 N3 O S	C19 H24 N4 O S
Formula weight	313.41	356.48
Temperature	296(2) K	223(2) K
Wavelength	0.71073 Å	0.71073 Å
Crystal system	Monoclinic	Monoclinic
Space group	P 21/c	P2 ₁ /n
	a = 16.166(4) Å	a = 5.9414(11) Å
Unit cell dimensions	b = 8.073(2) Å	b = 15.879(3) Å
	c = 12.176(3) Å	c = 19.207(4) Å
Volume	1566.1(7) Å ³	1807.4(6) Å ³
Z	4	4
Density (calculated)	1.329 Mg/m ³	1.310 Mg/m ³
Absorption coefficient	0.212 mm ⁻¹	0.194 mm ⁻¹
F(000)	664	760
Crystal size	0.480 x 0.080 x 0.040 mm ³	0.380 x 0.280 x 0.080 mm ³
Theta range for data collection	2.557 to 27.411°.	1.666 to 27.613°.
Index ranges	-20<=h<=20, -10<=k<=8, -15<=l<=15	-7<=h<=7, -20<=k<=20, -15<=l<=24
Reflections collected	10950	13232
Independent reflections	3538 [R(int) = 0.0440]	4176 [R(int) = 0.0532]
Completeness to theta = 25.242°	99.4 %	99.5 %
Absorption correction	Semi-empirical from equivalents	Semi-empirical from equivalents
Max. and min. transmission	0.746 and 0.690	0.956 and 0.860
Refinement method	Full-matrix least-squares on F ²	Full-matrix least-squares on F ²
Data / restraints / parameters	3538 / 0 / 203	4176 / 0 / 233
Goodness-of-fit on F ²	1.005	1.010
Final R indices [I>2sigma(I)]	R1 = 0.0433, wR2 = 0.1016	R1 = 0.0461, wR2 = 0.0991
R indices (all data)	R1 = 0.0836, wR2 = 0.1188	R1 = 0.0791, wR2 = 0.1139
Extinction coefficient	n/a	0.0098(12)
Largest diff. peak and hole	0.191 and -0.202 e.Å ⁻³	0.257 and -0.236 e.Å ⁻³
Max. and min. transmission	0.746 and 0.690	

 Table S2 Crystal data and structure refinement details for FDOCI-1 and FDOCI-4

Concentration (µM)	Fluorescence Intensity
0	17
1	1324
5	9759
10	22090
25	35150

Table S3 Fluorescence responses of FDOCl-1 (10 μ M) toward different concentration of HOCl

Table S4 Fluorescence responses of **FDOCI-1** (10 µM) toward various ROS/RNS

	Concentration (µM)	Fluorescence Intensity
	25	<35
H_2O_2	50	<35
	100	<35
	25	<35
O_2^-	50	<35
	100	<35
	25	<35
t-BuOOH	50	<35
	100	<35
	25	<35
•ОН	50	39.5
	100	112.3
	25	<35
NO	50	<35
	100	<35
	25	<35
ONOO ⁻	50	<35
	100	<35
	25	<35
ROO [•]	50	<35
	100	<35
	25	37.25
t-BuOO•	50	62.25
	100	103.5

HOCI		
Concentration (µM)	Absorbance	
0	0.001	
1	0.118	
5	0.22	
10	0.322	
25	0.577	
35	0.696	

Table S5 Absorbance changes of FDOCl-1 (10 μ M) toward different concentration of HOCl

Table S6 Absorbance changes of FDOCl-1 (10 $\mu M)$ toward various ROS/RNS

	Concentration (µM)	Absorbance
H ₂ O ₂	25	< 0.005
	50	< 0.005
	100	< 0.005
O ₂ ⁻	25	< 0.005
	50	< 0.005
	100	< 0.005
t-BuOOH	25	< 0.005
	50	< 0.005
	100	< 0.005
•ОН	25	< 0.005
	50	< 0.005
	100	0.013
NO•	25	< 0.005
	50	< 0.005
	100	< 0.005
ONO0 ⁻	25	< 0.005
	50	< 0.005
	100	< 0.005
ROO•	25	< 0.005
	50	< 0.005
	100	< 0.005
t-BuOO•	25	< 0.005
	50	0.006
	100	0.01

Table S7 Other Photophysical Parameters of **FDOCI-1** before and after treated with HOCl^a

	$\varepsilon^{b} (M^{-1} \text{ cm}^{-1})$	$arPhi^{ m c}$	Brightness ^d (M ⁻¹ cm ⁻¹)
FDOCI-1 (10 μM)	100	-	-
FDOCI-1 (10 μ M) + HOCl (25 μ M) ^e	57,700	0.02	1154

^a The data was recorded in sodium phosphate buffer (10 mM, pH 7.2, 0.1% EtOH)

^b Molar absorption coefficient at 664 nm

^c Φ : absolute fluorescence quantum yield

^d Brightness = $\varepsilon \times \Phi$, at 664 nm²⁵

^e The data was recorded after 5 min

3. Additional images and figures

Fig. S2 HRMS analysis of FDOCI-1 after reacted with HOCl

Fig. S3 Fluorescence intensity change at 686 nm of (a) **FDOCI-2** and (b) **FDOCI-3** after adding 100 μ M HOCl with different reaction time compared with **FDOCI-1** (A: **FDOCI-2** only; from B to D: **FDOCI-2** + 100 μ M HOCl for 30 min, 60 min, 120 min; F: **FDOCI-3** only; from G to I: **FDOCI-3** + 100 μ M HOCl for 30 min, 60 min, 120 min; E: **FDOCI-1** + 1 μ M HOCl; probes using 10 μ M; sodium phosphate buffer (PBS), 10 mM, pH 7.2, 0.1% EtOH; $\lambda_{ex} = 620$ nm)

Fig. S4 Fluorescence intensity changes at 684 nm of **FDOCI-4** (10 μ M) after adding HOCl (25 μ M) with different reaction time (PBS, 10 mM, pH 7.2, 0.1% EtOH; $\lambda_{ex} = 620$ nm).

Fig. S5 Cyclic voltammograms of (a) dichloromethane (DCM), (b) FDOCI-1, (c) FDOCI-2, (d) FDOCI-3 and (e) FDOCI-4 in DCM medium. (Electrolyte: 0.1 M TBAPF6. Scan rate = 0.05V/s; initial scanning direction: from positive potential to negative potential; concentration c = 1 mM for each compounds)

Fig. S6 (a) Fluorescence spectra of FDOCI-1 (10 μ M) before/after adding 25 μ M HOCl with an excitation at 620 nm. (b) Absorption spectra of FDOCI-1 (10 μ M) before/after adding 35 μ M HOCl. (The data was recorded after 5 min in PBS (10 mM, pH 7.2, 0.1% EtOH); $\lambda_{ex} = 620$ nm).

Fig. S7 (a) Absorption spectra and (b) absorbance changes at 664 nm of FDOCI-1 (10 μ M) with increasing concentrations of HOC1. (The data was recorded after 5 min in PBS (10 mM, pH 7.2, 0.1% EtOH))

Fig. S8 Pseudo-first-order kinetic plot of the reaction of 10 μ M **FDOCI-1** to 25 μ M HOCl (PBS, 10 mM, pH 7.2, 0.1% EtOH; λ ex = 620 nm). Slop = -0.1011.

Fig. S9 Absorbance at 664 nm of FDOCl-1 (10 μ M) after adding various amino acids. From A to Q: Blank, Leu, Pro, Gly, Gln, Glu, Met, Lys, Trp, Ser, Thr, Asp, Ile, Val, His, Ala, HOCl. (The data was recorded after 5 min in PBS (10 mM, pH 7.2, 0.1% EtOH))

Fig. S10 (a and b) Absorbance at 664 nm of **FDOCI-1** (10 μ M) after adding various anions/cations. From A to K: Blank, CH₃COO⁻, CO₃^{2–}, SO₄^{2–}, Cl⁻, ClO₄⁻, F⁻, I⁻, NO₂⁻, S₂O₃^{2–}, HOCI; from L to S: Al³⁺, Ca²⁺, Cu²⁺, Fe³⁺, K⁺, Mg²⁺, NH₄⁺, Ni⁺. (The data was recorded after 5 min in PBS (10 mM, pH 7.2, 0.1% EtOH))

Fig. S11 Colour changes of FDOCl-1 (10 μ M) after adding different anions. (PBS 10 mM, pH 7.2, 0.1% EtOH)

Fig. S12 Colour changes of FDOCl-1 (10 μ M) after adding different cations. (PBS, 10 mM, pH 7.2, 0.1% EtOH)

Fig. S13 Colour changes of FDOCI-1 (10 µM) after adding various amino acids. (PBS, 10 mM, pH 7.2, 0.1% EtOH)

Fig. S14 Fluorescence intensity of FDOCI-1 (10 µM) at 686 nm toward HOCI (10 $\mu M)$ in the present of sulfhydryl compounds (a) GSH; (B) NAC and aldehydes (c)

HCHO; (d) Glucose. (The data was recorded after 5 min in sodium phosphate buffer (10 mM, pH 7.2, 0.1% EtOH); $\lambda_{ex} = 620$ nm)

Fig. S15 (a) Fluorescence intensity at 686 nm and (b) absorption strength at 664 nm of FDOCI-1 (10 μ M) changes with different pH before and after treated with 35 μ M HOCI. (The data was recorded after 5 min in PBS (10 mM, 0.1% EtOH); $\lambda_{ex} = 620$ nm)

Fig. S16 Fluorescence intensity of **FDOCI-1** (10 μ M) at 686 nm after adding various ROS/RNS (50 μ M) in the pH value of (a) 9.03 and (b) 4.52. From A to H: H₂O₂, O₂⁻, NO, 'OH, ONOO⁻, ROO', t-BuOOH, t-BuOO'. (The data was recorded after 5 min in PBS (10 mM, 0.1% EtOH); $\lambda_{ex} = 620$ nm)

Fig. S17 Fluorescence intensity changes at 686 nm of methylene blue (10 μ M), before (black)/after adding 200 μ M HOCl for different time (red: 20 min; blue: 40 min; magenta: 60 min) in Dulbecco's modified essential medium (RPMI 1640) and Dulbecco's Modified Eagle's medium (DMEM). ($\lambda_{ex} = 620$ nm)

Fig. S18 The cell viability of FDOCI-1 at different concentration (0, 5, 10, 15, 20, 25, 30, 35, 40 μ M) in RAW 264.7 macrophages cells for 6 h (black) and 12 h (red) measured by MTT assay.

Fig. S19 GLSM images of live RAW 264.7 macrophages. (a1, a2, a3) Cells were incubated with **FDOCI-1** (10 μ M) for 60 min and washed by PBS buffer. Cells were preincubated with **FDOCI-1** (10 μ M) for 60 min, washed by PBS buffer and incubated with HOCI (50 μ M: b1, b2, b3; 100 μ M: c1, c2, c3; 200 μ M: d1, d2, d3) for 10 min. (CLSM imaging was performed on an Olympus FV1000 confocal scanning system with a 60×immersion objective lens. Red channel: 700 ± 50 nm, λ ex = 633 nm)

Fig. S20 GLSM images of live RAW 264.7 macrophages. (a1, a2, a3) Cells were incubated with **FDOCI-1** (10 μ M) for 60 min and washed by PBS buffer. Cells were preincubated with probes, washed by PBS buffer and stimulated with LPS (1 μ g/mL)/PMA (250 ng/mL: b1, b2, b3; 500 ng/mL: c1, c2, c3) for 1 h. (CLSM imaging was performed on an Olympus FV1000 confocal scanning system with a 60×immersion objective lens. Red channel: 700 ± 50 nm, λ ex = 633 nm)

Fig. S21 Photostability of MB in live cells. Fluorescence images were taken by timesequential scanning of live RAW 264.7 macrophages preincubated with 5 μ M MB for 30 min. (CLSM imaging was performed on an Olympus FV1000 confocal scanning

system with a 60×immersion objective lens. Red channel: 700 ± 50 nm, $\lambda ex = 633$ nm)

Fig. S22 Photostability of Cy5 in live cells. Fluorescence images were taken by timesequential scanning of live RAW 264.7 macrophages preincubated with 5 μ M Cy5 for 30 min. (CLSM imaging was performed on an Olympus FV1000 confocal scanning system with a 60×immersion objective lens. Red channel: 700 ± 50 nm, λ ex = 633 nm)

Fig. S23 GLSM images of live RAW 264.7 macrophages preincubated with MB (10 μ M) for 30 min, washed by PBS buffer immediately (a1, a2, a3) and after 60 min (b1, b2, b3). (CLSM imaging was performed on an Olympus FV1000 confocal scanning system with a 60×immersion objective lens. Red channel: 700 ± 50 nm, λ ex = 633 nm)

Fig. S24 *In vivo* fluorescence imaging of the arthritis model.(arthritis model induced by injecting of different volume of λ -carrageenan, 5 mg/mL, in PBS into the right tibiotarsal ankles; the left tibiotarsal ankles as the control group without jnjection of λ carrageenan; the fluorescence signal was collected at $\lambda em = 720 \pm 60$ nm under excitation with 635 nm CW laser, power density is 0.3 mW cm⁻²; **FDOCI-1**, 100 µL, 1 mM)

4 NMR and HRMS spectra

Fig. S25 ¹H NMR of FDOCI-1 in DMSO-d6

Fig. S26 ¹³C NMR of FDOCI-1 in DMSO-d6

Fig. S27 HRMS of FDOCI-1

(

Fig. S29 ¹³C NMR of FDOCI-2 in CDCl₃

Fig. S31 ¹H NMR of FDOCI-3 in DMSO-d6

Fig. S32 ¹³C NMR of FDOCI-3 in DMSO-d6

Fig. S35 ¹³C NMR of FDOCI-4 in DMSO-d6

Fig. S36 HRMS of FDOCI-4

5 References

- Z.-N. Sun, F.-Q. Liu, Y. Chen, P. K. H. Tam and D. Yang, *Org. Lett.*, 2008, 10, 2171-2174.
- 2 J. J. Hu, N.-K. Wong, Q. Gu, X. Bai, S. Ye and D. Yang, *Org. Lett.*, 2014, **16**, 3544-3547.
- J. J. Hu, N.-K. Wong, M.-Y. Lu, X. Chen, S. Ye, A. Q. Zhao, P. Gao, R. Yi-Tsun Kao, J. Shen and D. Yang, *Chem. Sci.*, 2016, 7, 2094-2099.
- 4 Y. Zhou, J.-Y. Li, K.-H. Chu, K. Liu, C. Yao and J.-Y. Li, *Chem. Commun.*, 2012, **48**, 4677-4679.
- 5 W. Lin, L. Long, B. Chen and W. Tan, *Chem. Eur. J.*, 2009, **15**, 2305-2309.
- X. Cheng, H. Jia, T. Long, J. Feng, J. Qin and Z. Li, *Chem. Commun.*, 2011, 47, 11978-11980.
- 7 G. Wu, F. Zeng and S. Wu, *Anal. Methods.*, 2013, **5**, 5589-5596.
- 8 D. Li, Y. Feng, J. Lin, M. Chen, S. Wang, X. Wang, H. Sheng, Z. Shao, M. Zhu and X. Meng, *Sens. Actuators B: Chem.*, 2016, **222**, 483-491.
- 9 L. Yuan, W. Lin, Y. Xie, B. Chen and J. Song, *Chem. Eur. J.*, 2012, **18**, 2700-2706.
- 10 L. Cao, R. Zhang, W. Zhang, Z. Du, C. Liu, Z. Ye, B. Song and J. Yuan, *Biomaterials*, 2015, **68**, 21-31.
- X. Chen, K.-A. Lee, E.-M. Ha, K. M. Lee, Y. Y. Seo, H. K. Choi, H. N. Kim,
 M. J. Kim, C.-S. Cho, S. Y. Lee, W.-J. Lee and J. Yoon, *Chem. Commun.*,
 2011, 47, 4373-4375.
- 12 X. Chen, K.-A. Lee, X. Ren, J.-C. Ryu, G. Kim, J.-H. Ryu, W.-J. Lee and J. Yoon, *Nat. Protocols*, 2016, **11**, 1219-1228.
- 13 Q. Xu, K.-A. Lee, S. Lee, K. M. Lee, W.-J. Lee and J. Yoon, *J. Am. Chem. Soc.*, 2013, **135**, 9944-9949.
- S. Kenmoku, Y. Urano, H. Kojima and T. Nagano, J. Am. Chem. Soc., 2007, 129, 7313-7318.
- 15 Y. Koide, Y. Urano, K. Hanaoka, T. Terai and T. Nagano, *J. Am. Chem. Soc.*, 2011, **133**, 5680-5682.
- 16 L. Yuan, L. Wang, B. K. Agrawalla, S.-J. Park, H. Zhu, B. Sivaraman, J. Peng, Q.-H. Xu and Y.-T. Chang, J. Am. Chem. Soc., 2015, 137, 5930-5938.
- 17 G. Li, D. Zhu, Q. Liu, L. Xue and H. Jiang, Org. Lett., 2013, 15, 2002-2005.
- 18 Q. Xu, C. H. Heo, G. Kim, H. W. Lee, H. M. Kim and J. Yoon, Angew. Chem. Int. Ed., 2015, 54, 4890-4894.
- G. Cheng, J. Fan, W. Sun, J. Cao, C. Hu and X. Peng, *Chem. Commun.*, 2014, 50, 1018-1020.
- 20 Z. Lou, P. Li, Q. Pan and K. Han, *Chem. Commun.*, 2013, **49**, 2445-2447.
- 21 W. Zhang, W. Liu, P. Li, J. kang, J. Wang, H. Wang and B. Tang, *Chem. Commun.*, 2015, **51**, 10150-10153.
- 22 L. Wu, I. C. Wu, C. C. DuFort, M. A. Carlson, X. Wu, L. Chen, C.-T. Kuo, Y. Qin, J. Yu, S. R. Hingorani and D. T. Chiu, *J. Am. Chem. Soc.*, 2017, **139**, 6911-6918.

- 23 S. Chen, J. Lu, C. Sun and H. Ma, *Analyst*, 2010, **135**, 577-582.
- X. Zou, Y. Liu, X. Zhu, M. Chen, L. Yao, W. Feng and F. Li, *Nanoscale*, 2015, 7, 4105-4113.
- 25 Y. Zhang, S. Swaminathan, S. Tang, J. Garcia-Amorós, M. Boulina, B. Captain, J. D. Baker and F. M. Raymo, *J. Am. Chem. Soc.*, 2015, **137**, 4709-4719.