Supporting information

Identification of a Staphylococcal Complement Inhibitor with broad host specificity in equid *S. aureus* strains

Nienke W.M. de Jong^{1*}, Manouk Vrieling^{1,2*}, Brandon L. Garcia³, Gerrit Koop⁴, Matt Brettmann³, Piet C. Aerts¹, Maartje Ruyken¹, Jos A. G. van Strijp¹, Mark Holmes⁵, Ewan M. Harrison⁶, Brian V. Geisbrecht^{3#} and Suzan H.M. Rooijakkers^{1#,\$}

From ¹Dept. of Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands;

²The Roslin Institute, University of Edinburgh, Easter Bush Campus, Midlothian EH25 9RG, UK;

³Dept. of Biochemistry & Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA;

⁴Dept. of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;

⁵Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; ⁶Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK

Running title: Identification of staphylococcal equine SCIN

^{\$} Author to whom correspondence should be addressed: Suzan H.M. Rooijakkers; E-mail s.h.m.rooijakkers@umcutrecht.nl; Department of Medical Microbiology, University Medical Center Utrecht and Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, the Netherlands Tel. +31 (0)887559962

Keywords: Complement system, Equine, Host adaptation, Immune evasion, SCIN

This file contains one Supplemental Table, as well as three Supplemental Figures and their legends

Figure S1. Representative flow plots for C3b deposition with equine serum. (A) Representation of gating *S. aureus* Wood in each well. (B-E) Detection of surface-bound C3b with anti-C3 conjugated with FITC and measured by flow cytometry analysis as geometric mean fluorescence of the gated bacteria after addition of various concentrations of equine serum. (F) 10% HI serum does show any C3b deposition, by the lack of FITC signal.

Figure S2. HI serum lacks ability to lyse erythroyctes compared to normal serum. The serum of the different animals used in Figure 5D were heat-inactivated and tested in the hemolysis assay. The complement in the sera of all animals lacked activity to lyse erythrocytes, while normal serum had active complement to lyse the erythrocytes.

Figure S3. Protein gel with purified proteins used in this paper. Purified SCIN-A without his tag (lane 1) was used in the phagocytosis assay, while the his-tagged protein was used for the C3b deposition and hemolysis assay (lane 2). The protein in lane 3 is eqSCIN with non-cleavable 6xHis tag. The concentration of the proteins is $150 \mu g/ml$.

					scn-eq									lukPQ		_
						SNPs							INS	_		
Strain ID	CC	Country	Host species	Location	Identity (%)	75 ^{ns}	103 ^{ns}	157 ^{ns}	189 ^s	198 ^{ns}	254 ^{ns}	318 ^s	87	lukP	lukQ	Reference
KM595-06		1 Switzerland	Horse	Prophage	98,26	51 G	А	G	Α	С	G	т		+	+	Sieber et al. 2011 (34)
KM777-07		1 Switzerland	Horse	Prophage	98,26	51 G	А	G	Α	С	G	т		+	+	Sieber et al. 2011 (34)
KM489-05		1 Switzerland	Horse	Prophage	98,26	51 G	А	G	Α	С	G	т		+	+	Sieber et al. 2011 (34)
m-25-21 2.3		1 United Kingdom	Cow	Prophage	98,26	51 G	А	G	Α	С	G	т		+	+	Koop et al. 2017 (14)
m-25-21 2.11		1 United Kingdom	Cow	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
8205		1 United Kingdom	Horse	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
1928		1 United Kingdom	Horse	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
8231		1 United Kingdom	Horse	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
8182		1 United Kingdom	Horse	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
VetBz55B	1	.33 Brazil	Buffalo	Chromosome	10	0 Т	G	А	т	G	А	т		+	+	Aires-de-Sousa et al. 2007 (37)
VetBz63	1	.33 Brazil	Buffalo	Chromosome	10	о т	G	А	т	G	А	т		+	+	Aires-de-Sousa et al. 2007 (37)
c3388	1	.33 Tunisia	Donkey	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c3401	1	.33 Tunisia	Donkey	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c3403	1	.33 Tunisia	Donkey	Prophage	10	о т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c4439	1	.33 Tunisia	Donkey	Prophage	10	о т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c4444	1	.33 Tunisia	Donkey	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c4445	1	.33 Tunisia	Donkey	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c4451	1	.33 Tunisia	Donkey	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c4452	1	.33 Tunisia	Donkey	Prophage	10	о т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
c3815	1	.33 Tunisia	Goat	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Gharsa et al. 2012 (35)
7107	1	.33 United Kingdom	Horse	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Koop et al. 2017 (14)
7540	1	.33 United Kingdom	Horse	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Koop et al. 2017 (14)
5431	1	.33 United Kingdom	Horse	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Koop et al. 2017 (14)
8401	1	.33 United Kingdom	Horse	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Koop et al. 2017 (14)
3711	1	.33 United Kingdom	Horse	Prophage	10	0 Т	G	А	т	G	А	т		+	+	Koop et al. 2017 (14)
8572	3	50 United Kingdom	Horse	Prophage	98,26	51 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
3507	5	22 United Kingdom	Horse	Prophage	99,4	2 T	G	А	А	G	А	С		+	+	Koop et al. 2017 (14)
8571	5	22 United Kingdom	Horse	Prophage	98,26	1 G	А	G	А	С	G	т		+	+	Koop et al. 2017 (14)
KM1549-2-06	16	60 Switzerland	Horse	Prophage	95,76	3 G	A	G	A	С	G	т	AAAG	C. +	+	Sieber <i>et al.</i> 2011 (34)
																20

Supplementary table 1: scn-eq is present in Staphylococcus aureus strains from different clonal complexes (CC) and different countries. For scn-eq, the gene location (prophage/chromosome), % identity to the reference (3711), single nucleotide polymorphisms (SNPs) and insertions (INS) are indicated. Furtermore, the presence of lukPQ and other scns are reported.

¹⁵ = non-synonymous

^s = synonymous