Nickel-Catalyzed Enantioselective Cross-Coupling of N-Hydroxyphthalimide Esters with Vinyl Bromides

Naoyuki Suzuki[‡], Julie L. Hofstra[‡], Kelsey E. Poremba, and Sarah E. Reisman*

The Warren and Katharine Schlinger Laboratory for Chemistry and Chemical Engineering Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125

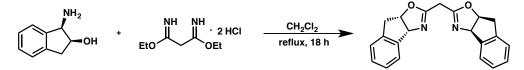
*reisman@caltech.edu

Supporting Information

Table of Contents

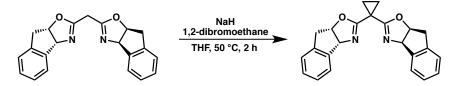
1. Materials, Methods, and Abbreviations	S2
2. Nickel(II) Complex Preparation	S3
3. Large Scale Preparation of TDAE	S7
4. Optimization of Reaction Parameters	S11
5. Substrate Preparationa. NHP Estersb. Vinyl Bromides	S12
 6. Vinyl Bromide-NHP Ester Cross-Coupling	S25 S26 .S26 S27
7. References	S61
8. Chiral SFC Traces	S62
9. X-ray Coordinate Tables for 4b	S90
10. ¹ H NMR and ¹³ C NMR Spectra	S101

1. Materials and Methods


Unless otherwise stated, reactions were performed under a nitrogen atmosphere using freshly dried solvents. Tetrahydrofuran (THF), methylene chloride (CH₂Cl₂), diethyl ether (Et₂O), and toluene (PhMe) were dried by passing through activated alumina columns. Trimethylsilyl chloride (TMSCl) was distilled over calcium hydride. Trimethylsilyl bromide (TMSBr) and anhydrous dimethylacetamide (DMA) were purchased from Aldrich and stored in the glovebox. Manganese powder (-325 mesh, 99.3%) was purchased from Alfa Aesar. Zinc dust (97.5%) and nickel(II) chloride (NiCl₂) were purchased from Strem. Tetrakis(dimethylamino)ethylene (TDAE) was purchased from TCI and stored in the glovebox. Unless otherwise stated, chemicals were used as received. All reactions were monitored by thin-layer chromatography (TLC) using EMD/Merck silica gel 60 F254 pre-coated plates (0.25 mm) and were visualized by ultraviolet (UV) light or with cerium ammonium molybdate (CAM) staining. Flash column chromatography was performed as described by Still et al.¹ using silica gel (230-400 mesh) purchased from Silicycle or 10% AgNO₃ doped silica gel (+230 mesh) purchased from Sigma Aldrich. Optical rotations were measured on a Jasco P-2000 polarimeter using a 100 mm path-length cell at 589 nm. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD with Prodigy cyroprobe (at 400 MHz and 101 MHz, respectively), a Varian 400 MR (at 400 MHz and 101 MHz, respectively), or a Varian Inova 500 (at 500 MHz and 126 MHz, respectively). ¹H and ¹⁹F NMR spectra were also recorded on a Varian Inova 300 (at 300 MHz and 282 MHz, respectively). NMR data is reported relative to internal CHCl₃ (¹H, δ = 7.26), CDCl₃ (¹³C, δ = 77.1), C₆F₆ (¹⁹F, $\delta = -164.9$), CH₃C₆D₅ (¹H, $\delta = 2.09$), and CD₃C₆D₅ (¹³C, $\delta = 20.4$). Data for ¹H NMR spectra are reported as follows: chemical shift (δ ppm) (multiplicity, coupling constant (Hz), integration). Multiplicity and qualifier abbreviations are as follows: s = singlet, d = doublet, t = triplet, q =quartet, m = multiplet. IR spectra were recorded on a Perkin Elmer Paragon 1000 spectrometer and are reported in frequency of absorption (cm^{-1}) . Analytical chiral SFC was performed with a Mettler SFC supercritical CO₂ chromatography system with Chiralcel AD-H, OD-H, AS-H, OB-H, and OJ-H columns (4.6 mm x 25 cm). LRMS were obtained using an Aglient 1290 Infinity/6140 Quadrupole system (LC-MS) or an Agilent 7890A GC/5975C VL MSD system (GC-MS). HRMS were acquired from the Caltech Mass Spectral Facility using fast-atom bombardment (FAB), electrospray ionization (ESI-TOF), or electron impact (EI). X-ray diffraction and elemental analysis (EA) were performed at the Caltech X-ray Crystal Facility.

Commonly Used Abbreviations:

ee – enantiomeric excess; EA – elemental analysis; Et_2O – diethyl ether; EtOAc – ethyl acetate; FTIR – Fourier transform infrared; HRMS – high-resolution mass spectrometry; IPA – isopropanol; LRMS – low-resolution mass spectrometry; m.p. – melting point; NHP – Nhydroxyphthalimide; NMR – nuclear magnetic resonance; R_f – retention factor; SFC – supercritical fluid chromatography; TDAE – tetrakis(dimethylamino)ethylene


2. Nickel(II) Complex Preparation

Bis((3aR,8aS)-3a,8a-dihydro-8H-indeno[1,2-d]oxazol-2-yl)methane (S1)

According to a procedure by Snyder and coworkers,² the (1R,2S)-(+)-*cis*-1-amino-2-indanol (4.70 g, 31.5 mmol, 2.1 equiv) and diethyl malonimidate dihydrochloride (3.47 g, 15 mmol, 1 equiv) were added to a flame-dried 1 L round bottom flask fitted with a reflux condenser and a magnetic stir bar, and put under an inert atmosphere (N₂). Then CH₂Cl₂ (360 mL) was added and the solution was heated at 45 °C for 18 hours. The reaction was cooled, then quenched with water (690 mL). The layers were separated, the aqueous layer was extracted with CH₂Cl₂ (4 x 180 mL), and the combined organic layers were dried with MgSO₄, filtered, and concentrated. The crude material was purified by recrystallization from cooling hot ethanol to yield 3.30 g (67% yield) of **S1** as a white solid. Spectral data matched those reported in literature.²

(3a*R*,3a'*R*,8a*S*,8a'*S*)-2,2'-(Cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8*H*-indeno[1,2-*d*]oxazole) (L)

According to a procedure by Sibi and coworkers,³ the bis(oxazoline) ligand **S1** (1.65 g, 5 mmol, 1 equiv) was added to a flame-dried 200 mL round bottom flask with a magnetic stir bar and put under an inert atmosphere (N₂). The compound was dissolved in THF (25 mL) and cooled to 0 °C before *dry* sodium hydride (60 wt% in mineral oil, 601 mg, 15 mmol, 3 equiv) was added in

portions. *Note: Wet NaH resulted in saponification of the oxazoline, which could be removed by column chromatography (silica, 10% MeOH/CH₂Cl₂).* The solution was allowed to stir for 30 minutes before 1,2-dibromoethane (517 μ L, mmol, 1.2 equiv) was added dropwise over the course of 10 minutes. The reaction was warmed to 50 °C and stirred for 2 hours. *Note: Aliquots could be monitored by* ¹*H NMR to ensure complete conversion of the starting material.* The reaction was quenched with aqueous NH₄Cl (25 mL) and extracted with CH₂Cl₂ (2 x 85 mL). The combined organic layers were dried with Na₂SO₄, filtered, and concentrated under reduced pressure. The crude material was purified by recrystallization from cooling hot ethanol to yield 1.46 g (82% yield) of L as a light tan solid. Spectral data matched those reported in literature.³

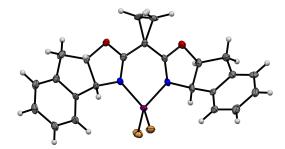
Nickel(II) bis(bromide) (3a*R*,3a'*R*,8a*S*,8a'*S*)-2,2'-(cyclopropane-1,1-diyl)bis(3a,8a-dihydro-8*H*-indeno[1,2-*d*]oxazole) (4b)

Similar to a procedure reported by Evans and coworkers,⁴ the bis(oxazoline) ligand L (1.07 g, 3.0 mmol, 1 equiv) and anhydrous nickel(II) bromide (655 mg, 3.0 mmol, 1 equiv) were added to a round bottom flask equipped with a magnetic stir bar and dissolved in a mixture of acetonitrile (CH₃CN, 65 mL) and water (0.75 mL). The solution was heated to 80 °C for 6 hours to afford a dark purple solution. The reaction was concentrated under reduced pressure and the obtained solid was saturated in CH₂Cl₂, filtered through a plug of cotton, dispensed into four 20 mL scintillation vials, and recrystallized by vapor diffusion (CH₂Cl₂/pentane) to afford dark purple crystals suitable for X-ray diffraction. For the isolation of **4b**, the crystals were washed with hexane, which was added by pipet and subsequently removed. The crystals were removed with a spatula, transferred to a new vial, and crushed to provide a powder. The resulting complex was dried under vacuum to yield 1.6 g (91% yield) of **4b** as a purple solid.

m.p. = >300 °C

¹H NMR (400 MHz, CDCl₃): δ 96.48 (s, 2H), 46.46 (s, 2H), 20.16 (d, *J* = 17.1 Hz, 2H), 11.67 – 10.85 (m, 6H), 10.55 (d, *J* = 16.6 Hz, 2H), 6.96 (s, 2H), 5.40 (s, 2H), -0.65 (s, 2H). FTIR (NaCl, thin film, cm⁻¹): 3333, 2222, 1660, 1479, 1461, 1444, 1427, 1312, 1247, 1227,

1214, 1120, 1010, 911, 859, 758, 728.


EA: Anal. Calc'd. for **4b**, C₂₃H₂₀Br₂N₂NiO₂ (%): C, 48.05; H, 3.51; N, 4.87. Found: C, 48.38; H, 3.54; N, 4.84.

(Left) Crystallized 4b following vapor diffusion. (Center) Large crystals of 4b. (Right) The powdered form of 4b after crushing the crystals with a spatula and drying under vacuum.

X-Ray Structure Determination

Low-temperature diffraction data (ϕ - and ω -scans) were collected on a Bruker AXS KAPPA APEXII diffractometer coupled to a CCD detector with Mo- K_{α} radiation ($\lambda = 0.71073$ Å) from a fine-focus sealed X-ray tube. All diffractometer manipulations, including data collection integration, and scaling were carried out using the Bruker APEXII software.⁵ Absorption corrections were applied using SADABS.⁶ The structure was solved by intrinsic phasing using SHELXT⁷ and refined against F^2 on all data by full-matrix least squares with SHELXL-2014⁷ using established refinement techniques.⁸ All non-hydrogen atoms were refined anisotropically. All hydrogen atoms were included into the model at geometrically calculated positions and refined using a riding model. Compound **4b** crystallizes in the tetragonal space group $P4_1$ with one molecule in the asymmetric unit. The structure was solved as a merohedral twin with rotation around an axis 45° between a and b. The twin law was defined as the matrix (0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, -1.0). The BASF parameter [0.4980(14)] gave the twin ratio as 0.50:0.50. Absolute configuration was determined by anomalous dispersion (Flack = 0.011(2)).⁹ Crystallographic data for 4b can be obtained free of charge from The Cambridge Crystallographic Data Centre (CCDC) via www.ccdc.cam.ac.uk/data request/cif under CCDC deposition number 1501744. Graphical representation of the structure with 50% probability thermal ellipsoids was generated using Mercury visualization software.

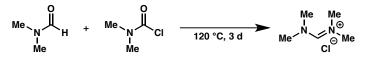


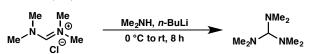
Table S1. Crystal data and structure refinement for 4b.

Identification code	JLH-3-168		
Empirical formula	$C_{23}H_{20}Br_2N_2NiO_2$		
Formula weight	574.94		
Temperature	100 K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	P41		
Unit cell dimensions	a = 9.4823(6) Å	α= 90°.	
	b = 9.4823(6) Å	β= 90°.	
	c = 24.418(2) Å	$\gamma = 90^{\circ}$.	
Volume	2195.5(3) Å ³		
Ζ	4		
Density (calculated)	1.739 Mg/m ³		
Absorption coefficient	4.546 mm ⁻¹		
F(000)	1144		
Crystal size	0.31 x 0.27 x 0.14 mm ³		
Theta range for data collection	0.834 to 38.918°.		
Index ranges	-16<=h<=16, -16<=k<=16, -42<=l<=43		
Reflections collected	113308		
Independent reflections	12464 [R(int) = 0.0431]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7476 and 0.5466		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	12464 / 1 / 272		
Goodness-of-fit on F ²	1.056		
Final R indices [I>2sigma(I)]	R1 = 0.0470, wR2 = 0.1114		
R indices (all data)	R1 = 0.0580, wR2 = 0.1168		
Absolute structure parameter	0.011(2)		
Extinction coefficient	n/a		
Largest diff. peak and hole	2.381 and -1.019 e.Å ⁻³		

3. Large Scale Preparation of TDAE

N,N,N',N'-tetramethylformamidinium chloride (S2)

According to a procedure by Bestmann and coworkers,¹⁰ the dimethylcarbamyl chloride (500 mmol, 46 mL, 1 equiv) and anhydrous dimethylformamide (DMF, 1 mol, 77 mL, 2 equiv) were added under an inert atmosphere (N₂) to a flame-dried 500 mL round bottom flask fitted with a reflux condenser and a magnetic stir bar. The solution was heated to 120 °C for 3 days, during which the reaction remained a homogeneous solution and turned dark brown in color. The reaction was removed from the stir plate and allowed to cool to room temperature, which initiated crystallization of the formamidinium chloride salt. Anhydrous diethyl ether (200 mL) was added to the crude reaction, swirled vigorously, quickly transferred to a fritted glass funnel, and filtered under a cone of argon gas. The crystals were quickly transferred to a round bottom flask and dried overnight under vacuum to yield 60.3 g (88% yield) of N,N,N',N' tetramethyl-formamidinium chloride as a tan solid. The product is *extremely* hygroscopic, thus it was stored in the glovebox away from ambient moisture.

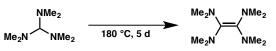


(Left) Reaction after heating for 3 days. (Center) Precipitated salt after cooling the reaction flask. (Right) Filtering the salt under a flow of argon.

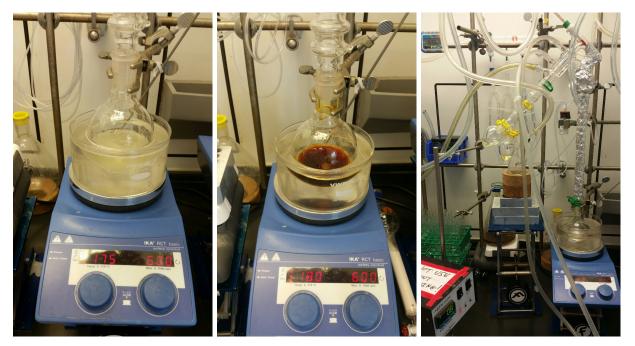
(Left) Drying the salt under vacuum. (Right) Dried formamidinium salt stored in the glovebox.

Tris(dimethylamino)methane (S3)

Similar to a procedure by Wasserman and coworkers,¹¹ anhydrous diethyl ether (500 mL) and dimethylamine (440 mL, 2 M in THF, 369 mmol, 2 equiv) were added under an inert atmosphere (N₂) to a flame-dried 2 L round bottom flask with a magnetic stir bar. The reaction was cooled to -78 °C and n-butyllithium (n-BuLi, 210 mL, 2.5 M in hexane, 295 mmol, 1.2 equiv) was added via cannula under a stream of N2, resulting in a pink homogenous solution. The reaction was warmed to room temperature and stirred for 30 min, forming a white slurry. The flask was cooled to 0 °C, the N,N,N',N'-tetramethylformamidinium chloride (60.3 g, 246 mmol, 1 equiv) was quickly added, and the reaction was warmed to room temperature and stirred overnight for 8 h forming a light brown slurry. The flask was fitted with a distillation head and reflux condenser, and the solvent was distilled off into a 2 L receiving flask under ambient pressure. The flask was cooled and a new collection flask was added along with a vacuum regulator. The desired product was distilled out of the crude residue by slowly decreasing the pressure of the vacuum regulator to 1 mm Hg while increasing the oil bath temperature upwards of 100 °C. The liquid collected in the trap was THF, whereas the liquid collected in the receiving flask yielded 45.2 g (71% yield) of tris(dimethylamino)methane as a colorless oil. ¹H NMR (300 MHz, **CDCl₃**): δ 3.02 (s, 1H), 2.29 (s, 18H). ¹³C NMR (101 MHz, CDCl₃): δ 100.3, 41.3.



(Left) Dimethylamine in THF added to 500 mL of diethyl ether. (Center) Reaction flask cooled to −78 °C and *n*-butyllithium solution added via cannula. (**Right**) Warming the reaction to room temperature forms a white slurry.



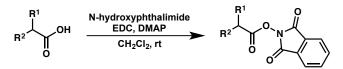
(Left) Formamidinium chloride added to lithium dimethylamide at 0 °C, followed by warming to room temperature. (Center) Fractional distillation to remove solvent. (Right) Vacuum distillation to afford tris(dimethylamino)methane; an ice bath is used to cool the receiving flask.

Tetrakis(dimethylamino)ethylene (S4)

Similar to a procedure by Murphy and coworkers,¹² the tris(dimethylamino)methane was added to a 250 mL flame-dried round bottom flask fitted with a reflux condenser and a magnetic stir bar, and sparged with argon for 15 minutes. The reaction was heated to reflux for 5 days at 180 °C while being maintained under a steady stream of dry argon. The reaction was cooled to room temperature and remained under an argon atmosphere while the flask was fitted with a distillation apparatus (also under an argon atmosphere). The product was purified via fractional distillation under reduced pressure with the aid of a Vigreux column. The remaining tris(dimethylamino)methane starting material was collected in the first fraction at 1 mm Hg and 30 °C as a colorless oil. When a yellow-green oil began to collect in the receiving flask, the fractions were exchanged and the desired product was collected at 1 mm Hg and 65 °C to yield 19.4 g (62% yield) of tetrakis(dimethylamino)ethylene as a yellow-green oil. Spectra matched those reported in literature¹² and also matched a sample of the commercially available material. The reagent was stored under inert atmosphere (N₂) in the glovebox. ¹H NMR (400 MHz, C₆D₅CD₃): δ 2.57 (s, 24H). ¹³C NMR (101 MHz, C₆D₅CD₃): δ 131.5, 41.2.

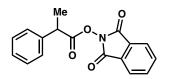
(Left) Reaction heated to 180 °C. (Center) Reaction after 5 days at 180 °C. (Right) Fractional vacuum distillation to afford tetrakis(dimethylamino)ethylene.

4. Optimization of Reaction Parameters (Table 1)


On a bench-top to a 1 dram vial equipped with a stir bar was added vinyl bromide **1a** (43 mg, 0.2 mmol, 1 equiv), NHP ester **2** (59 mg, 0.2 mmol, 1 equiv), **4a** or **4b** (0.00–0.02 mmol, 0.00–0.10 equiv), reductant (if Mn or Zn, 0.6 mmol, 3 equiv), and sodium iodide (0.0–15.0 mg, 0.0–0.1 mmol, 0.0–0.5 equiv). Under an inert atmosphere in a glovebox, the vial was charged with DMA (0.2 mL, 1.0 M), the reagents were stirred until dissolved, and then cooled to the desired temperature. The reductant was then added (if tetrakis(dimethylamino)ethylene, TDAE, 0.3–0.6 mmol, 70–140 μ l, 1.5–3 equiv). The reaction was stirred for 10 minutes before the trimethylsilyl chloride (TMSCl) or trimethylsilyl bromide (TMSBr) was added (0.0–0.2 mmol, 0–1 equiv). The vial was sealed with a screw cap and stirred for 16 hours. As the reaction proceeds, the TDAE salts begin to precipitate, forming an orange slurry. The vial was removed from the glovebox and dibenzyl ether was added as an internal standard. The solution was quenched with aqueous HCl, extracted with Et₂O, dried with MgSO₄, and concentrated to afford the crude reaction yield and enantioselectivity of the desired product.

PMP ^^ 1a	Br + NHP Me 4b (10 mol %) TDAE (1.5 equiv) Ph Nal (0.5 equiv) TMSBr (1.0 equiv) DMA, -7 °C, 16 h	► _{PMP} ∕>	Me Ph a
Entry	Deviation from Standard Conditions ^a	yield (%) ^b	ee (%) ^c
1		80	96
2	no Nal	68	95
3	no TDAE	0	
4	no L·NiBr ₂ (4b)	0	
5	TMSCI instead of TMSBr	67	95
6	0.2 M instead of 1.0 M	82	96
7	MeCN instead of DMA	30	99
8	propylene carbonate instead of DMA	43	95
9	+ 50 mol % BHT ^{<i>d</i>}	80	96
10	+ 50 mol % DHA <i>^e</i>	73	95
11	NiBr ₂ ·diglyme and dtbbpy instead of 4b	59	

Table S2. Other Optimization Controls


^aReactions conducted on 0.2 mmol scale under N₂ with 1.0 equiv of each electrophile. ^bDetermined by ¹H NMR versus an internal standard. ^cDetermined by SFC using a chiral stationary phase. ^d3,5-di-*tert*-butyl-4-hydroxytoluene. ^e9,10-dihydroanthracene. PMP = *para*-methoxyphenyl 5. Substrate Preparation (Note: These conditions are not fully optimized.)

a. General Procedure 1: NHP Ester Synthesis

To a round bottom flask equipped with a magnetic stir bar was added the carboxylic acid (1.0 equiv), N-hydroxyphthalimide (1.0 equiv), and 4-dimethylaminopyridine (DMAP, 0.10 equiv). The reagents were dissolved in CH_2Cl_2 (0.2 M) and the N-(3-dimethylaminopropyl)-N-ethylcarbodiimide (EDC, 1.1 equiv) was added. The reaction continued to stir overnight at room temperature. The crude reaction was concentrated to afford a thick oil, which was purified by column chromatography (silica, EtOAc/hexane or CH_2Cl_2) to afford the desired product.

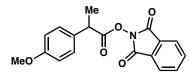
1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2)

Prepared from 2-phenylpropanoic acid (5.0 g, 33.3 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with CH_2Cl_2 as the eluent to yield 8.7 g (88%)

yield) of **2** as a white solid.

 $\mathbf{R}_{f} = 0.28$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 62–64 °C


¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (d, J = 5.5, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.43 – 7.37 (m, 4H), 7.37 – 7.30 (m, 1H), 4.13 (q, J = 7.2 Hz, 1H), 1.68 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.9, 161.9, 138.5, 134.9, 129.02, 128.98, 127.9, 127.7, 124.0, 43.1, 19.1.

FTIR (NaCl, thin film, cm⁻¹): 1810, 1785, 1743, 1466, 1453, 1358, 1186, 1123, 1043, 1028, 877, 695.

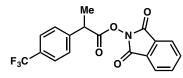
HRMS (ESI-TOF, m/z): calc'd for C₁₇H₁₃NO₄ [M+H]⁺: 296.0923; found: 296.0903.

1,3-dioxoisoindolin-2-yl 2-(4-methoxyphenyl)propanoate (6a)

Prepared from 2-(4-methoxyphenyl)propanoic acid (500 mg, 2.77 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 30%

EtOAc/hexane as the eluent to yield 671 mg (74% yield) of 6a as a white solid.

 $\mathbf{R}_f = 0.22$ (silica gel, 20% EtOAc/hexane, UV).


m.p. = 91–92 °C

¹H NMR (400 MHz, CDCl₃): δ 7.86 (dd, J = 5.5, 3.1 Hz, 2H), 7.77 (dd, 2H), 7.33 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.8 Hz, 2H), 4.08 (q, J = 7.2 Hz, 1H), 3.81 (s, 3H), 1.65 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 171.1, 162.0, 159.2, 134.9, 130.5, 129.0, 128.8, 124.0, 114.4, 55.4, 42.2, 19.2.

FTIR (NaCl, thin film, cm⁻¹): 1810, 1784, 1743, 1611, 1513, 1467, 1371, 1249, 1185, 1123, 1045, 1033, 878, 832, 696.

HRMS (ESI-TOF, *m/z*): calc'd for C₁₈H₁₅NO₅ [M+H]⁺: 326.1028; found: 326.1022.

1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)phenyl)propanoate (6b)

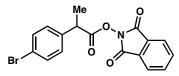
Prepared from 2-(4-(trifluoromethyl)phenyl)propanoic acid (200 mg, 0.92 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 30%

EtOAc/hexane as the eluent to yield 290 mg (87% yield) of **6b** as a yellow solid.

 $\mathbf{R}_f = 0.28$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 76–77 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 (dd, *J* = 5.6, 3.2 Hz, 2H), 7.78 (dd, *J* = 5.5, 3.1 Hz, 2H), 7.66 (d, *J* = 7.8 Hz, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 4.19 (q, *J* = 7.2 Hz, 1H), 1.69 (d, *J* = 7.2 Hz, 3H).


¹³**C** NMR (101 MHz, CDCl₃): δ 170.3, 161.9, 142.4 (q, $J_{C-F} = 1$ Hz), 135.0, 130.2 (q, $J_{C-F} = 33$ Hz), 128.9, 128.2, 126.1 (q, $J_{C-F} = 4$ Hz). 124.14, 124.11 (q, $J_{C-F} = 272$ Hz), 43.0, 19.1.

¹⁹F NMR (282 MHz, CDCl₃): δ -65.8.

FTIR (NaCl, thin film, cm⁻¹): 1813, 1788, 1746, 1620, 1468, 1421, 1359, 1326, 1186, 1168, 1125, 1079, 1067, 1048, 1017, 878, 842, 697.

HRMS (ESI-TOF, *m/z*): calc'd for C₁₈H₁₂F₃NO₄ [M+H]⁺: 364.0797; found: 364.0815.

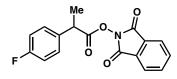
1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)propanoate (6c)

Prepared from 2-(4-bromophenyl)propanoic acid (1.0 g, 4.65 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 20% EtOAc/hexane as the

eluent to yield 511 mg (48% yield) of 6c as a light yellow solid.

 $\mathbf{R}_{f} = 0.69$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 77–78 °C


¹**H NMR (400 MHz, CDCl₃):** δ 7.86 (dd, J = 5.5, 3.0 Hz, 2H), 7.80 – 7.75 (m, 2H), 7.52 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.4 Hz, 2H), 4.08 (q, J = 7.2 Hz, 1H), 1.65 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.5, 161.9, 137.4, 134.9, 132.2, 129.4, 129.0, 124.1, 122.0, 42.6, 19.0.

FTIR (NaCl, thin film, cm⁻¹): 1811, 1786, 1742, 1489, 1467, 1369, 1186, 1133, 1078, 1046, 1010, 877, 696.

LRMS (API-ES, m/z): calc'd for C₁₇H₁₂BrNO₄ [M+H₂O]⁺: 391.0; found: 391.0.

1,3-dioxoisoindolin-2-yl 2-(4-fluorophenyl)propanoate (6d)

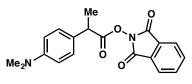
Prepared from 2-(4-fluorophenyl)propanoic acid (500 mg, 2.92 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 20% EtOAc/hexane

as the eluent to yield 590 mg (63% yield) of 6d as a white solid.

 $\mathbf{R}_{f} = 0.35$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 108–110 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.86 (dd, J = 5.6, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.1 Hz, 2H), 7.41 – 7.35 (m, 2H), 7.12 – 7.05 (m, 2H), 4.11 (q, J = 7.2 Hz, 1H), 1.66 (d, J = 7.2 Hz, 3H).


¹³C NMR (101 MHz, CDCl₃): δ 170.78, 162.42 (d, $J_{C-F} = 246.4$ Hz), 161.9, 134.9, 134.2 (d, $J_{C-F} = 3.3$ Hz), 129.37 (d, $J_{C-F} = 8.3$ Hz), 129.9, 124.1, 115.95 (d, $J_{C-F} = 21.5$ Hz), 42.3, 19.2.

¹⁹F NMR (282 MHz, CDCl₃): δ -117.64 (tt, J_{F-H} = 8.4, 5.2 Hz).

FTIR (NaCl, thin film, cm⁻¹): 1811, 1785, 1739, 1605, 1509, 1467, 1360, 1225, 1186, 1120, 1045, 1016, 959, 877, 837, 783, 696.

HRMS (FAB, *m*/*z*): calc'd for C₁₇H₁₂FNO₄ [M+H]⁺: 314.0823; found: 314.0859.

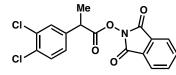
1,3-dioxoisoindolin-2-yl 2-(4-(dimethylamino)phenyl)propanoate (6e)

Prepared from 2-(4-(dimethylamino)phenyl)propanoic acid (392 mg, 2.02 mmol) according to General Procedure 1, with the exception of no DMAP. The crude residue was purified column

chromatography (silica, 20 to 50% EtOAc/hexane) to yield 640 mg (94% yield) of **6e** as a yellow solid.

 $\mathbf{R}_f = 0.54$ (silica gel, 50% EtOAc/hexane, UV).

m.p. = 106–108 °C


¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (dd, J = 5.6, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.27 (d, J = 8.8 Hz, 2H), 6.75 (d, J = 8.8 Hz, 2H), 4.04 (q, J = 7.2 Hz, 1H), 2.95 (s, 6H), 1.64 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 171.4, 162.1, 150.2, 134.8, 129.1, 128.3, 126.0, 124.0, 112.8, 42.1, 40.6, 19.2.

FTIR (NaCl, thin film, cm⁻¹): 1809, 1784, 1743, 1615, 1523, 1467, 1356, 1186, 1134, 1081, 1044, 878, 819, 697.

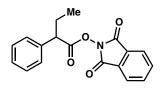
HRMS (FAB, m/z): calc'd for C₁₉H₁₈N₂O₄ [M+·]⁺: 338.1267; found: 338.1272.

1,3-dioxoisoindolin-2-yl 2-(3,4-dichlorophenyl)propanoate (6f)

Prepared from 2-(3,4-dichlorophenyl)propanoic acid (231 mg, 1.05 mmol) according to General Procedure 1, with the exception of no DMAP. The crude residue was purified by column chromatography

(silica, 0 to 15% EtOAc/hexane) to yield 241 mg (63% yield) of 6f as a white solid.

 $\mathbf{R}_f = 0.35$ (silica gel, 20% EtOAc/hexane, UV).


m.p. = 103–105 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.87 (dd, J = 5.5, 3.1 Hz, 2H), 7.79 (dd, J = 5.5, 3.1 Hz, 2H), 7.52 (d, J = 2.2 Hz, 1H), 7.47 (d, J = 8.3 Hz, 1H), 7.26 (dd, J = 8.3, 2.2 Hz, 1H), 4.08 (q, J = 7.2 Hz, 1H), 1.66 (d, J = 7.2 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.1, 161.9, 138.4, 135.0, 133.1, 132.2, 131.0, 129.9, 128.9, 127.1, 124.2, 42.3, 19.0.

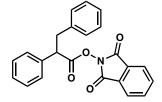
FTIR (NaCl, thin film, cm⁻¹): 2341, 2359, 1785, 1743, 1426, 1186, 1135, 1049, 962, 878, 696. **HRMS (FAB,** *m/z***)**: calc'd for C₁₇H₁₁Cl₂NO₄ [M+H]⁺: 364.0143; found: 364.0131.

1,3-dioxoisoindolin-2-yl 2-phenylbutanoate (6g)

Prepared from 2-phenylbutanoic acid (5.0 g, 30.5 mmol) according to General Procedure 1. The crude residue was purified by column chromatography (silica, 20% EtOAc/hexane) to yield 8.1 g (86% yield) of **6g** as a white solid.

 $\mathbf{R}_f = 0.31$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 61–64 °C


¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (dd, J = 5.6, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.42 – 7.29 (m, 5H), 3.86 (t, J = 7.6 Hz, 1H), 2.31 – 2.18 (m, 1H), 2.03 – 1.90 (m, 1H), 1.04 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.4, 162.0, 136.9, 134.8, 129.0, 128.9, 128.2, 128.0, 124.0, 50.5, 27.3, 12.0.

FTIR (NaCl, thin film, cm⁻¹): 1811, 1786, 1744, 1467, 1455, 1360, 1186, 1128, 1080, 1058, 969, 877, 656.

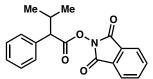
HRMS (ESI-TOF, m/z): calc'd for C₁₈H₁₅NO₄ [M+H]⁺: 310.1079; found: 310.1061.

1,3-dioxoisoindolin-2-yl 2,3-diphenylpropanoate (6h)

Prepared from 2,3-diphenylpropanoic acid (353 mg, 1.56 mmol) according to General Procedure 1. The crude residue was purified by column chromatography (silica, 20% EtOAc/hexane) to yield 542 mg (94% yield) of **6h** as a white solid.

 $\mathbf{R}_f = 0.28$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 116–119 °C


¹**H NMR (400 MHz, CDCl₃):** δ 7.85 (dd, J = 5.5, 3.0 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.41 - 7.20 (m, 8H), 7.15 - 7.10 (m, 2H), 4.23 (t, J = 7.6 Hz, 1H), 3.56 (dd, J = 13.9, 7.5 Hz, 1H), 3.19 (dd, J = 13.9, 7.8 Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 170.0, 161.8, 137.7, 136.4, 134.8, 129.2, 129.0, 128.9, 128.6, 128.3, 128.1, 126.9, 124.0, 50.9, 39.9.

FTIR (NaCl, thin film, cm⁻¹): 3030, 1810, 1784, 1744, 1496, 1467, 1454, 1359, 1186, 1134, 1080, 1068, 972, 877, 736, 695.

HRMS (ESI-TOF, *m/z*): calc'd for C₂₃H₁₇NO₄ [M+H]⁺: 372.1236; found: 372.1236.

1,3-dioxoisoindolin-2-yl 3-methyl-2-phenylbutanoate (6i)

Prepared from 3-methyl-2-phenylbutanoic acid (300 mg, 1.68 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 20% EtOAc/hexane as the eluent to yield 509 mg (93% yield) of 6i as a white solid.

 $\mathbf{R}_{f} = 0.34$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 77–81 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.84 (dd, J = 5.6, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.42 - 7.29 (m, 5H), 3.58 (d, J = 10.0 Hz, 1H), 2.51 - 2.37 (m, 1H), 1.23 (d, J = 6.6 Hz, 3H), 0.84 (d. J = 6.7 Hz. 3H).

¹³C NMR (101 MHz, CDCl₃): δ 170.2, 162.0, 136.1, 134.8, 129.0, 128.8, 128.7, 128.0, 124.0, 56.7, 32.6, 21.3, 20.3.

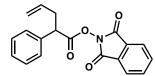
FTIR (NaCl, thin film, cm⁻¹): 2966, 1811, 1786, 1745, 1468, 1455, 1375, 1311, 1186, 1132, 1080, 1060, 974, 889, 877, 786, 745, 696.

HRMS (ESI-TOF, m/z): calc'd for C₁₉H₁₇NO₄ [M+H]⁺: 324.1236; found: 324.1227.

1,3-dioxoisoindolin-2-yl 3-((tert-butyldimethylsilyl)oxy)-2-phenylpropanoate (6j)

OTBS To a round bottom flask equipped with a stirring magnet was added tropic acid (830 mg, 5 mmol, 1 equiv), tert-butyldimethylsilyl chloride (1.1 g, 5.5 mmol, 1.1 equiv), dimethylaminopyridine (63 mg, 0.5 mmol, 0.1 equiv), and imidazole (682 mg, 10 mmol, 2 equiv). The reagents were dissolved in 15 mL of CH₂Cl₂ and stirred overnight at room temperature. The reaction was guenched with aq. NH₄Cl, extracted with Et₂O, dried with MgSO₄, filtered, and concentrated under reduced pressure to afford crude 3-((tert-butyldimethylsilyl)oxy)-2-phenylpropanoic acid. This crude material was used in the esterification step without purification, which was performed according to General Procedure 1. The crude residue was purified by column chromatography and dried under high vacuum (silica, 0 to 20% EtOAc/hexane) to yield 664 mg (31% yield) of 6j as a colorless oil.

 $\mathbf{R}_{f} = 0.38$ (silica gel, 20% EtOAc/hexane, UV).


¹**H NMR (400 MHz, CDCl₃):** δ 7.86 (dd, J = 5.6, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.1 Hz, 2H), 7.43 - 7.31 (m, 5H), 4.28 - 4.18 (m, 2H), 3.93 (dd, J = 8.6, 4.4 Hz, 1H), 0.89 (s, 9H), 0.05 (s, 3H), 0.03 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 169.0, 161.8, 134.8, 134.1, 129.1, 129.0, 128.5, 128.3, 124.0, 65.3, 52.2, 25.9, 18.4, -5.4, -5.6.

FTIR (NaCl, thin film, cm⁻¹): 2953, 2929, 2856, 1814, 1788, 1747, 1468, 1361, 1256, 1186, 1113, 1049, 1023, 877, 836, 780, 696.

HRMS (ESI-TOF, m/z): calc'd for C₂₃H₂₇NO₅Si [M+H]⁺: 426.1737; found: 426.1708.

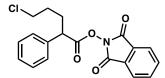
1,3-dioxoisoindolin-2-yl 2-phenylpent-4-enoate (6k)

Prepared from 2-phenylpent-4-enoic acid (240 mg, 1.36 mmol) according to General Procedure 1. The crude residue was purified by column chromatography (silica, 0 to 20% EtOAc/hexane) to yield 295

mg (67% yield) of 6k as a white solid.

 $\mathbf{R}_{f} = 0.31$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 68–69 °C


¹H NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 5.6, 3.1 Hz, 2H), 7.76 (dd, J = 5.5, 3.1 Hz, 2H), 7.42 - 7.31 (m, 5H), 5.81 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.16 (dq, J = 17.1, 1.5 Hz, 1H), 5.14 -5.09 (m, 1H), 4.04 (dd, J = 8.0, 7.2 Hz, 1H), 3.00 - 2.90 (m, 1H), 2.68 (dtt, J = 14.3, 7.1, 1.3Hz, 1H).

¹³C NMR (101 MHz, CDCl₃): δ 169.9, 161.9, 136.4, 134.9, 134.0, 129.02, 128.99, 128.2, 128.1, 124.0, 118.3, 48.8, 37.9.

FTIR (NaCl, thin film, cm⁻¹): 1811, 1785, 1743, 1467, 1359, 1186, 1133, 1080, 1068, 971, 877, 695.

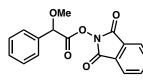
HRMS (ESI-TOF, m/z): calc'd for C₁₉H₁₅NO₄ [M+H]⁺: 322.1079; found: 322.1063.

1,3-dioxoisoindolin-2-yl 5-chloro-2-phenylpentanoate (6l)

Prepared from 5-chloro-2-phenylpentanoic acid (1.01 g, 4.75 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 20% EtOAc/hexane as the eluent to yield 977 mg (58% yield) of 6l as a white solid.

 $\mathbf{R}_f = 0.25$ (silica gel, 20% EtOAc/hexane, UV).

m.p. = 96–99 °C


¹**H** NMR (400 MHz, CDCl₃): δ 7.85 (dd, J = 5.6, 3.1 Hz, 2H), 7.77 (dd, J = 5.5, 3.1 Hz, 2H), 7.42 – 7.31 (m, 5H), 3.97 (t, J = 7.7 Hz, 1H), 3.64 – 3.52 (m, 2H), 2.34 (dddd, J = 13.2, 10.4, 8.0, 5.1 Hz, 1H), 2.13 (dddd, J = 13.5, 10.3, 7.4, 5.5 Hz, 1H), 2.01 – 1.78 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 170.1, 161.9, 136.4, 134.9, 129.1, 129.0, 128.2, 128.1, 124.1, 48.2, 44.4, 31.2, 30.1.

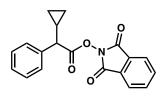
FTIR (NaCl, thin film, cm⁻¹): 2960, 1811, 1786, 1744, 1494, 1455, 1468, 1361, 1186, 1134, 1081, 1045, 965, 878, 697.

HRMS (FAB, *m/z***)**: calc'd for C₁₉H₁₆NO₄Cl [M+H]⁺: 358.0846; found: 358.0872.

1,3-dioxoisoindolin-2-yl 2-methoxy-2-phenylacetate (8)

Prepared from 2-methoxy-2-phenylacetic acid (830 mg, 5.0 mmol) according to General Procedure 1. The crude residue was purified by column chromatography (silica, 10 to 30% EtOAc/hexane) to yield

1.16 g (74% yield) of **8** as a colorless oil. *Note: This compound will slowly decompose* (solidifies/hydrolyzes) under ambient conditions over extended periods (~1 month).


 $\mathbf{R}_f = 0.22$ (silica gel, 20% EtOAc/hexane, UV).

¹**H NMR (400 MHz, CDCl₃):** δ 7.83 (dd, J = 5.5, 3.1 Hz, 2H), 7.75 (dd, J = 5.5, 3.1 Hz, 2H), 7.60 – 7.52 (m, 2H), 7.50 – 7.37 (m, 3H), 5.19 (s, 1H), 3.56 (s, 3H).

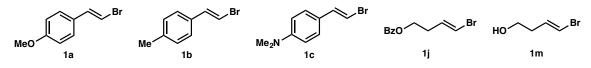
¹³C NMR (101 MHz, CDCl₃): δ 167.4, 161.6, 134.9, 134.4, 129.6, 129.0, 128.8, 127.6, 124.1, 81.0, 58.0.

FTIR (NaCl, thin film, cm⁻¹): 1818, 1789, 1745, 1468, 1359, 1186, 1079, 988, 969, 877, 696. **HRMS (ESI-TOF,** *m/z***)**: calc'd for C₁₇H₁₃NO₅ [M+H]⁺: 312.0872; found: 312.0846.

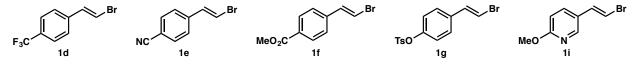
1,3-dioxoisoindolin-2-yl 2-cyclopropyl-2-phenylacetate (10)

Prepared from 2-cyclopropyl-2-phenylacetic acid (50 mg, 0.28 mmol) according to General Procedure 1. The crude residue was purified by filtering through a plug of silica with 20% EtOAc/hexane as the eluent to yield 80 mg (89% yield) of **10** as a white solid.

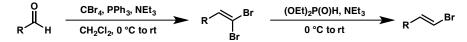
 $\mathbf{R}_{f} = 0.39$ (silica gel, 50% EtOAc/hexane, UV). m.p. = 92–93 °C ¹**H NMR (400 MHz, CDCl₃):** δ 7.87 (dd, *J* = 5.5, 3.0 Hz, 2H), 7.81 – 7.75 (m, 2H), 7.50 – 7.45 (m, 2H), 7.44 – 7.38 (m, 2H), 7.37 – 7.31 (m, 1H), 3.29 (d, *J* = 9.7 Hz, 1H), 1.53 (dtt, *J* = 9.7, 8.0, 4.9 Hz, 1H), 0.82 (dddd, *J* = 9.0, 8.1, 4.6, 2.9 Hz, 1H), 0.69 (dddd, *J* = 8.9, 8.0, 5.8, 4.8 Hz, 1H), 0.63 – 0.55 (m, 1H), 0.42 – 0.34 (m, 1H).


¹³C NMR (101 MHz, CDCl₃): δ 170.0, 162.0, 136.8, 134.9, 129.1, 128.9, 128.1, 128.0, 124.1, 53.4, 14.6, 4.91, 4.90.

FTIR (NaCl, thin film, cm⁻¹): 1811, 1742, 1362, 1170, 1135, 1063, 974, 876.


HRMS (FAB, m/z): calc'd for C₁₉H₁₅NO₄ [M+H]⁺: 322.1079; found: 322.1065.

b. Vinyl Bromide Synthesis


Vinyl bromides **1a**, **1b**, **1c**, **1j**, and **1m** were prepared according to procedures reported and referenced by Reisman and coworkers.¹³

Vinyl bromides 1d, 1e, 1f, 1g, and 1i were prepared according to General Procedure 2. Vinyl bromides 1d and 1f were subjected to NaOH-mediated isomerization to afford geometrically pure E-isomer. Vinyl bromides 1e, 1g, and 1i were not subjected to NaOH-mediated isomerization; vinyl bromide 1e decomposes under these conditions therefore the substrate used in the cross-coupling reaction was a 93:7 E:Z ratio. The NMR spectra of 1d,¹³ 1e,¹⁵ and 1f¹⁶ matched those reported in literature. The characterization data for 1g and 1i are reported below.

General Procedure 2: Vinyl Bromides from Aldehydes

General Procedure 2, Part A: According to a procedure by Alexakis and coworkers,¹⁴ a flame dried round bottom flask equipped with a magnetic stir bar was put under an inert atmosphere (N₂) and charged with the tetrabromomethane (20 mmol, 2 equiv) and triphenylphosphine (40 mmol, 4 equiv). The flask was cooled to 0 °C and then CH_2Cl_2 (30 mL) was added, followed by the triethylamine (10 mmol, 1 equiv). The aldehyde (10 mmol, 1 equiv) was dissolved in CH_2Cl_2 (5 mL) and added dropwise to the reaction mixture. The reaction was allowed to warm to room temperature and continued to stir for 90 minutes. The reaction was removed from the stir plate and slowly added to a vigorously stirring solution of Et_2O (150 mL) and hexane (150 mL), filtered through a plug of silica gel, and concentrated under reduced pressure to afford the desired dibromoalkene.

4-(2,2-dibromovinyl)phenyl 4-methylbenzenesulfonate (S5)

 $\mathbf{R}_f = 0.38$ (silica gel, 10% EtOAc/hexane).

m.p. = 108–110 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.73 – 7.67 (m, 2H), 7.49 – 7.43 (m, 2H), 7.41 (s, 1H), 7.34 – 7.29 (m, 2H), 7.01 – 6.95 (m, 2H), 2.45 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.3, 145.7, 135.6, 134.2, 132.3, 129.9, 129.8, 128.6, 122.5, 90.8, 21.9.

FTIR (NaCl, thin film, cm⁻¹): 3081, 3065, 1929, 1910, 1596, 1500, 1495, 1406, 1379, 1360, 1271, 1178, 1160, 1094, 1018, 877, 832, 914, 781, 732, 706, 698, 658.

HRMS (FAB, m/z): calc'd for $C_{15}H_{12}Br_2O_3S [M+H]^+$: 432.8932; found: 432.8915.

5-(2,2-dibromovinyl)-2-methoxypyridine (S6)

MeO N Br Prepared from 6-methoxynicotinaldehyde (1.36 g, 10 mmol) following General Procedure 2A. The crude residue was purified by column chromatography (silica, 1% Et₂O/hexane to 10% Et₂O/hexane) to yield 570 mg (20% yield) of **S6** as a yellow oil.

 $\mathbf{R}_{f} = 0.48$ (silica gel, 10% EtOAc/hexane).

¹**H** NMR (500 MHz, CDCl₃): δ 8.25 (dt, J = 2.4, 0.6 Hz, 1H), 7.90 (ddd, J = 8.7, 2.5, 0.6 Hz, 1H), 7.37 (q, J = 0.6 Hz, 1H), 6.74 (dt, J = 8.7, 0.5 Hz, 2H), 3.94 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 163.8, 147.6, 137.8, 133.5, 124.9, 110.7, 89.3, 53.8.

FTIR (NaCl, thin film, cm⁻¹): 2982, 2946, 1603 1595, 1561, 1491, 1381, 1309, 1289, 1254, 1132, 1024, 1014, 867, 819, 751.

HRMS (ESI-TOF, m/z): calc'd for C₈H₇NOBr₂ [M+H]⁺: 291.8973; found: 291.8967.

General Procedure 2, Part B: The dibromoalkene (1.7 mmol, 1 equiv) and diethyl phosphite (5.1 mmol, 3 equiv) were added to a vial with a magnetic stirring rod and put under an inert atmosphere (N_2). The solution was cooled to 0 °C and the triethylamine (5.1 mmol, 3 equiv) was added dropwise. The reaction was warmed to room temperature and stirred overnight. The

reaction was quenched with water (5 mL) and extracted with CH_2Cl_2 (20 mL). The organic layer was washed with brine (5 mL), dried with Na_2SO_4 , filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (silica, ether/hexanes) to afford the vinyl bromide.

(E)-4-(2-bromovinyl)phenyl 4-methylbenzenesulfonate (1g)

^{Br} Prepared from S5 (4.32 g, 10 mmol) following General Procedure 2B. The crude residue was purified by column chromatography (silica, 5% EtOAc/hexane to 20% EtOAc/hexane) to yield 2.75 g (78% yield, 90:10 E:Z) of **1g** as a white solid.

 $\mathbf{R}_{f} = 0.34$ (silica gel, 10% EtOAc/hexane).

m.p. = 90–93 °C

¹**H NMR (400 MHz, CDCl₃):** δ 7.72 – 7.67 (m, 2H), 7.34 – 7.28 (m, 2H), 7.23 – 7.17 (m, 2H), 7.03 (d, J = 14.0 Hz, 1H), 6.96 – 6.90 (m, 2H), 6.73 (d, J = 14.0 Hz, 1H), 2.44 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.3, 145.6, 135.9, 134.9, 132.3, 129.9, 128.6, 127.3, 122.9, 107.7, 21.9.

HRMS (FAB, m/z): calc'd for $C_{15}H_{13}BrO_3S[M+\cdot]^+$: 353.9748; found: 353.9733.

(*E*)-5-(2-bromovinyl)-2-methoxypyridine (1i)

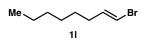
Prepared from S6 (500 mg, 1.7 mmol) following General Procedure 2B. The crude residue was purified by column chromatography (silica, 2% Et_2O /hexane to 5% Et_2O /hexane) to yield 314 mg (86% yield, 96:4 E:Z) of **1i** as a white solid. **R**_f = 0.46 (silica gel, 10% EtOAc/hexane).

m.p. = 53–56 °C

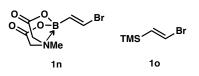
¹**H NMR (500 MHz, CDCl₃):** δ 8.05 (d, J = 2.5 Hz, 1H), 7.54 (ddd, J = 8.7, 2.5, 0.4 Hz, 1H), 7.02 (dq, J = 14.0, 0.5 Hz, 1H), 6.70 (dt, J = 8.7, 0.6 Hz, 1H), 6.65 (d, J = 14.0 Hz, 1H), 3.93 (s, 3H).

¹³C NMR (126 MHz, CDCl₃): δ 164.0, 145.3, 135.3, 133.5, 125.5, 111.4, 105.5, 53.7.

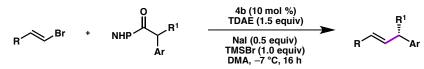
FTIR (NaCl, thin film, cm⁻¹): 3061, 2943, 1613, 1598, 1562, 1490, 1385, 1303, 1285, 1258, 1238, 1026, 1015, 947, 837, 790.


HRMS (ESI-TOF, m/z): calc'd for $C_8H_8NOBr [M+H]^+$: 213.9868; found: 213.9858.

Vinyl bromide **1h** was prepared by a NaOH-mediated isomerization of commercially available β -bromostyrene as reported by Alexakis and coworkers.¹⁴



Vinyl bromide **1k** was prepared via a hydrozirconation/bromination sequence similar to a procedure reported by Zhou, Lin, and coworkers.¹⁷ The NMR spectra matched those reported in literature.¹⁸


Vinyl bromide 11 was prepared according to a procedure reported by Wolfe and coworkers.¹⁹

Vinyl bromides 1n and 10 were purchased from a commercial source (Sigma Aldrich).

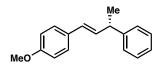
6. Vinyl Bromide-NHP Ester Cross-Coupling

a. General Procedure 3: Reaction on 0.2 mmol scale:

On a bench-top, a 1 dram vial equipped with a stir bar was charged with the vinyl bromide (if air stable, 0.2 mmol, 1 equiv), NHP ester (0.2 mmol, 1 equiv), 4b (11.5 mg, 0.02 mmol, 0.10 equiv), and sodium iodide (15.0 mg, 0.1 mmol, 0.5 equiv). The vial was then brought into the glovebox and charged with the vinyl bromide (if air sensitive, 0.2 mmol, 1 equiv) and DMA (0.2 mL, 1.0 M). The vial was then cooled to -7 °C and the reagents were stirred at 250 rpm until dissolved. Note: The recirculating Julabo LH45 chiller was set to -10 °C however an external thermometer in the glovebox read the temperature as -7 °C. The tetrakis(dimethylamino)ethylene (TDAE, 0.3 mmol, 70 µl, 1.5 equiv) was added and stirred for 10 minutes before the trimethylsilyl bromide (TMSBr, 0.2 mmol, 26 µL, 1 equiv) was added. The vial was sealed with a screw cap and stirred under nitrogen at -7 °C for 16 hours (overnight) in temperature controlled well plates in the glovebox. Note: Monitoring the reaction kinetics for product 3a revealed that the reaction went to >90% conversion after 1 hour, however we choose to run these reactions overnight to ensure full conversion. As the reaction proceeds, the TDAE salts begin to precipitate, forming an orange slurry. The crude reaction was quenched with 0.5 mL of 1 M HCl, diluted with water (5 mL), and extracted with diethyl ether (3 x 10 mL). Note: In order to efficiently remove all of the viscous reaction contents from the vial, we found it useful to fill the vial ³/₄ full with an extraction solvent (2.5 mL each time: first HCl/water, then Et₂O, water, $Et_2O(3x)$, screw on a Teflon cap, and shake the vial vigorously with the stir bar still inside. The contents could then be easily poured into a separatory funnel. The combined organic layers were washed with brine (5 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography.

b. Assignment of Absolute Stereochemistry

The absolute stereochemistry of **3a**, **3b**, and **3h** were assigned by comparing the optical rotation of the purified products to literature values. The optical rotation of products **3a–d**, **3j**, **7a**, **7c**, **7d**, **7g**, and **7h** correspond with those in reported in literature synthesized using the same chiral ligand (R,R,S,S)-L.¹³ Chiral products **3e–g**, **3i**, **3k–o**, **7b**, **7e**, **7f**, **7i–l**, and **9** were assigned by analogy.


c. Images of Reaction Setup

(Left) The computer console sets the chiller to -10.0 °C, while actual temperature reading is -7.1 °C; stir plate set at 250 rpm and reads 255.7 rpm. (Center) Reactions conducted on 0.2 mmol scale and stirred in the temperature controlled glovebox stir plates. (**Right**) Conducting the reaction on the benchtop on a 5 mmol scale under a balloon of nitrogen; a cryocool is used to cool the reaction to -5 °C.

d. Characterization of Reaction Products

(*S*,*E*)-1-methoxy-4-(3-phenylbut-1-en-1-yl)benzene (3a)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (1a, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

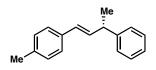
purified by column chromatography (silica gel, 10 to 20% toluene/hexane) to yield **3a** (39 mg, 80% yield) in 96% ee as a colorless oil. Spectral data matched those reported in literature.¹³

Preparative Scale: Reaction on 5.0 mmol scale:

On a bench-top to a 25 mL round bottom flask equipped with a stir bar was added vinyl bromide **1a** (1.065 g, 5 mmol, 1 equiv), NHP ester **2** (1.476 g, 5 mmol, 1 equiv), **4b** (0.29 g, 0.5 mmol, 0.10 equiv), and sodium iodide (0.37 g, 2.5 mmol, 0.5 equiv). The flask was sealed with a rubber septum, purged with nitrogen, and the reagents were dissolved in DMA (5.0 mL, 1.0 M). The flask was cooled to -5 °C by submerging it in an isopropanol bath cooled with a Thermo Scientific EK90 Immersion Cooler. *Note: We found that TDAE will begin to freeze at temperatures lower than* -8 °C *with this setup.* The tetrakis(dimethylamino)ethylene (TDAE, 1.74 mL, 7.5 mmol, 1.5 equiv) was added and stirred for 10 minutes before the trimethylsilyl bromide (TMSBr, 0.66 mL, 5.0 mmol, 1 equiv) was added. The flask was stirred under a balloon of nitrogen at -5 °C for 16 hours. As the reaction proceeds, the TDAE salts begin to precipitate, forming an orange slurry. The crude reaction was quenched with 1 M HCl (30 mL), and extracted with diethyl ether (3 x 20 mL). The combined organic layers were washed with water (2 x 20 mL) and brine (20 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was purified by column chromatography (silica gel, 10 to 20% toluene/hexane) to yield **3a** (918 mg, 77% yield) in 91% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.59$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 7.1 min, t_R (minor) = 8.4 min.


 $[a]_{D}^{25} = -34^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 – 7.27 (m, 6H), 7.25 – 7.20 (m, 1H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.38 (d, *J* = 16.2 Hz, 1H), 6.27 (dd, *J* = 15.9, 6.7 Hz, 1H), 3.81 (s, 3H), 3.70 – 3.58 (m, 1H), 1.48 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.9, 146.0, 133.3, 130.5, 128.6, 128.0, 127.42, 127.36, 126.3, 114.0, 55.4, 42.7, 21.5.

The optical rotation of **3a** generated in the presence of (R,R,S,S)-**4b** was measured as $[a]_D^{25} = -34^\circ$ (c = 1.0, CHCl₃). Lit: $[a]_D^{25} = -16^\circ$ (c = 1.28, CHCl₃, *S* enantiomer, 94% ee).²¹ Based on the literature precedent, we assign our product as the *S* enantiomer.

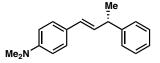
(*S*,*E*)-1-methyl-4-(3-phenylbut-1-en-1-yl)benzene (3b)

Prepared from (*E*)-1-(2-bromovinyl)-4-methylbenzene (**1b**, 39 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified

by column chromatography (10% AgNO₃ silica gel, 0 to 2% Et₂O/hexane) to yield **3b** (39 mg, 88% yield) in 95% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_f = 0.26$ (silica gel, hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 7% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 8.0 min, t_R (major) = 10.0 min.


 $[a]_{D}^{25} = -41^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.41 – 7.30 (m, 6H), 7.30 – 7.24 (m, 1H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.52 – 6.34 (m, 2H), 3.74 – 3.64 (m, 1H), 2.38 (s, 3H), 1.53 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 145.9, 136.9, 134.9, 134.3, 129.3, 128.6, 128.5, 127.5, 126.3, 126.2, 42.7, 21.5, 21.3.

The optical rotation of **3b** generated in the presence of (R,R,S,S)-**4b** was measured as $[a]_D^{25} = -41^\circ$ (c = 1.0, CHCl₃). Lit: $[a]_D^{25} = +38.4^\circ$ (c = 0.98, CHCl₃, *R* enantiomer, 91% ee).²² Based on the literature precedent, we assign our product as the *S* enantiomer.

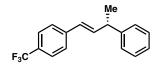
(S,E)-N,N-dimethyl-4-(3-phenylbut-1-en-1-yl)aniline (3c)

Prepared from (*E*)-4-(2-bromovinyl)-*N*,*N*-dimethylaniline (1c, 45 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 5% Et_2O /hexane) to yield **3c** (38 mg, 76% yield) in 97% ee as a white solid. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.21$ (silica gel, 5% Et₂O/hexane, UV).

m.p. = 65–67 °C


Chiral SFC: (OB-H, 2.5 mL/min, 35% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 6.0 min, t_R (minor) = 9.0 min.

 $[a]_{p}^{25} = -56^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.29 (m, 6H), 7.29 – 7.23 (m, 1H), 6.73 (d, *J* = 8.8 Hz, 2H), 6.40 (d, *J* = 15.9 Hz, 1H), 6.24 (dd, *J* = 15.8, 6.8 Hz, 1H), 3.72 – 3.62 (m, 1H), 3.00 (s, 6H), 1.51 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 149.9, 146.4, 131.2, 128.5, 128.4, 127.5, 127.1, 126.4, 126.1, 112.7, 42.7, 40.8, 21.6.

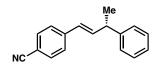
(*S*,*E*)-1-(3-phenylbut-1-en-1-yl)-4-(trifluoromethyl)benzene (3d)

Prepared from (*E*)-1-(2-bromovinyl)-4-(trifluoromethyl)benzene (**1d**, 50 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, hexane) to yield **3d** (48 mg, 87% yield) in 93% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_f = 0.32$ (silica gel, hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 3% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 6.3 min, t_R (major) = 7.3 min.


 $[a]_{D}^{25} = -27^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.56 (d, J = 8.6 Hz, 2H), 7.46 (d, J = 8.2 Hz, 2H), 7.40 – 7.33 (m, 2H), 7.33 – 7.23 (m, 3H), 6.52 (dd, J = 15.9, 6.2 Hz, 1H), 6.45 (d, J = 16.0 Hz, 1H), 3.74 – 3.64 (m, 1H), 1.51 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 145.2, 141.2 (q, $J_{C-F} = 1$ Hz), 138.1, 129.0 (q, $J_{C-F} = 32$ Hz), 128.7, 127.5, 127.4, 126.6, 126.4, 125.6 (q, $J_{C-F} = 4$ Hz), 124.4 (q, $J_{C-F} = 272$ Hz), 42.8, 21.2.

¹⁹F NMR (282 MHz, CDCl₃): δ -65.6.

(S,E)-4-(3-phenylbut-1-en-1-yl)benzonitrile (3e)

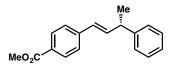
Prepared from methyl (*E*)-4-(2-bromovinyl)benzonitrile (1e, 42 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 0 to 3% Et_2O /hexane) to yield **3e** (42 mg, 91% yield) in 94% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.42$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 9.5 min, t_R (major) = 10.1 min.

 $[a]_p^{25} = -51^\circ (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.54 (d, J = 8.5 Hz, 2H), 7.40 (d, J = 8.3 Hz, 2H), 7.36 – 7.30 (m, 2H), 7.28 – 7.19 (m, 3H), 6.52 (dd, J = 15.9, 6.7 Hz, 1H), 6.40 (d, J = 16.0 Hz, 1H), 3.72 – 3.61 (m, 1H), 1.48 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 144.7, 142.1, 139.5, 132.4, 128.7, 127.3, 127.2, 126.7, 126.6, 119.2, 110.2, 42.8, 21.0.

FTIR (NaCl, thin film, cm⁻¹): 3027, 2967, 2872, 2225, 1646, 1604, 1504, 1493, 1452, 1412, 1176, 1013, 970, 866, 819, 763, 701.

HRMS (FAB, *m/z***)**: calc'd for C₁₇H₁₅N [M+H]⁺: 234.1283; found: 234.1265.

Methyl (S,E)-4-(3-phenylbut-1-en-1-yl)benzoate (3f)

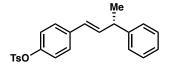
Prepared from methyl (*E*)-4-(2-bromovinyl)benzoate (**1f**, 48 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 5% Et₂O/hexane) to yield **3f** (46 mg, 87% yield) in 95% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.19$ (silica gel, 5% Et₂O/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 8.2 min, t_R (major) = 11.6 min.

 $[a]_{D}^{25} = -44^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.96 (d, J = 8.4 Hz, 2H), 7.41 (d, J = 8.3 Hz, 2H), 7.37 – 7.30 (m, 2H), 7.30 – 7.20 (m, 3H), 6.53 (dd, J = 15.9, 6.5 Hz, 1H), 6.44 (d, J = 16.1 Hz, 1H), 3.91 (s, 3H), 3.72 – 3.62 (m, 1H), 1.49 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 167.1, 145.2, 142.2, 138.2, 130.0, 128.7, 128.6, 127.9, 127.4, 126.5, 126.1, 52.2, 42.8, 21.2.

FTIR (NaCl, thin film, cm⁻¹): 3025, 2963, 1718, 1605, 1492, 1433, 1411, 1276, 1177, 1108, 1015, 968, 759, 698.

LRMS (GC-MS, m/z): calc'd for C₁₈H₁₈O₂ [M]⁺: 266.1; found: 266.1.

(*S*,*E*)-4-(3-phenylbut-1-en-1-yl)phenyl 4-methylbenzenesulfonate (3g)

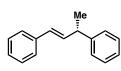
Prepared from (*E*)-4-(2-bromovinyl)phenyl 4-methylbenzenesulfonate (**1g**, 71 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 89 mg, 0.3 mmol) according to General

Procedure 3 with the exception that 1.5 equiv NHP ester was used instead of 1.0 equiv. *Note: The addition of excess NHP ester ensured full consumption of the vinyl bromide, which we found to be inseparable from the product when it remained in the crude reaction.* The crude residue was purified by column chromatography (silica gel, hexane to 5% Et₂O/hexane) to yield **3g** (61 mg, 80% yield) in 94% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.39$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 12.2 min, t_R (major) = 13.7 min.

 $[a]_D^{25} = -24^\circ (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.70 (d, J = 8.4 Hz, 2H), 7.36 – 7.28 (m, 4H), 7.28 – 7.20 (m, 5H), 6.90 (d, J = 8.7 Hz, 2H), 6.39 – 6.30 (m, 2H), 3.69 – 3.58 (m, 1H), 2.45 (s, 3H), 1.46 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 148.5, 145.4, 145.3, 136.7, 136.5, 132.4, 129.8, 128.6, 127.3, 127.2, 126.4, 122.5, 42.7, 21.8, 21.2.

FTIR (NaCl, thin film, cm⁻¹): 3061, 3028, 2966, 2928, 2872, 1647, 1599, 1504, 1453, 1372, 1307, 1296, 1198, 1176, 1152, 1093, 1016, 969, 867, 841, 815, 763, 735, 700, 661.

HRMS (FAB, m/z): calc'd for C₂₃H₂₂O₃S [M+·]⁺: 378.1290; found: 378.1283.

(*S*,*E*)-but-1-ene-1,3-diyldibenzene (3h)

Prepared from (*E*)-(2-bromovinyl)benzene (**1h**, 37 mg, 0.2 mmol) and 1,3dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified by column

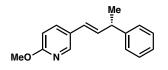
chromatography (silica gel, hexane) to yield **3h** (37 mg, 88% yield) in 96% ee as a colorless oil.

 $\mathbf{R}_f = 0.48$ (silica gel, hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 9.8 min, t_R (major) = 10.9 min.

 $[a]_{D}^{25} = -35^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.43 – 7.29 (m, 8H), 7.29 – 7.21 (m, 2H), 6.51 – 6.38 (m, 2H), 3.73 – 3.65 (m, 1H), 1.52 (d, *J* = 7.0 Hz, 3H).


¹³C NMR (101 MHz, CDCl₃): δ 145.7, 137.7, 135.3, 128.6 (3C), 127.4, 127.2, 126.35, 126.27, 42.7, 21.4.

FTIR (NaCl, thin film, cm⁻¹): 3080, 3058, 3024, 2964, 2928, 2871, 1599, 1492, 1448, 1371, 1010, 964, 742, 692.

HRMS (ESI-TOF, m/z): calc'd for C₁₆H₁₆ [M–H₂+H]⁺: 207.1174; found: 207.1155.

The optical rotation of **3h** generated in the presence of (R,R,S,S)-**4b** was measured as $[a]_D^{25} = -35^\circ$ (c = 1.0, CHCl₃). Lit: $[a]_D^{25} = -21.1^\circ$ (c = 1.42, CHCl₃, *S* enantiomer, 95% ee).²³ Based on the literature precedent, we assign our product as the *S* enantiomer.

(*S*,*E*)-2-methoxy-5-(3-phenylbut-1-en-1-yl)pyridine (3i)

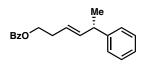
Prepared from (*E*)-5-(2-bromovinyl)-2-methoxypyridine (**1i**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 5% Et₂O/hexane) to yield **3i** (32 mg, 67% yield) in 95% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.53$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 280$ nm): t_R (major) = 5.0 min, t_R (minor) = 6.9 min.

 $[a]_{p}^{25} = -33^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 8.06 (d, J = 2.4 Hz, 1H), 7.62 (dd, J = 8.7, 2.5 Hz, 1H), 7.35 – 7.28 (m, 2H), 7.28 – 7.18 (m, 3H), 6.67 (d, J = 8.6 Hz, 1H), 6.33 (d, J = 16.1 Hz, 1H), 6.26 (dd, J = 15.9, 6.3 Hz, 1H), 3.91 (s, 3H), 3.66 – 3.57 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 163.4, 145.6, 145.3, 135.5, 134.7, 128.7, 127.4, 126.8, 126.4, 124.7, 110.9, 53.6, 42.8, 21.3.

FTIR (NaCl, thin film, cm⁻¹): 2965, 1601, 1493, 1384, 1286, 1026, 962, 822, 762, 699.

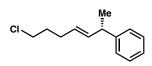
HRMS (FAB, *m*/*z*): calc'd for C₁₆H₁₇NO [M+H]⁺: 240.1388; found: 240.1398.

(S,E)-5-phenylhex-3-en-1-yl benzoate (3j)

Prepared from (*E*)-4-bromobut-3-en-1-yl benzoate (1j, 51 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified by

column chromatography (silica gel, 5% Et_2O /hexane) to yield **3j** (49 mg, 88% yield) in 97% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.24$ (silica gel, 5% Et₂O/hexane, UV).


Chiral SFC: (OJ-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 5.2 min, t_R (minor) = 6.1 min.

 $[a]_{D}^{25} = +5^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 8.04 – 8.00 (m, 2H), 7.59 – 7.53 (m, 1H), 7.46 – 7.40 (m, 2H), 7.29 – 7.23 (m, 2H), 7.22 – 7.15 (m, 3H), 5.77 (ddt, J = 15.4, 6.8, 1.3 Hz, 1H), 5.52 (dtd, J = 15.2, 6.8, 1.3 Hz, 1H), 4.36 (td, J = 6.7, 1.4 Hz, 2H), 3.50 – 3.42 (m, 1H), 2.54 – 2.46 (m, 2H), 1.35 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 166.7, 146.0, 138.3, 133.0, 130.5, 129.7, 128.5, 128.4, 127.3, 126.2, 124.3, 64.4, 42.4, 32.2, 21.4.

(*S*,*E*)-(7-chlorohept-3-en-2-yl)benzene (3k)

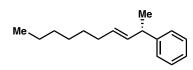
Prepared from (*E*)-1-bromo-5-chloropent-1-ene (1k, 37 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified by

column chromatography (silica gel, hexane) to yield **3k** (29 mg, 69% yield) in 91% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.29$ (silica gel, hexane, UV/CAM).

Chiral SFC: (OD-H, 2.5 mL/min, 1% IPA in CO₂, $\lambda = 210$ nm): t_R (minor) = 5.4 min, t_R (major) = 6.0 min.

 $[a]_{D}^{25} = +9^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.35 – 7.29 (m, 2H), 7.25 – 7.18 (m, 3H), 5.69 (ddt, J = 15.3, 6.8, 1.4 Hz, 1H), 5.43 (dtd, J = 15.1, 6.8, 1.1 Hz, 1H), 3.54 (t, J = 6.7 Hz, 2H), 3.50 – 3.40 (m, 1H), 2.23 – 2.16 (m, 2H), 1.90 – 1.82 (m, 2H), 1.36 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.3, 136.7, 128.5, 127.24, 127.17, 126.1, 44.6, 42.4, 32.4, 29.7, 21.6.

FTIR (NaCl, thin film, cm⁻¹): 3025, 2962, 2929, 2871, 1601, 1492, 1450, 1371, 1297, 1017, 969, 759, 698.

HRMS (FAB, *m*/*z*): calc'd for C₁₃H₁₇Cl [M–H₂+H]⁺: 207.0940; found: 207.0910.

(S,E)-dec-3-en-2-ylbenzene (31)

Prepared from (*E*)-1-bromooct-1-ene (**11**, 38 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified

by column chromatography (silica gel, hexane) to yield **31** (31 mg, 72% yield) in 94% ee as a colorless oil.

 $\mathbf{R}_f = 0.59$ (silica gel, hexane, UV/CAM).

Chiral SFC: (OJ-H, 2.5 mL/min, 1% IPA in CO₂, $\lambda = 210$ nm): t_R (minor) = 3.9 min, t_R (major) = 4.5 min.

 $[a]_{D}^{25} = +4^{\circ} (c = 0.9, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.27 (m, 2H), 7.25 – 7.15 (m, 3H), 5.60 (ddt, *J* = 15.3, 6.6, 1.4 Hz, 1H), 5.46 (dtd, *J* = 15.1, 6.6, 1.2 Hz, 1H), 3.47 – 3.38 (m, 1H), 2.06 – 1.97 (m, 2H), 1.40 – 1.22 (m, 11H), 0.95 – 0.83 (m, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.7, 135.0, 129.5, 128.4, 127.3, 126.0, 42.4, 32.7, 31.9, 29.6, 29.0, 22.8, 21.7, 14.3.

FTIR (NaCl, thin film, cm⁻¹): 3025, 2959, 2925, 2854, 1492, 1451, 1371, 1016, 965, 758, 697.

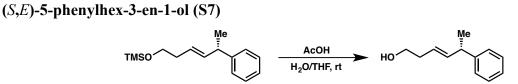
LRMS (GC-MS, m/z): calc'd for C₁₆H₂₄ [M]⁺: 216.2; found: 216.2.

(S,E)-trimethyl((5-phenylhex-3-en-1-yl)oxy)silane (3m)

Prepared from (*E*)-4-bromobut-3-en-1-ol (1m, 30 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3 with the exception that 2.0 equiv

TMSBr was used instead of 1.0 equiv. The reaction was quenched with water instead of 1 M HCl to prevent decomposition of the primary silyl ether. *Note: An acidic workup yielded a mixture of the silyl ether and alcohol product, however the alcohol was inseparable from the phthalimide byproduct.* The crude residue was purified by column chromatography (florisil, hexane to 1% Et₂O/hexane) to yield **3m** (33 mg, 66% yield) as a colorless oil. *Note: The two enantiomers of the racemic silyl ether were inseparable by chiral SFC.*

 $\mathbf{R}_{f} = 0.67$ (silica gel, 10% EtOAc/hexane, UV/CAM).


 $[a]_{D}^{25} = +6^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.35 – 7.28 (m, 2H), 7.25 – 7.17 (m, 3H), 5.69 (ddt, *J* = 15.4, 6.7, 1.3 Hz, 1H), 5.47 (dtd, *J* = 15.3, 6.9, 1.4 Hz, 1H), 3.61 (t, *J* = 7.0 Hz, 2H), 3.49 – 3.40 (m, 1H), 2.28 (qt, *J* = 7.0, 1.1 Hz, 2H), 1.36 (d, *J* = 7.1 Hz, 3H), 0.13 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 146.3, 137.3, 128.5, 127.3, 126.1, 125.4, 62.7, 42.5, 36.2, 21.5, -0.3.

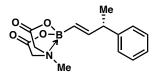
FTIR (NaCl, thin film, cm⁻¹): 2961, 2930, 2902, 2863, 1602, 1493, 1452, 1382, 1251, 1094, 968, 940, 876, 841, 758, 748, 699.

HRMS (FAB, *m/z***)**: calc'd for C₁₅H₂₄OSi [M+H]⁺: 249.1675; found: 249.1684.

Deprotection of Silyl Ether: Silyl ether **3m** (33.0 mg, 0.132 mmol, 1 equiv) was dissolved in a solution of acetic acid (0.5 mL), water (0.5 mL), and THF (2.5 mL) in a 20 mL vial equipped with a magnetic stir bar and stirred at room temperature for 15 min. The reaction was slowly quenched with a solution of saturated NaHCO₃ until the pH was slightly basic (approx. 15 mL),

extracted with Et_2O (3 x 10 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to yield **S7** (22.6 mg, 97% yield) in 89% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_f = 0.11$ (silica gel, 10% EtOAc/hexane, UV/CAM).


Chiral SFC: (OB-H, 2.5 mL/min, 3% IPA in CO₂, $\lambda = 210$ nm): t_R (minor) = 6.9 min, t_R (major) = 7.5 min.

 $[a]_{D}^{25} = +9^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.27 (m, 2H), 7.25 – 7.16 (m, 3H), 5.76 (ddt, *J* = 15.4, 6.7, 1.4 Hz, 1H), 5.45 (dtd, *J* = 15.3, 7.0, 1.4 Hz, 1H), 3.65 (t, *J* = 6.3 Hz, 2H), 3.52 – 3.42 (m, 1H), 2.30 (q, *J* = 6.3 Hz, 2H), 1.54 (s, 1H), 1.37 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 146.1, 138.8, 128.6, 127.2, 126.2, 124.8, 62.2, 42.5, 36.0, 21.6.

(S,E)-6-methyl-2-(3-phenylbut-1-en-1-yl)-1,3,6,2-dioxazaborocane-4,8-dione (3n)

Prepared from *trans*-1-bromovinylboronic acid MIDA ester (**1n**, 52 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (**2**, 59 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 10% EtOAc/hexane to 100% EtOAc) to yield **3n** (25 mg, 43% yield) in 97% ee as a yellow solid. *Note: The* ¹H NMR contains two minor impurities that were identified as DMA and methyliminodiacetic acid.

 $\mathbf{R}_{f} = 0.35$ (silica gel, EtOAc, UV/KMnO₄).

m.p. = 144–146 °C

Chiral SFC: (OJ-H, 2.5 mL/min, 30% IPA in CO₂, $\lambda = 210$ nm): t_R (major) = 5.5 min, t_R (minor) = 10.2 min.

 $[a]_{D}^{25} = +0.5^{\circ} \pm 1.1^{\circ}$ (c = 1.0, CHCl₃). *Note: This compound shows low optical rotation.*

¹**H NMR (400 MHz, CDCl₃):** δ 7.32 – 7.23 (m, 2H), 7.21 – 7.13 (m, 3H), 6.32 (dd, J = 17.7, 6.4 Hz, 1H), 5.38 (dd, J = 17.7, 1.5 Hz, 1H), 3.92 (dd, J = 16.7, 4.5 Hz, 2H), 3.59 (dd, J = 16.8, 13.9 Hz, 2H), 3.54 – 3.46 (m, 1H), 2.69 (s, 3H), 1.36 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 168.34, 168.27, 151.7, 145.3, 128.6, 127.4, 126.3, 61.53, 61.49, 47.0, 44.8, 20.8.

FTIR (NaCl, thin film, cm⁻¹): 2963, 1762, 1636, 1492, 1338, 1290, 1246, 1193, 1154, 1126, 1090, 1025, 1007, 956, 867, 761, 702.

HRMS (FAB, *m/z***)**: calc'd for C₁₅H₁₈BNO₄ [M+H]⁺: 288.1407; found: 288.1414.

(S,E)-trimethyl(3-phenylbut-1-en-1-yl)silane (30)

Prepared from (E)-(2-bromovinyl)trimethylsilane (10, 36 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpropanoate (2, 59 mg, 0.2 mmol) according to General Procedure 3. Vinyl bromide 10 is reported to be air sensitive, and

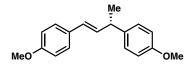
was added to the reaction while inside the glovebox. The crude residue was purified by column chromatography (silica gel, hexane) to yield **30** (28 mg, 68% yield) in 97% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.65$ (silica gel, hexane, UV/CAM).

TMS

Chiral SFC: (OJ-H, 2.5 mL/min, CO₂, $\lambda = 210$ nm): t_R (major) = 1.8 min, t_R (minor) = 2.0 min.

 $[a]_D^{25} = -2.4^\circ \pm 0.2^\circ (c = 0.9, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.35 – 7.28 (m, 2H), 7.24 – 7.18 (m, 3H), 6.19 (dd, *J* = 18.6, 5.9 Hz, 1H), 5.68 (dd, *J* = 18.6, 1.6 Hz, 1H), 3.52 – 3.44 (m, 1H), 1.36 (d, *J* = 7.0 Hz, 3H), 0.06 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 150.8, 145.8, 128.5, 128.1, 127.5, 126.2, 45.6, 20.9, -1.0.

FTIR (NaCl, thin film, cm⁻¹): 3028, 2958, 1612, 1602, 1492, 1452, 1248, 1009, 987, 868, 837, 759, 698.

LRMS (GC-MS, m/z): calc'd for C₁₃H₂₀Si [M]⁺: 204.1; found: 204.1.

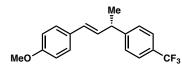
(S,E)-4,4'-(but-1-ene-1,3-diyl)bis(methoxybenzene) (7a)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(4-methoxyphenyl)- propanoate (**6a**, 65 mg, 0.2 mmol) according to General Procedure

3. The crude residue was purified by column chromatography (silica gel, 10% toluene/hexane then 10% Et_2O /hexane) to yield **7a** (42 mg, 78% yield) in 93% ee as a white solid. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.45$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 51–59 °C


Chiral SFC: (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 235$ nm): t_R (major) = 7.0 min, t_R (minor) = 8.5 min.

 $[a]_D^{25} = -34^\circ (c = 1.0, CHCl_3).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.32 (d, J = 8.7 Hz, 2H), 7.22 (d, J = 8.5 Hz, 2H), 6.89 (d, J = 8.8 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.37 (d, J = 16.0 Hz, 1H), 6.25 (dd, J = 15.9, 6.6 Hz, 1H), 3.82 (s, 3H), 3.81 (s, 3H), 3.65 – 3.55 (m, 1H), 1.46 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.9, 158.0, 138.1, 133.6, 130.5, 128.3, 127.7, 127.3, 114.0, 113.9, 55.4 (2C), 41.8, 21.6.

(S,E)-1-methoxy-4-(3-(4-(trifluoromethyl)phenyl)but-1-en-1-yl)benzene (7b)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(4-(trifluoromethyl)- phenyl)propanoate (**6b**, 73 mg, 0.2 mmol) according to General

Procedure 3. The crude residue was purified by column chromatography (silica gel, 5% toluene/hexane) to yield **7b** (40 mg, 65% yield) in 88% ee as a white solid.

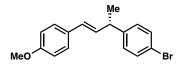
 $\mathbf{R}_{f} = 0.48$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 67–70 °C

Chiral SFC: (OB-H, 2.5 mL/min, 5% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 6.5 min, t_R (minor) = 7.5 min.

 $[a]_{D}^{25} = -39^{\circ} (c = 1.0, CHCl_3).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.58 (d, J = 8.1 Hz, 2H), 7.39 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.8 Hz, 2H), 6.38 (d, J = 16.0 Hz, 1H), 6.21 (dd, J = 15.9, 6.8 Hz, 1H), 3.81 (s, 3H), 3.73 – 3.64 (m, 1H), 1.48 (d, J = 7.0 Hz, 3H).


¹³C NMR (101 MHz, CDCl₃): δ 159.1, 150.1 (q, $J_{C-F} = 1.4$ Hz), 132.0, 130.1, 128.8, 128.6 (q, $J_{C-F} = 32.3$ Hz), 127.8, 127.4, 125.5 (q, $J_{C-F} = 3.8$ Hz), 124.5 (q, $J_{C-F} = 271.9$ Hz), 114.1, 55.4, 42.6, 21.3.

¹⁹F NMR (282 MHz, CDCl₃): δ -65.4.

FTIR (NaCl, thin film, cm⁻¹): 2965, 1608, 1512, 1252, 1174, 1164, 1122, 1069, 1036, 1016, 967, 840, 818.

HRMS (EI, m/z): calc'd for C₁₈H₁₇F₃O [M+·]⁺: 306.1232; found: 306.1241.

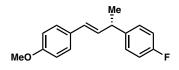
(S,E)-1-bromo-4-(4-(4-methoxyphenyl)but-3-en-2-yl)benzene (7c)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(4-bromophenyl)-propanoate (**6c**, 75 mg, 0.2 mmol) according to General Procedure 3.

The crude residue was purified by column chromatography (silica gel, 5 to 10% toluene/hexane) to yield **7c** (51 mg, 80% yield) in 90% ee as a white solid. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.59$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 74–76 °C


Chiral SFC: (OB-H, 2.5 mL/min, 35% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 5.3 min, t_R (minor) = 8.5 min.

 $[a]_{D}^{25} = -32^{\circ} (c = 1.0, CHCl_3).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.45 (d, J = 8.5 Hz, 2H), 7.30 (d, J = 8.6 Hz, 2H), 7.16 (d, J = 8.3 Hz, 2H), 6.86 (d, J = 8.8 Hz, 2H), 6.36 (d, J = 16.0 Hz, 1H), 6.20 (dd, J = 15.9, 6.7 Hz, 1H), 3.81 (s, 3H), 3.64 – 3.55 (m, 1H), 1.45 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 159.0, 145.0, 132.5, 131.6, 130.2, 129.2, 128.4, 127.4, 120.0, 114.0, 55.4, 42.1, 21.3.

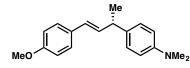
(*S*,*E*)-1-fluoro-4-(4-(4-methoxyphenyl)but-3-en-2-yl)benzene (7d)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(4-fluorophenyl)-propanoate (**6d**, 63 mg, 0.2 mmol) according to General Procedure 3.

The crude residue was purified by column chromatography (silica gel, 5 to 30% toluene/hexane) to yield **7d** (44 mg, 85% yield) in 92% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.70$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 280$ nm): t_R (major) = 5.9 min, t_R (minor) = 8.3 min.


 $[a]_{D}^{25} = -29^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.28 (m, 2H), 7.28 – 7.20 (m, 2H), 7.06 – 6.98 (m, 2H), 6.89 – 6.83 (m, 2H), 6.40 – 6.32 (m, 1H), 6.23 (dd, *J* = 15.9, 6.7 Hz, 1H), 3.81 (s, 3H), 3.67 – 3.58 (m, 1H), 1.46 (d, *J* = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 161.5 (d, $J_{C-F} = 243.7$ Hz), 159.0, 141.6 (d, $J_{C-F} = 3.1$ Hz), 133.0, 130.3, 128.8 (d, $J_{C-F} = 7.8$ Hz), 128.1, 127.4, 115.3 (d, $J_{C-F} = 21.2$ Hz), 114.1, 55.4, 41.9, 21.6.

¹⁹F NMR (282 MHz, CDCl₃): δ -123.56 (tt, J_{F-H} = 8.9, 5.4 Hz).

(S,E)-4-(4-(4-methoxyphenyl)but-3-en-2-yl)-N,N-dimethylaniline (7e)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(4-(dimethyl-amino)phenyl)propanoate (**6e**, 68 mg, 0.2 mmol) according to

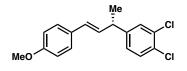
General Procedure 3. The reaction was quenched with water instead of 1 M HCl. The crude residue was purified by column chromatography (silica gel, hexane to 10% Et₂O/hexane) to yield 7e (37 mg, 66% yield) in 94% ee as a white solid.

 $\mathbf{R}_{f} = 0.28$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 72–75 °C

Chiral SFC: (AD-H, 2.5 mL/min, 20% IPA in CO₂, $\lambda = 280$ nm): t_R (major) = 8.2 min, t_R (minor) = 10.6 min.

 $[a]_{D}^{25} = -29^{\circ} (c = 1.1, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.29 (d, *J* = 8.7 Hz, 2H), 7.15 (d, *J* = 8.5 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.73 (d, *J* = 8.7 Hz, 2H), 6.34 (dd, *J* = 16.2, 0.8 Hz, 1H), 6.23 (dd, *J* = 15.9, 6.6 Hz, 1H), 3.80 (s, 3H), 3.58 – 3.50 (m, 1H), 2.93 (s, 6H), 1.42 (d, *J* = 7.1 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.8, 149.3, 134.1, 130.7, 128.0, 127.3, 114.0, 113.1, 55.4, 41.6, 41.0, 21.5.

FTIR (NaCl, thin film, cm⁻¹): 2958, 1608, 1518, 1509, 1456, 1341, 1249, 1173, 1034, 966, 948, 815.

HRMS (FAB, m/z): calc'd for C₁₉H₂₃NO [M+·]⁺: 281.1780; found: 281.1774.

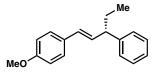
(*S*,*E*)-1,2-dichloro-4-(4-(4-methoxyphenyl)but-3-en-2-yl)benzene (7f)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-(3,4-dichlorophenyl)-propanoate (**6f**, 73 mg, 0.2 mmol) according to General Procedure 3.

The crude residue was purified by column chromatography (silica gel, hexane to 5% Et_2O /hexane) to yield **7f** (48 mg, 77% yield) in 82% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.51$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OB-H, 2.5 mL/min, 25% IPA in CO₂, $\lambda = 280$ nm): t_R (major) = 6.5 min, t_R (minor) = 9.0 min.


 $[a]_p^{25} = -26^\circ (c = 1.1, CHCl_3).$

¹**H** NMR (400 MHz, CDCl₃): δ 7.37 (d, J = 8.3 Hz, 1H), 7.35 (d, J = 2.1 Hz, 1H), 7.32 – 7.27 (m, 2H), 7.10 (ddd, J = 8.2, 2.1, 0.6 Hz, 1H), 6.87 – 6.82 (m, 2H), 6.35 (dd, J = 15.9, 1.3 Hz, 1H), 6.15 (dd, J = 15.9, 6.8 Hz, 1H), 3.81 (s, 3H), 3.62 – 3.53 (m, 1H), 1.43 (d, J = 7.0 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 159.2, 146.3, 132.4, 131.7, 130.5, 130.1, 130.0, 129.4, 128.9, 127.4, 127.0, 114.1, 55.4, 41.9, 21.2.

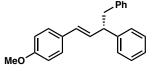
FTIR (NaCl, thin film, cm⁻¹): 2964, 1607, 1511, 1466, 1299, 1250, 1174, 1106, 1030, 967, 815. **HRMS (FAB,** *m/z***)**: calc'd for C₁₇H₁₆Cl₂O [M+·]⁺: 306.0578; found: 306.0582.

(*S*,*E*)-1-methoxy-4-(3-phenylpent-1-en-1-yl)benzene (7g)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (1a, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylbutanoate (6g, 62 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 10 to 20% toluene/hexane) to yield 7g (40 mg, 80% yield) in 97% ee as a colorless oil. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.59$ (silica gel, 10% EtOAc/hexane, UV).


Chiral SFC: (OB-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 8.0 min, t_R (major) = 9.9 min.

 $[a]_{D}^{25} = -46^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.37 – 7.19 (m, 7H), 6.84 (d, J = 8.8 Hz, 2H), 6.37 (d, J = 15.8 Hz, 1H), 6.21 (dd, J = 15.8, 7.8 Hz, 1H), 3.80 (s, 3H), 3.35 – 3.26 (m, 1H), 1.90 – 1.78 (m, 2H), 0.93 (t, J = 7.4 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.9, 144.9, 132.2, 130.6, 128.9, 128.6, 127.8, 127.3, 126.2, 114.0, 55.4, 51.1, 29.0, 12.5.

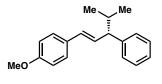
(*S*,*E*)-(4-(4-methoxyphenyl)but-3-ene-1,2-diyl)dibenzene (7h)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (1a, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2,3-diphenylpropanoate (6h, 74 mg, 0.2 mmol) according to General Procedure 3. The crude residue

was purified by column chromatography (silica gel, 10% toluene/hexane then 10% Et_2O /hexane) to yield **7h** (49 mg, 78% yield) in 95% ee as a white solid. Spectral data matched those reported in literature.¹³

 $\mathbf{R}_{f} = 0.48$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 72–73 °C


Chiral SFC: (AS-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 6.0 min, t_R (major) = 6.5 min.

 $[a]_{p}^{25} = +19^{\circ} (c = 1.0, CHCl_3).$

¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.13 (m, 10H), 7.10 (d, *J* = 8.8 Hz, 2H), 6.83 (d, *J* = 8.8 Hz, 2H), 6.30 (dd, *J* = 15.9, 6.3 Hz, 1H), 6.25 (d, *J* = 15.9 Hz, 1H), 3.80 (s, 3H), 3.78 – 3.67 (m, 1H), 3.19 – 3.06 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 158.9, 144.1, 140.2, 131.3, 130.4, 129.53, 129.49, 128.5, 128.2, 128.0, 127.4, 126.4, 126.0, 114.0, 55.4, 51.0, 42.9.

(*S*,*E*)-1-methoxy-4-(4-methyl-3-phenylpent-1-en-1-yl)benzene (7i)

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 3-methyl-2-phenylbutanoate (**6i**, 65 mg, 0.2 mmol) according to General Procedure 3. The crude residue

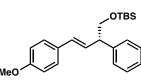
was purified by column chromatography (silica gel, 10 to 20% toluene/hexane) to yield 7i (25 mg, 47% yield) in 97% ee as a white solid.

 $\mathbf{R}_{f} = 0.58$ (silica gel, 10% EtOAc/hexane, UV).

m.p. = 67–68 °C

Chiral SFC: (AS-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 4.8 min, t_R (major) = 6.1 min.

 $[a]_{D}^{25} = -39^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.34 – 7.28 (m, 4H), 7.26 – 7.17 (m, 3H), 6.84 (d, *J* = 8.8 Hz, 2H), 6.36 (d, *J* = 15.7 Hz, 1H), 6.26 (dd, *J* = 15.7, 8.8 Hz, 1H), 3.80 (s, 3H), 3.04 (t, *J* = 8.8 Hz, 1H), 2.14 – 1.96 (m, 1H), 1.02 (d, *J* = 6.7 Hz, 3H), 0.82 (d, *J* = 6.6 Hz, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 158.9, 144.7, 131.2, 130.6, 129.8, 128.5, 128.1, 127.3, 126.1, 114.0, 57.8, 55.4, 33.4, 21.3, 21.1.

FTIR (NaCl, thin film, cm⁻¹): 2953, 1600, 1509, 1450, 1251, 1027, 966, 838, 701.

LRMS (GC-MS, m/z): calc'd for C₁₉H₂₂O [M]⁺: 266.2; found: 266.1.

(S,E)-tert-butyl((4-(4-methoxyphenyl)-2-phenylbut-3-en-1-yl)oxy)dimethylsilane (7j)

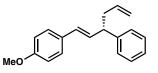
Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 3-((*tert*-butyldimethylsilyl)oxy)-2-phenylpropanoate (**6j**, 74 mg, 0.2 mmol) according to General

Procedure 3. The crude residue was purified by column chromatography (silica gel, 10% toluene/hexane then 10% Et₂O/hexane) to yield **7j** (43 mg, 58% yield) in 98% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.55$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (major) = 3.4 min, t_R (minor) = 5.8 min.

 $[a]_{D}^{25} = -14^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.39 – 7.29 (m, 6H), 7.28 – 7.23 (m, 1H), 6.87 (d, *J* = 8.8 Hz, 2H), 6.44 (d, *J* = 16.0 Hz, 1H), 6.34 (dd, *J* = 15.9, 7.2 Hz, 1H), 3.98 – 3.89 (m, 2H), 3.83 (s, 3H), 3.70 – 3.63 (m, 1H), 0.89 (s, 9H), 0.02 (s, 3H), 0.01 (s, 3H).

¹³C NMR (101 MHz, CDCl₃): δ 159.0, 142.3, 130.7, 130.5, 128.8, 128.45, 128.42, 127.4, 126.6, 114.0, 67.5, 55.4, 51.8, 26.0, 18.4, -5.2, -5.3.

FTIR (NaCl, thin film, cm⁻¹): 2953, 2928, 2892, 2855, 1607, 1511, 1463, 1250, 1174, 1106, 1036, 836, 775, 699.

HRMS (FAB, m/z): calc'd for C₂₃H₃₂O₂Si [M–H₂+H]⁺: 367.2093; found: 367.2081.

(*S*,*E*)-1-methoxy-4-(3-phenylhexa-1,5-dien-1-yl)benzene (7k)

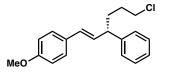
Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (1a, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-phenylpent-4-enoate (6k, 53 mg, 0.2 mmol) according to General Procedure 3. The crude residue was

purified by column chromatography (silica gel, 5 to 20% toluene/hexane) to yield 7k (42 mg, 79% yield) in 96% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.55$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (OJ-H, 2.5 mL/min, 10% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 7.8 min, t_R (major) = 8.5 min.

 $[a]_{D}^{25} = -19^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.31 – 7.14 (m, 7H), 6.78 (d, J = 8.8 Hz, 2H), 6.30 (d, J = 15.9 Hz, 1H), 6.18 (dd, J = 15.8, 7.5 Hz, 1H), 5.73 (ddt, J = 17.1, 10.2, 6.9 Hz, 1H), 5.01 (ddt, J = 17.0, 2.0, 1.5 Hz, 1H), 4.95 (ddt, J = 10.2, 2.1, 1.0 Hz, 1H), 3.74 (s, 3H), 3.50 – 3.42 (m, 1H), 2.57 – 2.51 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 159.0, 144.2, 136.8, 131.5, 130.4, 129.2, 128.6, 127.8, 127.4, 126.4, 116.4, 114.0, 55.4, 49.1, 40.4.

FTIR (NaCl, thin film, cm⁻¹): 3025, 2913, 2834, 1606, 1509, 1246, 1173, 1032, 963, 911, 756, 698.

HRMS (EI, *m/z*): calc'd for $C_{19}H_{20}O[M+\cdot]^+$: 264.1514; found: 264.1521.

(*S*,*E*)-1-(6-chloro-3-phenylhex-1-en-1-yl)-4-methoxybenzene (7l)

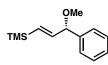
Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 5-chloro-2-phenylpentanoate (**6l**, 72 mg, 0.2 mmol) according to General Procedure 3. The crude

residue was purified by column chromatography (silica gel, 5% Et_2O /hexane) to yield 7l (52 mg, 87% yield) in 93% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.53$ (silica gel, 10% EtOAc/hexane, UV).

Chiral SFC: (AS-H, 2.5 mL/min, 15% IPA in CO₂, $\lambda = 254$ nm): t_R (minor) = 3.7 min, t_R (major) = 4.7 min.

 $[a]_{D}^{25} = -21^{\circ} (c = 1.0, CHCl_3).$


¹**H NMR (400 MHz, CDCl₃):** δ 7.37 – 7.21 (m, 7H), 6.85 (d, *J* = 8.8 Hz, 2H), 6.38 (d, *J* = 15.8 Hz, 1H), 6.20 (dd, *J* = 15.8, 7.9 Hz, 1H), 3.81 (s, 3H), 3.56 (t, *J* = 6.5 Hz, 2H), 3.46 – 3.38 (m, 1H), 2.02 – 1.92 (m, 2H), 1.92 – 1.69 (m, 2H).

¹³C NMR (101 MHz, CDCl₃): δ 159.0, 144.2, 131.5, 130.2, 129.2, 128.7, 127.7, 127.4, 126.5, 114.0, 55.4, 48.7, 45.2, 33.2, 30.8.

FTIR (NaCl, thin film, cm⁻¹): 2915, 1605, 1491, 1438, 1509, 1246, 1173, 1031, 964.

HRMS (FAB, m/z): calc'd for C₁₉H₂₁ClO [M+·]⁺: 300.1281; found: 300.1274.

(*S*,*E*)-(3-methoxy-3-phenylprop-1-en-1-yl)trimethylsilane (9)

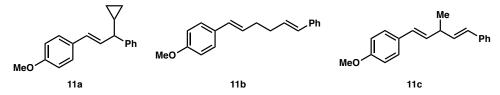
Prepared from (*E*)-(2-bromovinyl)trimethylsilane (10, 36 mg, 0.2 mmol) and 1,3-dioxoisoindolin-2-yl 2-methoxy-2-phenylacetate (8, 62 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified by column

chromatography (silica gel, 0 to 3% Et_2O /hexane) to yield 9 (26 mg, 59% yield) in 91% ee as a colorless oil.

 $\mathbf{R}_{f} = 0.62$ (silica gel, 10% EtOAc/hexane, UV/CAM).

Chiral SFC: (OD-H, 2.5 mL/min, 1% IPA in CO₂, $\lambda = 210$ nm): t_R (minor) = 2.6 min, t_R (major) = 5.9 min.

 $[a]_{D}^{25} = +8^{\circ} (c = 0.6, CHCl_3).$

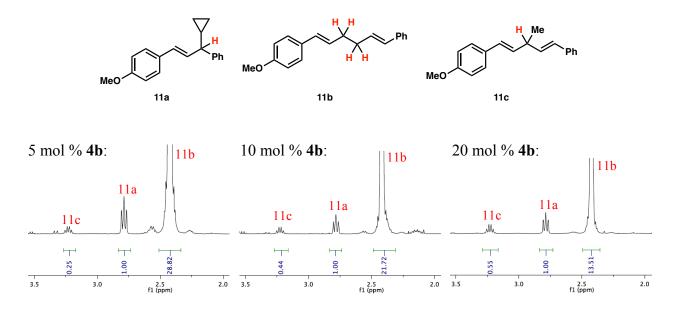

¹**H NMR (400 MHz, CDCl₃):** δ 7.40 – 7.27 (m, 5H), 6.10 (dd, J = 18.6, 5.9 Hz, 1H), 5.93 (dd, J = 18.6, 1.2 Hz, 1H), 4.61 (d, J = 5.8 Hz, 1H), 3.32 (s, 3H), 0.07 (s, 9H).

¹³C NMR (101 MHz, CDCl₃): δ 145.7, 140.9, 131.9, 128.6, 127.7, 127.1, 86.6, 56.6, -1.2.

FTIR (NaCl, thin film, cm⁻¹): 2955, 2820, 1453, 1248, 1100, 990, 863, 838, 760, 699.

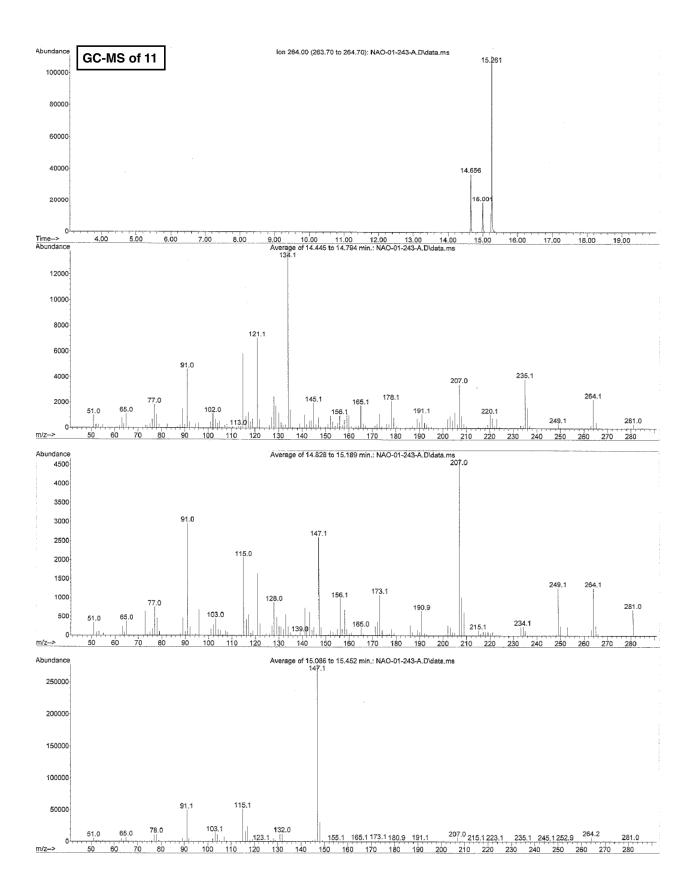
HRMS (FAB, m/z): calc'd for C₁₃H₂₀Osi [M–H₂+H]⁺: 219.1205; found: 219.1191.

(*E*)-1-(3-cyclopropyl-3-phenylprop-1-en-1-yl)-4-methoxybenzene (11a) 1-methoxy-4-((1*E*,5*E*)-6-phenylhexa-1,5-dien-1-yl)benzene (11b) 1-methoxy-4-((1*E*,4*E*)-3-methyl-5-phenylpenta-1,4-dien-1-yl)benzene (11c)

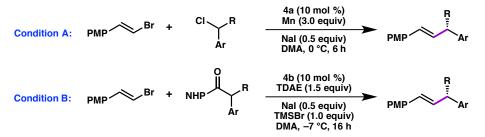

Prepared from (*E*)-1-(2-bromovinyl)-4-methoxybenzene (**1a**, 43 mg, 0.2 mmol) and 1,3dioxoisoindolin-2-yl 2-cyclopropyl-2-phenylacetate (**10**, 64 mg, 0.2 mmol) according to General Procedure 3. The crude residue was purified by column chromatography (silica gel, hexane to 30% toluene/hexane) to yield a mixture of **11a–c** (22 mg, 42% yield) as a colorless oil. The reaction was repeated with 5 mol % and 20 mol % of **4b**, yielding a mixture of **11a–c** in 44% and 49% yield, respectively. Three products are confirmed by GC-MS (extract ion m/z = 264). Distinct ¹H/¹³C signals and coupling correlations are confirmed by ¹H, ¹³C, COSY, HSQC, and HMBC NMR spectroscopy.

NMR data for **11a–c** with 20 mol % **4b**:

¹**H NMR (400 MHz, CDCl₃):** δ 7.42 – 7.18 (m, 7H), 6.86 (dq, *J* = 8.9, 2.5 Hz, 2H), 6.49 – 6.36 (m, 1.8H), 6.34 – 6.08 (m, 1.82H), 3.81 (s, 3H), 3.20 (qt, *J* = 6.9, 1.3 Hz, 0.1H, *11c*), 2.76 (ddd, *J* = 8.6, 6.9, 1.2 Hz, 0.2H, *11a*), 2.49 – 2.31 (m, 2.8H, *11b*), 1.31 (d, *J* = 6.9 Hz, 0.3H, *11c*), 1.23 – 1.13 (m, 0.2H, *11a*), 0.68 (dddd, *J* = 9.1, 8.0, 5.3, 4.1 Hz, 0.2H, *11a*), 0.56 (dddd, *J* = 9.4, 8.0, 5.2, 4.1 Hz, 0.2H, *11a*), 0.40 – 0.31 (m, 0.2H, *11a*), 0.28 (dtd, *J* = 9.3, 5.2, 4.2 Hz, 0.2H, *11a*).


¹³C NMR (101 MHz, CDCl₃): δ 158.9, 158.8, 144.6, 137.9, 137.8, 134.7, 132.2, 131.2, 130.7, 130.5, 130.4, 130.3, 129.8, 129.0, 128.7, 128.6, 128.5, 128.3, 128.0, 127.9, 127.4, 127.3, 127.2, 127.1, 127.0, 126.4, 126.2, 126.1, 114.03, 114.02, 55.4, 53.2, 40.2, 33.2, 33.0, 20.5, 16.4, 4.9, 4.4.

FTIR (NaCl, thin film, cm⁻¹): 3026, 2931, 2837, 1607, 1511, 1252, 1176, 1034, 966, 800, 692. **LRMS (GC-MS,** *m/z***)**: calc'd for C₁₉H₂₀O [M]⁺: 264.2; found: 3 products, 264.1, 264.1, 264.2. Ratios of **11a–c** were determined by ¹H NMR analysis:

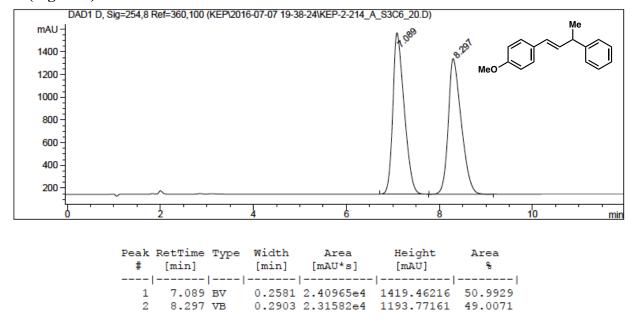


Integration of **11b** was divided by 4 to account for the contribution of 4 protons in the multiplet.

	NMI	R Integration			
Nickel Catalyst	Cyclopropane (11a)	Linear (11b)	Branched (11c)	Ring Closed Total	Ring Open Total
5%	1.00	7.21	0.25	1.00	7.46
10%	1.00	5.43	0.44	1.00	5.87
20%	1.00	3.38	0.55	1.00	3.93

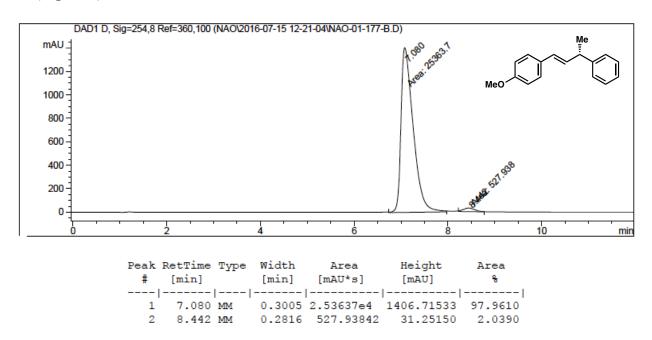
e. Comparison of Benzyl Cl and NHP Ester %ee Values

Table S3. Product %ee Values using Conditions for Benzyl Chlorides or NHP Esters

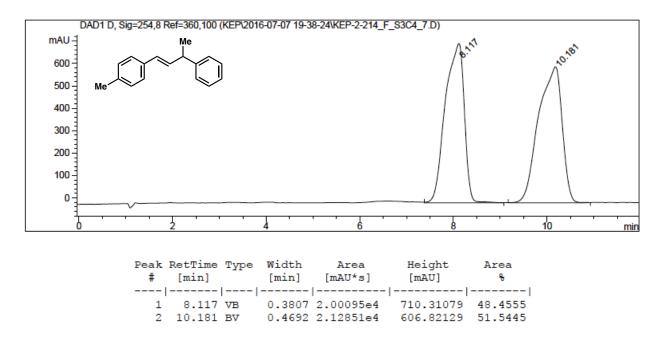

			С	onditions	8:
		_	Α	Α	В
Product	Ar	R	ee(%) ^a	ee(%) ^b	ee(%) ^c
3a		Ме	93	96	96
7a	4-OMe	Ме	93	93	93
7b	4-CF ₃	Ме		87	88
7c	4-Br	Ме	90	90	90
7d	4-F	Ме	89	90	92
7e	4-NMe ₂	Ме			95
7f	3,4-Cl ₂	Ме		77 ^d	82
7g		Et	97	97	97
7h		Bn	93	92	95
7i		iPr		97	97
7j		(CH ₂)OTBS			98
7k		2-butene			96
71		3-chlorobutane			93

^aValues reported in Reference 13 with ligand L and NiCl₂(dme). ^bValues obtained using the conditions reported in Reference 13 and with Ni complex 4a prepared with the same batch of ligand used in this manuscript. ^cValues reported in this manuscript (Table 2 and Table 3). ^dThe ee was improved to 79% with 2 equiv vinyl bromide.

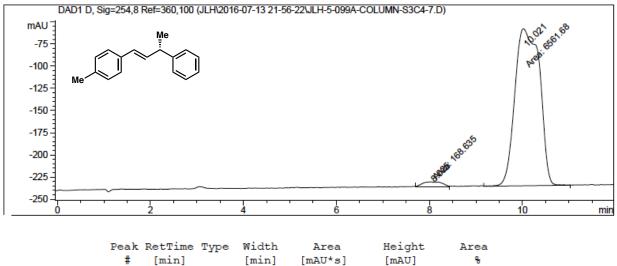
7. References


- ¹ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- ² Snyder, S. A.; ElSohly, A. M.; Kontes, F. Angew. Chem. Int. Ed. 2010, 49, 9693.
- ³ Sibi, M. P.; Liu, M. Org. Lett. 2000, 2, 3393.
- ⁴ Evans, D. A.; Downey, C. W.; Hubbs, J. L. J. Am. Chem. Soc. 2003, 125, 8706.
- ⁵APEX2, Version 2 User Manual, M86-E01078, Bruker Analytical X-ray Systems, Madison, WI, June 2006.
- ⁶ Sheldrick, G.M. "SADABS (version 2008/1): Program for Absorption Correction for Data from Area Detector *Frames*", University of Göttingen, **2008**.
- Trames, Oniversity of Counigen, 2008.
- ⁷ Sheldrick, G. Acta Crystallogr., Sect. A: Found. Crystallogr. **2008**, 64, 112.
- ⁸ Müller, P. Crystallogr. Rev. 2009, 15, 57.
- ⁹ Parsons, S; Flack, H. D; Wagner, T. Acta Cryst. 2013, B69, 249.
- ¹⁰ Bestmann, H. J.; Schmid, G.; Oechsner, H.; Ermann, P. Chem. Ber. 1984, 117, 1561.
- ¹¹ Wasserman, H. H.; Ives, J. L. J. Org. Chem. 1985, 50, 3573.
- ¹² Mahesh, M.; Murphy, J. A.; LeStrat, F.; Wessel, H. P. Beilstein J. Org. Chem. 2009, 5, 1.
- ¹³ Cherney, A. H.; Reisman, S. E. J. Am. Chem. Soc. 2014, 136, 14365.
- ¹⁴ Müller, D.; Alexakis, A. Org. Lett. 2012, 14, 1842.
- ¹⁵ Qian, M.; Huang, Z.; Negishi, E.-I. Org. Lett. 2004, 6, 1531.
- ¹⁶ Kuang, C.; Senboku, H.; Tokuda, M. *Tetrahedron* **2005**, *61*, 637.
- ¹⁷ Li, D.-R.; Zhang, D.-H.; Sun, C.-Y.; Zhang, J.-W.; Yang, L.; Chen, J.; Liu, B.; Su, C.; Zhou, W.-S.; Lin, G.-Q. *Chem. Eur. J.* **2006**, *12*, 1185.
- ¹⁸ Brown, H. C.; Larock, R. C.; Gupta, S. K.; Rajagopalan, S.; Bhat, N. G. J. Org. Chem. **1989**, 54, 6079.
- ¹⁹ Ney, J. E.; Hay, M. B.; Yang, Q.; Wolfe, J. P. Adv. Synth. Catal. 2005, 347, 1614.
- ²⁰ Iranpoor, N.; Firouzabadi, H.; Aghapour, Gh.; Vaez zadeh A. R. Tetrahedron 2002, 58, 8689.
- ²¹ Wu, H.-B.; Ma, X.-T.; Tian, S.-K. Chem. Commun. 2014, 50, 219.
- ²² Ye, J.; Zhao, J.; Xu, J.; Mao, Y.; Zhang, Y. J. Chem. Commun. 2013, 49, 9761.
- ²³ Srinivas, H. D.; Zhou, Q.; Watson, M. P. Org. Lett. 2014, 16, 3596.

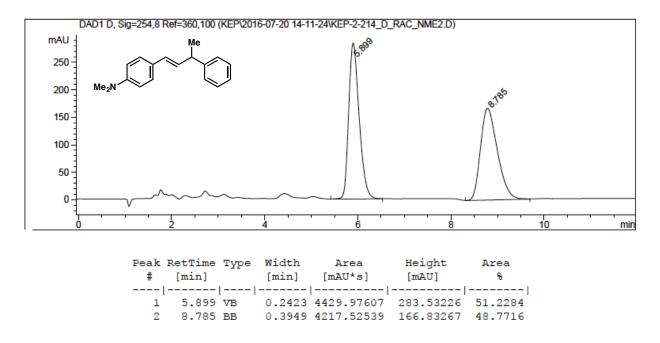
8. Chiral SFC Traces (Note: Racemic samples made with scalemic ligand.)



3a (Figure 1): racemic


3a (Figure 1): enantioenriched, 96% ee

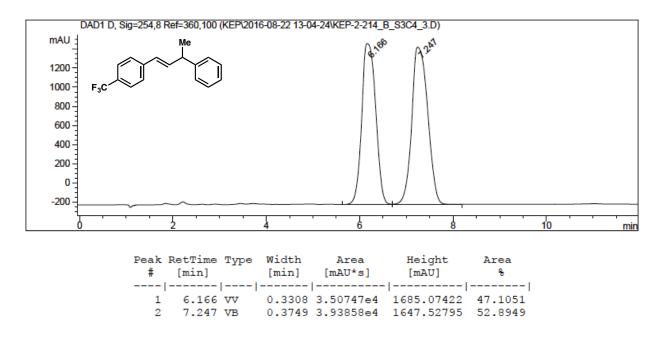
3b (Figure 1): racemic



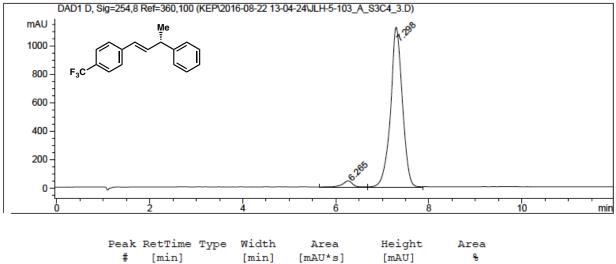
3b (Figure 1): enantioenriched, 95% ee

#	[min]		[min]		[mAU]	÷	
					5.75649		
2	10.021	MM	0.6182	6561.67920	176.91377	97.4944	

3c (Figure 1): racemic

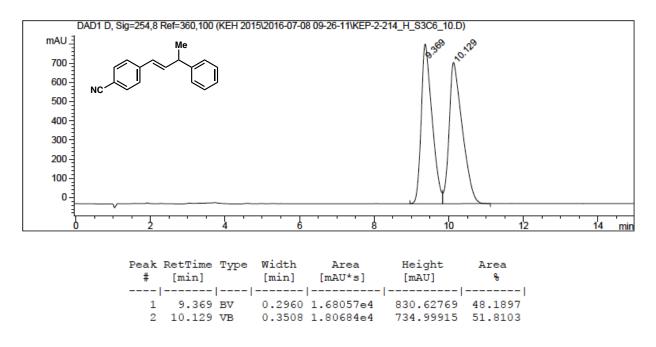


3c (Figure 1): enantioenriched, 97% ee

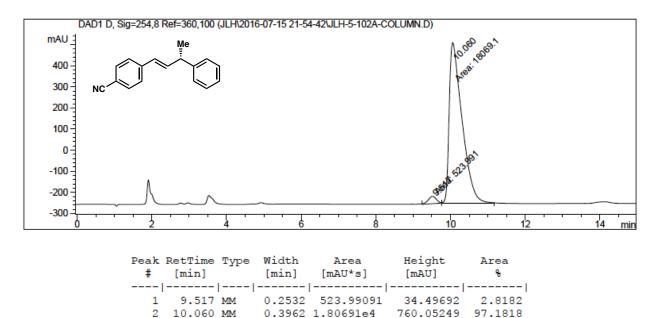


#	[min]		[min]	Area [mAU*s]		Area %
1	5.967	BB	0.2505	3707.96924	227.13380	98.4506
2	9.055	BB	0.2926	58.35402	2.46108	1.5494

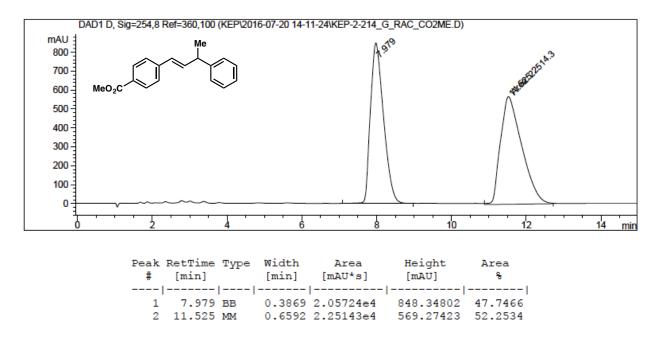
3d (Figure 1): racemic



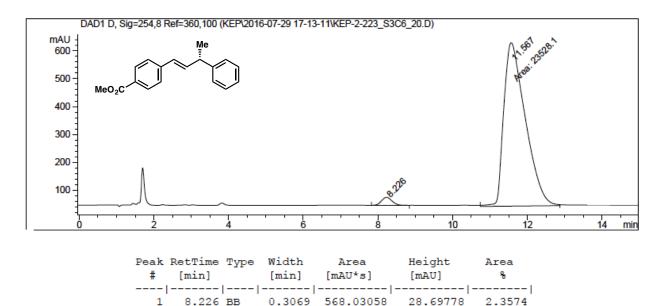
3d (Figure 1): enantioenriched, 93% ee



#	[min]		[min]	[mAU*s]	[mAU]	8	
1	6.265	vv	0.2265	687.93018	43.98362	3.3472	
2	7.298	vv	0.2624	1.98645e4	1122.81396	96.6528	

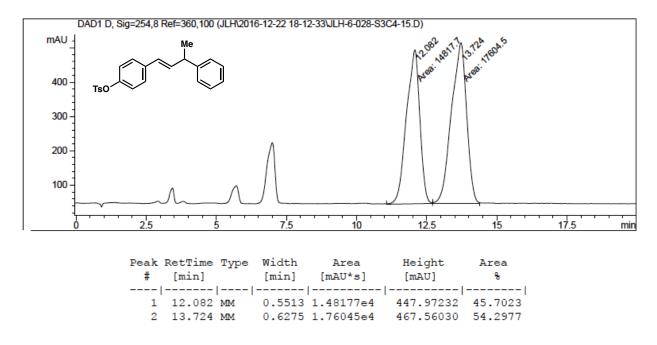

3e (Figure 1): racemic

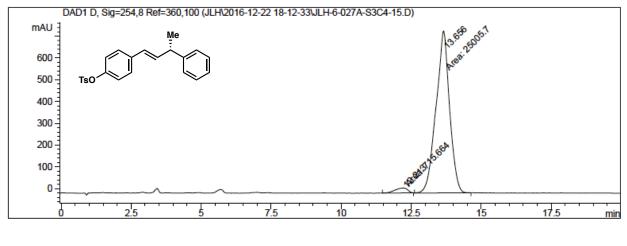
3e (Figure 1): enantioenriched, 94% ee



3f (Figure 1): racemic

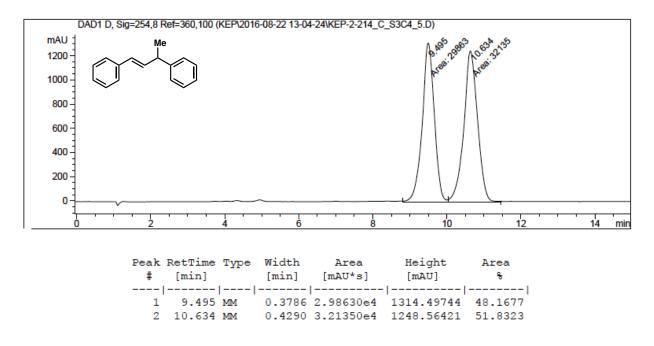
3f (Figure 1): enantioenriched, 95% ee


2 11.567 MM

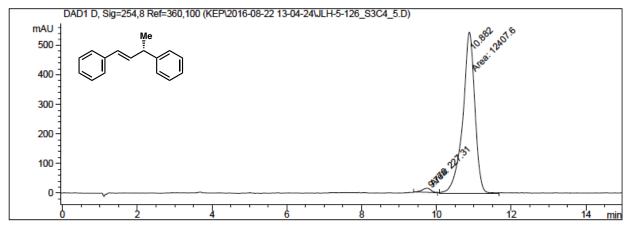

0.6679 2.35281e4

587.09686 97.6426

3g (Figure 1): racemic

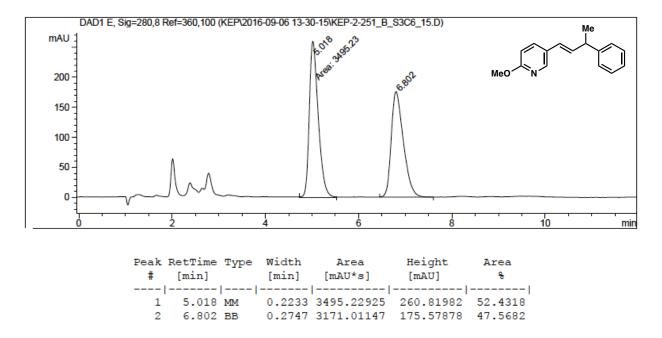


3g (Figure 1): enantioenriched, 94% ee

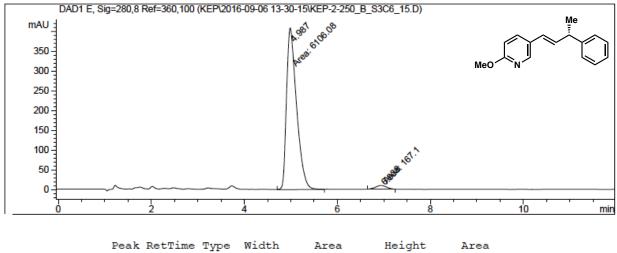


#	[min]		[min]	Area [mAU*s]	Height [mAU]	Area %
1	12.213	MM	0.5201	715.66412	22.93249	2.7824
2	13.656	MM	0.5598	2.50057e4	744.50916	97.2176

3h (Figure 1): racemic

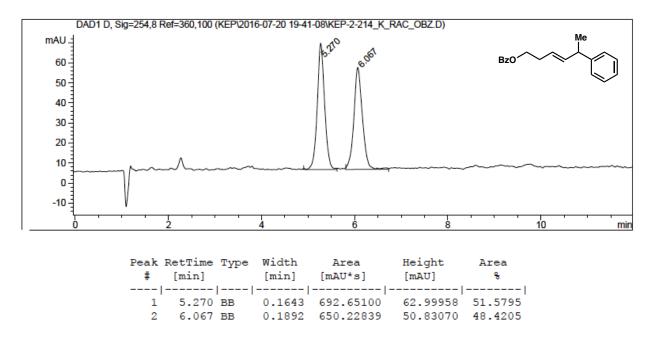


3h (Figure 1): enantioenriched, 96% ee

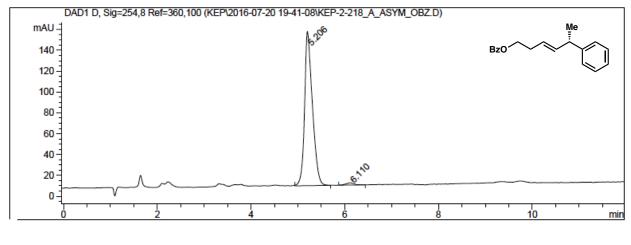


	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	9.770	MM	0.2725	227.31046	13.90100	1.7991
2	10.882	MM	0.3782	1.24076e4	546.85577	98.2009

3i (Figure 1): racemic

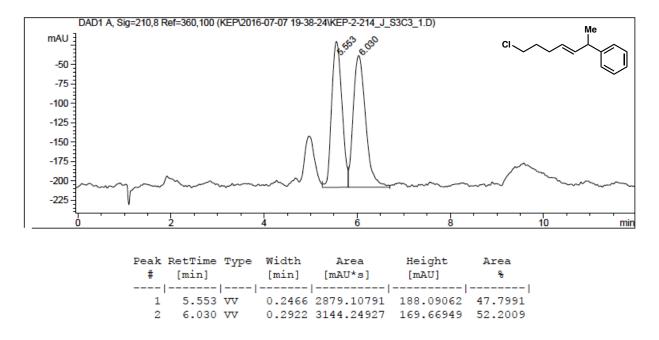


3i (Figure 1): enantioenriched, 95% ee

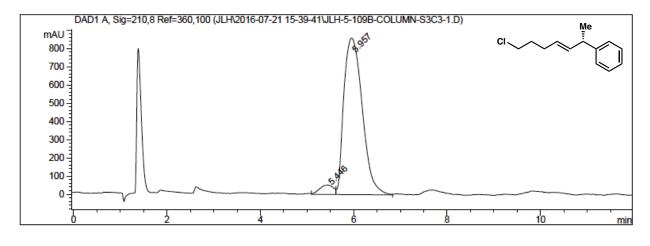


				Area [mAU*s]	-		
1	4.987	MM	0.2488	6106.07617	408.96854	97.3363	
2	6.938	MM	0.2866	167.10007	9.71596	2.6637	

3j (Figure 1): racemic

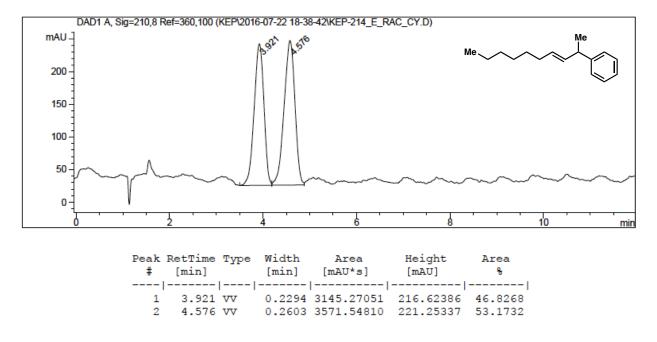


3j (Figure 1): enantioenriched, 97% ee

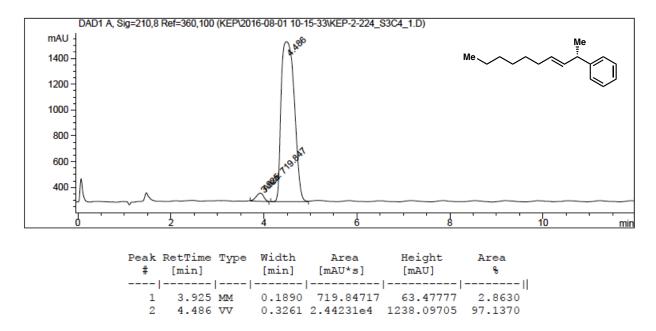


Peak	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		8
1	5.206	BB	0.1708	1710.15393	148.02460	98.4760
2	6.110	BB	0.1607	26.46575	2.19494	1.5240

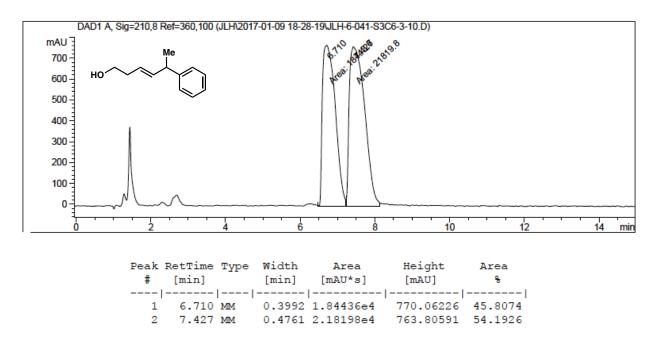
3k (Figure 1): racemic

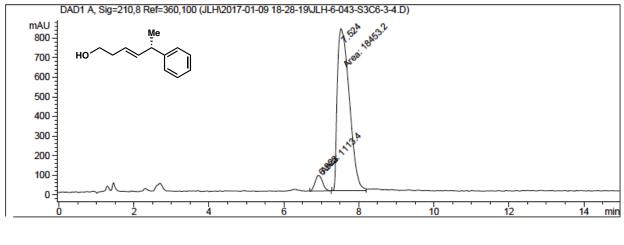


3k (Figure 1): enantioenriched, 91% ee

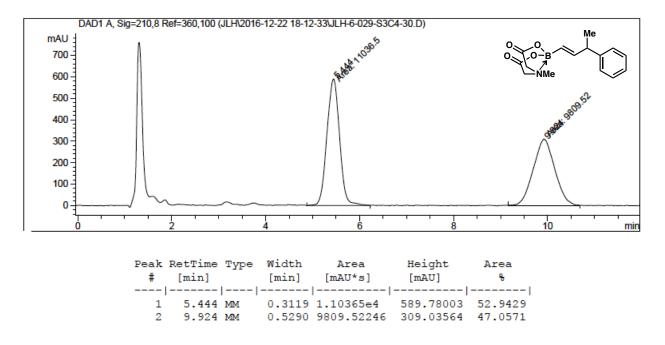


	RetTime [min]			Area [mAU*s]	Height [mAU]	Area %
1	5.446	vv	0.2528	1053.08008	51.88251	4.2859
2	5.957	vv	0.4514	2.35179e4	858.91888	95.7141

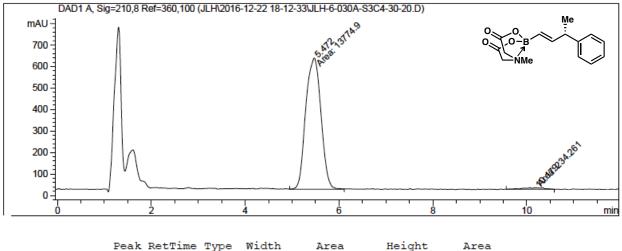

3l (Figure 1): racemic


3l (Figure 1): enantioenriched, 94% ee

S7 (de-silylated 3m, Figure 1): racemic

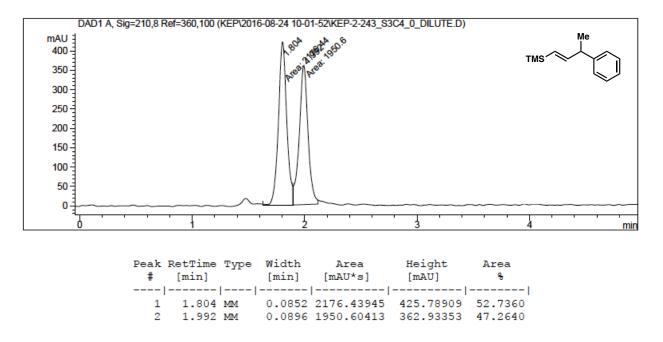


S7 (de-silylated 3m, Figure 1): enantioenriched, 89% ee

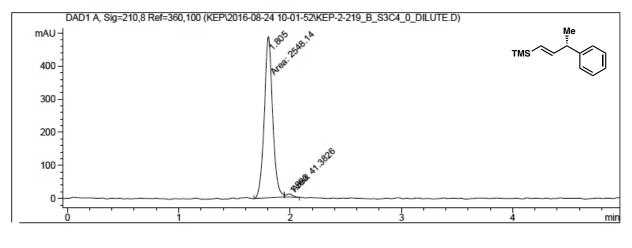


Peak	RetTime	туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	6.923	MM	0.2309	1113.40063	80.37251	5.6903
2	7.524	MM	0.3711	1.84532e4	828.86755	94.3097

3n (Figure 1): racemic

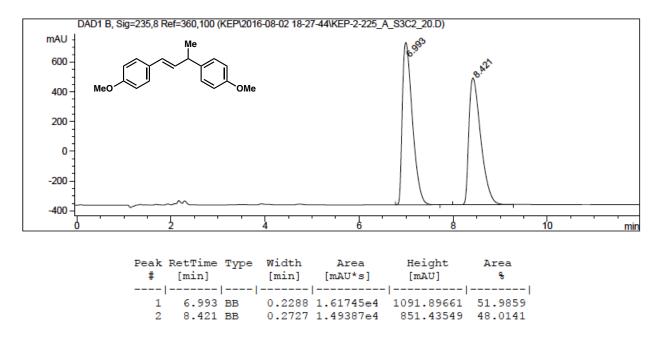


3n (Figure 1): enantioenriched, 97% ee

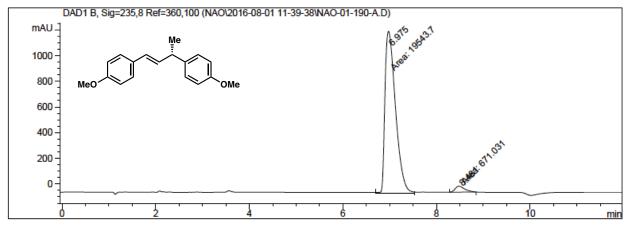


				Area [mAU*s]	Height [mAU]	Area %	
1	5.472	MM	0.3758	1.37749e4	610.96771	98.3278	
2	10.179	MM	0.5146	234.26103	7.58734	1.6722	

30 (Figure 1): racemic

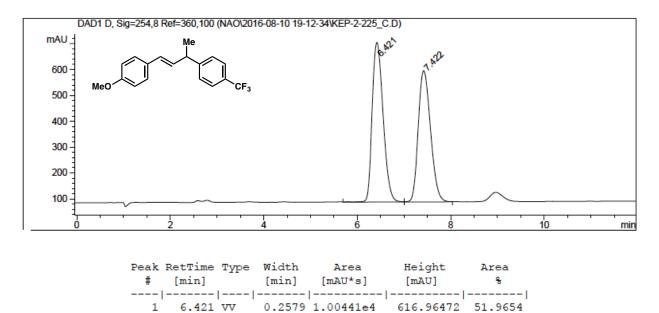


30 (Figure 1): enantioenriched, 97% ee



Peak	RetTime	туре	Width	Area	Height	Area
				[mAU*s]		8
1	1.805	MM	0.0863	2548.14233	492.12225	98.4019
2	1.993	MM	0.0681	41.38256	10.12810	1.5981

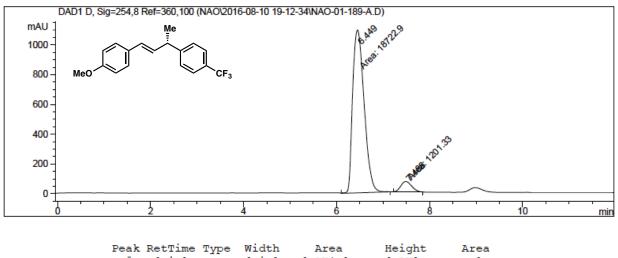
7a (Figure 2): racemic



7a (Figure 2): enantioenriched, 93% ee

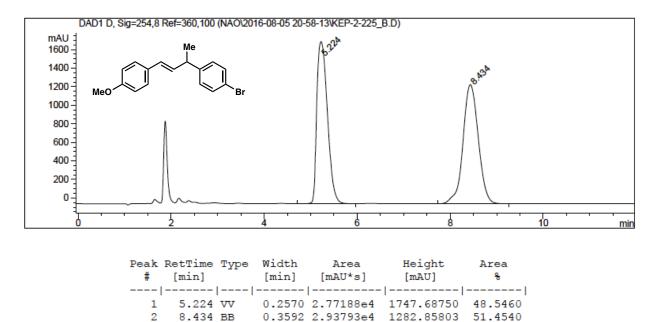
	RetTime			Area	Height	Area
				[mAU*s]	[mAU]	8
1	6.975	MM	0.2585	1.95437e4	1260.21631	96.6805
2	8.481	MM	0.2361	671.03094	47.35995	3.3195

7b (Figure 2): racemic

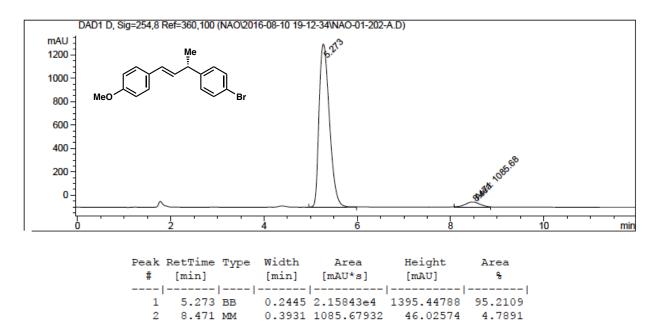


0.2894 9284.33398 507.48148 48.0346

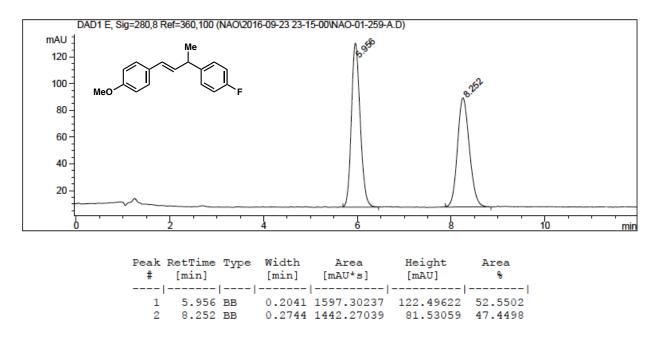
7b (Figure 2): enantioenriched, 88% ee

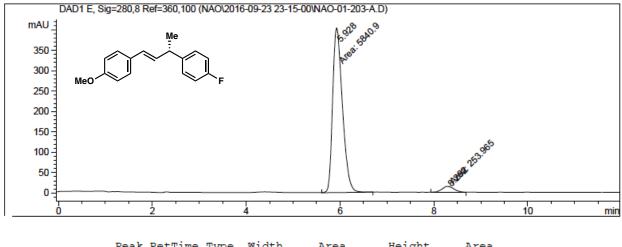

2

7.422 VV

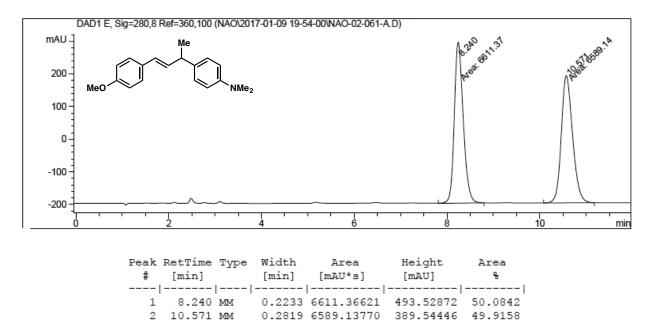


				[mAU*s]	[mAU]	Area ۶	
1	6.449	MM	0.2851	1.87229e4	1094.68372	93.9705	
2	7.488	MM	0.2774	1201.33252	72.18948	6.0295	

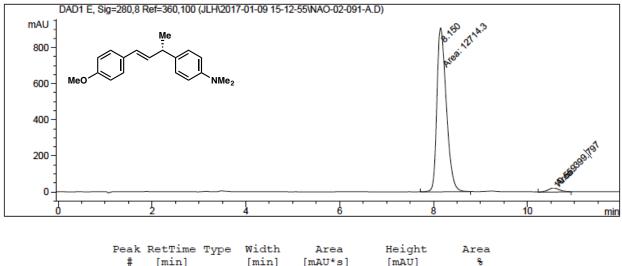

7c (Figure 2): racemic


7c (Figure 2): enantioenriched, 90% ee

7d (Figure 2): racemic

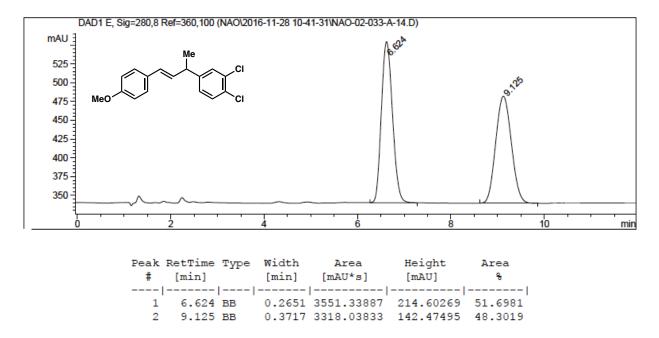


7d (Figure 2): enantioenriched, 92% ee

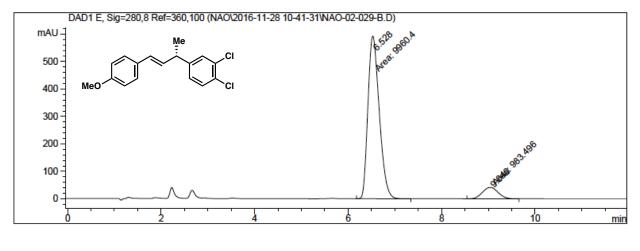


				Area [mAU*s]	2	Area %	
1	5.928	MM	0.2410	5840.89600	403.93130	95.8331	
2	8.292	MM	0.2929	253.96486	14.45295	4.1669	

7e (Figure 2): racemic

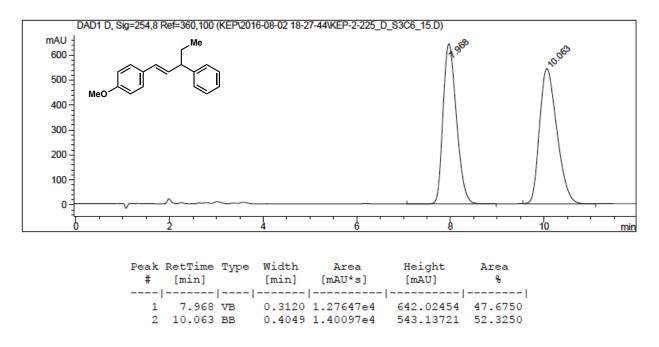


7e (Figure 2): enantioenriched, 94% ee

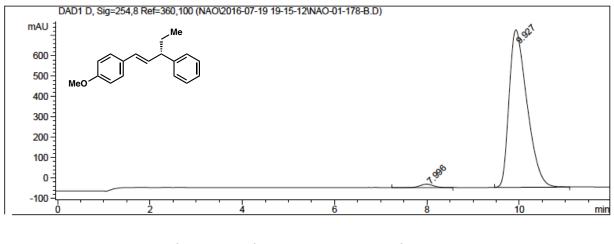


#	[min]		[min]	[mAU*s]	[mAU]	8	
1	8.150	MM	0.2330	1.27143e4	909.57269	96.9514	
2	10.559	MM	0.2917	399.79657	22.84231	3.0486	

7f (Figure 2): racemic

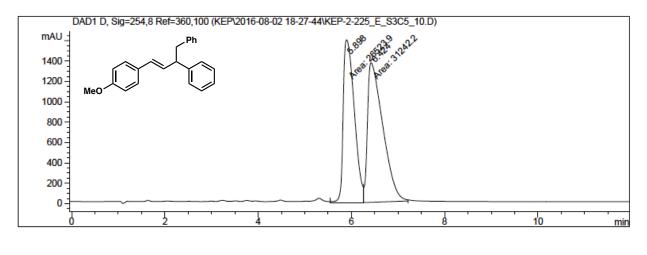


7f (Figure 2): enantioenriched, 82% ee

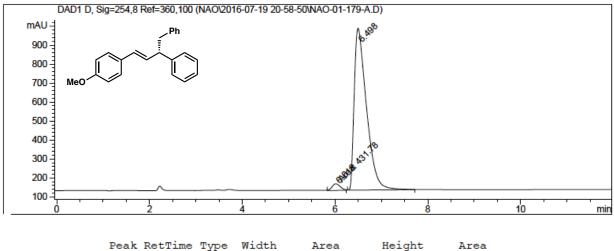


				Area [mAU*s]	Height [mAU]	Area %
1	6.528	MM	0.2800	9960.39941	592.94763	91.0133
2	9.040	MM	0.3921	983.49628	41.80441	8.9867

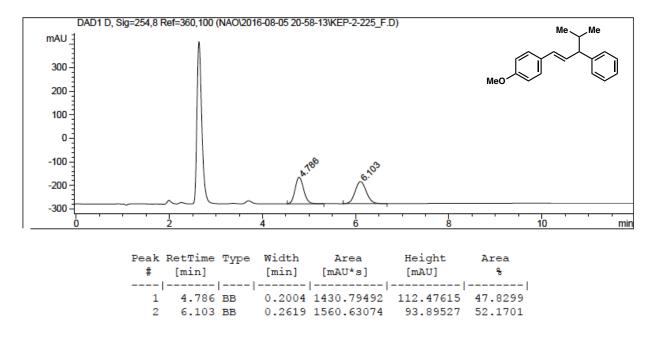
7g (Figure 2): racemic



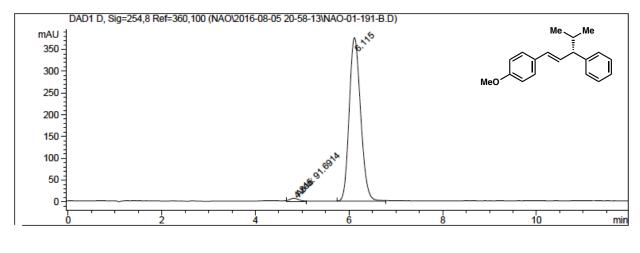
7g (Figure 2): enantioenriched, 97% ee


#			[min]	Area [mAU*s]	Height [mAU]	Area %
1	7.996	VB	0.3205	362.21658	17.28073	1.7024
2	9.927	BB	0.4153	2.09143e4	773.92688	98.2976

7h (Figure 2): racemic

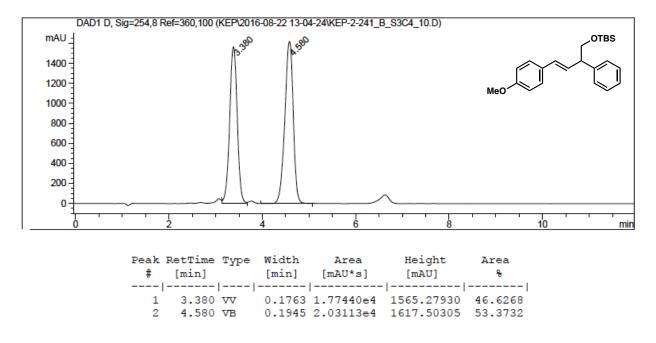

Peak RetTime # [min]			Area [mAU*s]	Height [mAU]	Area %
	·				
1 5.898	MM	0.2764	2.65239e4	1599.41284	45.9160
2 6.424	MM	0.3797	3.12422e4	1371.19714	54.0840

7h (Figure 2): enantioenriched, 95% ee



 	[min]	[mAU*s]	[mAU]	Area %
MM	0.2059	431.78006 1.57314e4	34.94782	2.6714

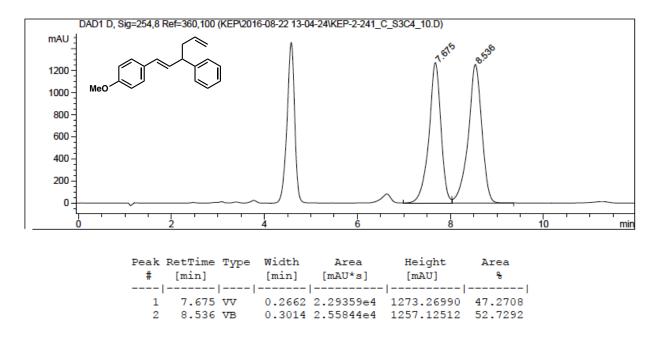
7i (Figure 2): racemic



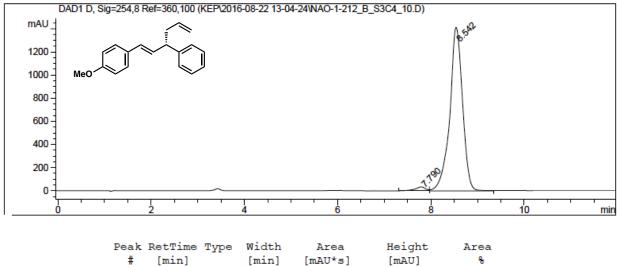
7i (Figure 2): enantioenriched, 97% ee

				Area [mAU*s]	Height [mAU]	Area %
1	4.815	MM	0.2214	91.69138	6.90323	1.4194
2	6.115	BB	0.2659	6368.25781	375.46719	98.5806

7j (Figure 2): racemic

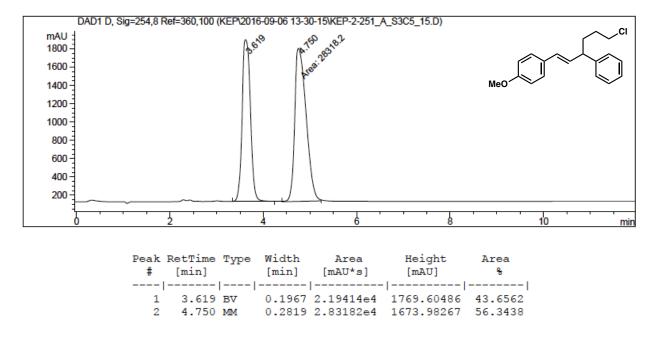


7j (Figure 2): enantioenriched, 98% ee

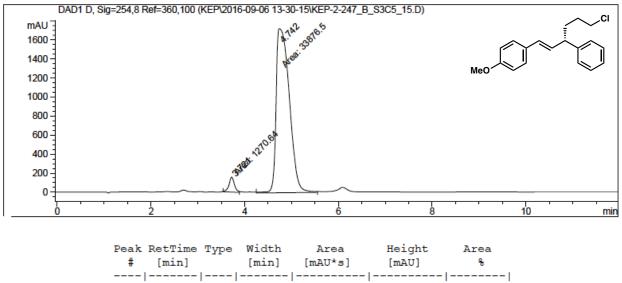


	RetTime			Area [mAU*s]	Height	Area %
				[mao ·s]		-
				2.34730e4		
2	5.841	BV	0.2029	272.82288	19.07364	1.1489

7k (Figure 2): racemic

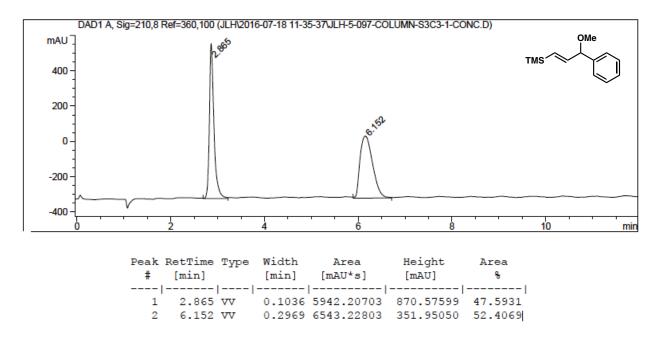


7k (Figure 2): enantioenriched, 96% ee

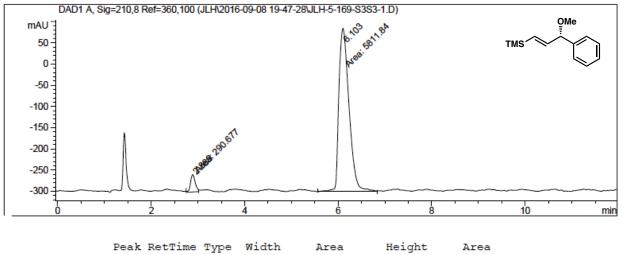


0.001	100011100	-100	1120011	112 000		111 000	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	7.790	BV	0.2268	537.98590	34.33280	1.9596	
2	8.542	VB	0.2824	2.69158e4	1411.98352	98.0404	

7l (Figure 2): racemic



7l (Figure 2): enantioenriched, 93% ee



#	[min]		[min]		[mAU]	÷
1	3.721	MM	0.1339	1270.64075	158.21689	3.6152
2	4.742	MM	0.3274	3.38765e4	1724.49841	96.3848

9 (Scheme 2): racemic

9 (Scheme 2): enantioenriched, 91% ee

#	[min]		[min]	[mAU*s]	[mAU]		
1	2.889	MM	0.1180	290.67731	41.05857	4.7632	
2	6.103	MM	0.2515	5811.83789	385.08493	95.2368	

9. X-ray Coordinate Tables for 4b

	Х	у	Z	U(eq)
Br(2)	7158(1)	11159(1)	5902(1)	23(1)
Ni(1)	5957(1)	10344(1)	5110(1)	17(1)
C(1)	7148(5)	7425(5)	5379(2)	17(1)
N(1)	5905(5)	8301(5)	5263(2)	16(1)
C(11)	3313(6)	7916(6)	5247(2)	20(1)
O(1)	5007(5)	6190(5)	5481(2)	25(1)
C(2)	6524(6)	5978(6)	5538(3)	20(1)
C(10)	4805(6)	7514(6)	5330(2)	18(1)
Br(1)	6632(1)	11327(1)	4262(1)	27(1)
C(14)	3027(5)	9366(5)	5081(3)	17(1)
O(2)	1668(5)	9629(5)	4965(2)	23(1)
N(2)	3874(5)	10395(5)	5047(2)	17(1)
C(16)	1592(6)	11077(6)	4742(3)	22(1)
C(23)	2719(6)	12545(5)	5415(3)	19(1)
C(9)	8035(5)	7124(6)	4876(2)	18(1)
C(19)	748(7)	13449(6)	5936(3)	28(1)
C(18)	1270(6)	12687(6)	5487(3)	23(1)
C(8)	8818(6)	8080(6)	4570(3)	22(1)
C(20)	1676(8)	14047(7)	6297(3)	27(1)
C(15)	3037(6)	11685(6)	4910(3)	21(1)
C(6)	9544(7)	6152(7)	3987(3)	25(1)
C(12)	2328(7)	6732(6)	5060(4)	30(1)
C(3)	7058(8)	4881(6)	5125(3)	28(1)
C(7)	9565(6)	7606(7)	4124(3)	24(1)
C(22)	3654(6)	13140(6)	5781(3)	24(1)
C(4)	7974(6)	5693(6)	4733(3)	21(1)
C(5)	8719(7)	5204(6)	4282(3)	23(1)
C(17)	465(6)	11933(7)	5034(3)	27(1)
C(13)	2195(7)	7222(7)	5622(3)	28(1)
C(21)	3118(8)	13895(7)	6230(3)	28(1)

Table S4. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(\text{\AA}^2 x \ 10^3)$ for 4b. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Br(2)-Ni(1)	2.3747(10)
Ni(1)-N(1)	1.973(5)
Ni(1)-Br(1)	2.3583(10)
Ni(1)-N(2)	1.981(5)
C(1)-H(1)	1.0000
C(1)-N(1)	1.471(7)
C(1)-C(2)	1.544(8)
C(1)-C(9)	1.516(8)
N(1)-C(10)	1.293(7)
C(11)-C(10)	1.479(8)
C(11)-C(14)	1.459(7)
C(11)-C(12)	1.530(8)
C(11)-C(13)	1.549(9)
O(1)-C(2)	1.459(7)
O(1)-C(10)	1.323(7)
C(2)-H(2)	1.0000
C(2)-C(3)	1.534(9)
C(14)-O(2)	1.344(7)
C(14)-N(2)	1.266(7)
O(2)-C(16)	1.479(7)
N(2)-C(15)	1.496(7)
C(16)-H(16)	1.0000
C(16)-C(15)	1.542(9)
C(16)-C(17)	1.521(9)
C(23)-C(18)	1.391(8)
C(23)-C(15)	1.509(9)
C(23)-C(22)	1.380(9)
C(9)-C(8)	1.389(9)
C(9)-C(4)	1.402(8)
C(19)-H(19)	0.9500
C(19)-C(18)	1.404(9)
C(19)-C(20)	1.369(11)
C(18)-C(17)	1.522(10)
C(8)-H(8)	0.9500
C(8)-C(7)	1.374(9)
C(20)-H(20)	0.9500
C(20)-C(21)	1.384(10)
C(15)-H(15)	1.0000

Table S5. Bond lengths [Å] and angles [°] for 4b.

C(6)-H(6)	0.9500
C(6)-C(7)	1.419(10)
C(6)-C(5)	1.392(10)
C(12)-H(12A)	0.9900
C(12)-H(12B)	0.9900
C(12)-C(13)	1.454(12)
C(3)-H(3A)	0.9900
C(3)-H(3B)	0.9900
C(3)-C(4)	1.504(9)
C(7)-H(7)	0.9500
C(22)-H(22)	0.9500
C(22)-C(21)	1.405(9)
C(4)-C(5)	1.388(9)
C(5)-H(5)	0.9500
C(17)-H(17A)	0.9900
C(17)-H(17B)	0.9900
C(13)-H(13A)	0.9900
C(13)-H(13B)	0.9900
C(21)-H(21)	0.9500
N(1)-Ni(1)-Br(2)	100.22(14)
N(1)-Ni(1)-Br(1)	124.10(14)
N(1)-Ni(1)-N(2)	90.77(19)
Br(1)-Ni(1)-Br(2)	117.13(4)
N(2)-Ni(1)-Br(2)	122.24(15)
N(2)-Ni(1)-Br(1)	101.14(14)
N(1)-C(1)-H(1)	111.6
N(1)-C(1)-C(2)	104.1(4)
N(1)-C(1)-C(9)	113.2(5)
C(2)-C(1)-H(1)	111.6
C(9)-C(1)-H(1)	111.6
C(9)-C(1)-C(2)	104.4(4)
C(1)-N(1)-Ni(1)	124.8(4)
C(10)-N(1)-Ni(1)	127.7(4)
C(10)-N(1)-C(1)	107.2(5)
C(10)-C(11)-C(12)	115.8(5)
C(10)-C(11)-C(13)	117.7(5)
C(14)-C(11)-C(10)	117.3(5)
C(14)-C(11)-C(12)	119.7(5)
C(14)-C(11)-C(13)	115.9(5)

C(12)-C(11)-C(13)	56.4(5)
C(10)-O(1)-C(2)	107.5(4)
C(1)-C(2)-H(2)	111.4
O(1)-C(2)-C(1)	103.4(4)
O(1)-C(2)-H(2)	111.4
O(1)-C(2)-C(3)	110.9(5)
C(3)-C(2)-C(1)	108.1(5)
C(3)-C(2)-H(2)	111.4
N(1)-C(10)-C(11)	127.2(5)
N(1)-C(10)-O(1)	117.8(5)
O(1)-C(10)-C(11)	114.9(5)
O(2)-C(14)-C(11)	114.3(5)
N(2)-C(14)-C(11)	128.8(5)
N(2)-C(14)-O(2)	116.9(5)
C(14)-O(2)-C(16)	107.2(4)
C(14)-N(2)-Ni(1)	127.5(4)
C(14)-N(2)-C(15)	107.9(4)
C(15)-N(2)-Ni(1)	124.5(4)
O(2)-C(16)-H(16)	112.0
O(2)-C(16)-C(15)	101.9(4)
O(2)-C(16)-C(17)	110.9(5)
C(15)-C(16)-H(16)	112.0
C(17)-C(16)-H(16)	112.0
C(17)-C(16)-C(15)	107.5(5)
C(18)-C(23)-C(15)	110.6(5)
C(22)-C(23)-C(18)	120.9(6)
C(22)-C(23)-C(15)	128.5(5)
C(8)-C(9)-C(1)	127.5(5)
C(8)-C(9)-C(4)	121.3(5)
C(4)-C(9)-C(1)	111.1(5)
C(18)-C(19)-H(19)	120.4
C(20)-C(19)-H(19)	120.4
C(20)-C(19)-C(18)	119.3(6)
C(23)-C(18)-C(19)	119.8(6)
C(23)-C(18)-C(17)	111.0(5)
C(19)-C(18)-C(17)	129.2(6)
C(9)-C(8)-H(8)	120.4
C(7)-C(8)-C(9)	119.2(6)
C(7)-C(8)-H(8)	120.4
C(19)-C(20)-H(20)	119.4

C(19)-C(20)-C(21)	121.1(6)
C(21)-C(20)-H(20)	119.4
N(2)-C(15)-C(16)	103.0(5)
N(2)-C(15)-C(23)	111.4(5)
N(2)-C(15)-H(15)	112.6
C(16)-C(15)-H(15)	112.6
C(23)-C(15)-C(16)	104.0(5)
C(23)-C(15)-H(15)	112.6
C(7)-C(6)-H(6)	119.6
C(5)-C(6)-H(6)	119.6
C(5)-C(6)-C(7)	120.9(6)
C(11)-C(12)-H(12A)	117.5
C(11)-C(12)-H(12B)	117.5
H(12A)-C(12)-H(12B)	114.6
C(13)-C(12)-C(11)	62.5(4)
C(13)-C(12)-H(12A)	117.5
C(13)-C(12)-H(12B)	117.5
C(2)-C(3)-H(3A)	110.7
C(2)-C(3)-H(3B)	110.7
H(3A)-C(3)-H(3B)	108.8
C(4)-C(3)-C(2)	105.2(5)
C(4)-C(3)-H(3A)	110.7
C(4)-C(3)-H(3B)	110.7
C(8)-C(7)-C(6)	119.8(6)
C(8)-C(7)-H(7)	120.1
C(6)-C(7)-H(7)	120.1
C(23)-C(22)-H(22)	120.6
C(23)-C(22)-C(21)	118.8(6)
С(21)-С(22)-Н(22)	120.6
C(9)-C(4)-C(3)	111.2(5)
C(5)-C(4)-C(9)	120.0(6)
C(5)-C(4)-C(3)	128.9(5)
C(6)-C(5)-H(5)	120.6
C(4)-C(5)-C(6)	118.7(5)
C(4)-C(5)-H(5)	120.6
C(16)-C(17)-C(18)	103.8(5)
C(16)-C(17)-H(17A)	111.0
C(16)-C(17)-H(17B)	111.0
C(18)-C(17)-H(17A)	111.0
C(18)-C(17)-H(17B)	111.0

H(17A)-C(17)-H(17B)	109.0	
C(11)-C(13)-H(13A)	117.7	
C(11)-C(13)-H(13B)	117.7	
C(12)-C(13)-C(11)	61.2(4)	
C(12)-C(13)-H(13A)	117.7	
C(12)-C(13)-H(13B)	117.7	
H(13A)-C(13)-H(13B)	114.8	
C(20)-C(21)-C(22)	120.1(7)	
C(20)-C(21)-H(21)	119.9	
C(22)-C(21)-H(21)	119.9	

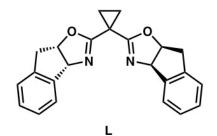
	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Br(2)	20(1)	21(1)	28(1)	1(1)	-3(1)	-5(1)
Ni(1)	11(1)	14(1)	25(1)	3(1)	0(1)	-2(1)
C(1)	12(2)	14(2)	26(2)	-1(2)	-2(2)	4(2)
N(1)	12(2)	16(2)	20(2)	0(1)	0(1)	2(1)
C(11)	14(2)	13(2)	32(3)	0(2)	-2(2)	4(2)
0(1)	15(2)	12(2)	48(3)	1(2)	-1(2)	2(1)
C(2)	19(2)	12(2)	30(3)	4(2)	-1(2)	5(2)
C(10)	17(2)	15(2)	23(2)	1(2)	-1(2)	2(2)
Br(1)	24(1)	31(1)	25(1)	8(1)	4(1)	-1(1)
C(14)	10(2)	16(2)	26(2)	1(2)	-2(2)	3(1)
O(2)	13(2)	18(2)	38(2)	4(2)	-3(2)	3(1)
N(2)	11(2)	18(2)	22(2)	2(2)	2(1)	5(1)
C(16)	16(2)	17(2)	32(3)	6(2)	-1(2)	6(2)
C(23)	17(2)	9(2)	32(3)	5(2)	5(2)	2(2)
C(9)	8(2)	17(2)	27(2)	-3(2)	-3(2)	2(2)
C(19)	24(2)	18(2)	41(3)	4(2)	10(2)	-6(2)
C(18)	19(2)	15(2)	34(3)	4(2)	5(2)	2(2)
C(8)	15(2)	20(2)	31(3)	-4(2)	2(2)	2(2)
C(20)	30(3)	18(2)	34(3)	1(2)	12(2)	5(2)
C(15)	15(2)	18(2)	28(2)	6(2)	2(2)	9(2)
C(6)	20(2)	27(3)	28(3)	-2(2)	-2(2)	11(2)
C(12)	15(2)	13(2)	61(4)	-3(2)	-7(2)	-4(2)
C(3)	35(3)	12(2)	37(3)	2(2)	7(3)	0(2)
C(7)	15(2)	27(3)	30(3)	1(2)	2(2)	5(2)
C(22)	18(2)	13(2)	40(3)	5(2)	3(2)	1(2)
C(4)	20(2)	14(2)	27(2)	1(2)	-2(2)	3(2)
C(5)	24(2)	18(2)	27(2)	-4(2)	-2(2)	6(2)
C(17)	15(2)	20(2)	48(4)	2(2)	-3(2)	2(2)
C(13)	15(2)	22(3)	48(4)	9(2)	3(2)	-7(2)
C(21)	34(3)	19(2)	31(3)	-1(2)	4(2)	5(2)

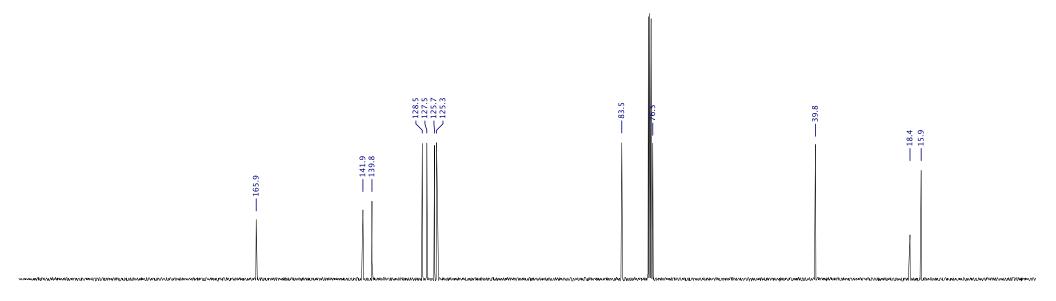
Table S6. Anisotropic displacement parameters $(\text{\AA}^2 \text{x } 10^3)$ for 4b. The anisotropic displacement factor exponent takes the form: $-2p^2 [\text{h}^2 a^{*2} U^{11} + ... + 2 \text{ h k } a^* b^* U^{12}]$

	Х	У	Ζ	U(eq)
H(1)	7730	7830	5682	21
H(2)	6782	5713	5921	24
H(16)	1459	11081	4335	26
H(19)	-240	13548	5989	33
H(8)	8837	9049	4668	26
H(20)	1326	14574	6598	33
H(15)	3481	12258	4612	25
H(6)	10100	5821	3690	30
H(12A)	1564	6980	4802	36
H(12B)	2748	5788	5001	36
H(3A)	7610	4137	5312	34
H(3B)	6260	4435	4929	34
H(7)	10095	8250	3909	29
H(22)	4642	13041	5730	29
H(5)	8665	4242	4176	28
H(17A)	-274	11311	5189	33
H(17B)	18	12618	4782	33
H(13A)	2536	6591	5917	34
H(13B)	1351	7785	5718	34
H(21)	3746	14303	6488	33


Table S7. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å² x 10^3) for 4b.

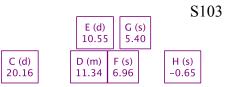
Table S8. Torsion angles [°] for 4b.


Ni(1)-N(1)-C(10)-C(11)	7.4(9)
Ni(1)-N(1)-C(10)-O(1)	-173.6(4)
Ni(1)-N(2)-C(15)-C(16)	163.3(4)
Ni(1)-N(2)-C(15)-C(23)	-85.7(5)
C(1)-N(1)-C(10)-C(11)	-178.4(6)
C(1)-N(1)-C(10)-O(1)	0.6(7)
C(1)-C(2)-C(3)-C(4)	-0.2(7)
C(1)-C(9)-C(8)-C(7)	179.7(5)
C(1)-C(9)-C(4)-C(3)	-0.5(7)
C(1)-C(9)-C(4)-C(5)	180.0(5)
N(1)-C(1)-C(2)-O(1)	1.2(6)
N(1)-C(1)-C(2)-C(3)	118.9(5)
N(1)-C(1)-C(9)-C(8)	67.1(7)
N(1)-C(1)-C(9)-C(4)	-112.2(5)
C(11)-C(14)-O(2)-C(16)	-173.2(5)
C(11)-C(14)-N(2)-Ni(1)	9.2(10)
C(11)-C(14)-N(2)-C(15)	-174.7(6)
O(1)-C(2)-C(3)-C(4)	112.5(6)
C(2)-C(1)-N(1)-Ni(1)	173.3(4)
C(2)-C(1)-N(1)-C(10)	-1.1(6)
C(2)-C(1)-C(9)-C(8)	179.6(6)
C(2)-C(1)-C(9)-C(4)	0.3(6)
C(2)-O(1)-C(10)-N(1)	0.3(8)
C(2)-O(1)-C(10)-C(11)	179.4(5)
C(2)-C(3)-C(4)-C(9)	0.4(7)
C(2)-C(3)-C(4)-C(5)	179.9(6)
C(10)-C(11)-C(14)-O(2)	174.3(5)
C(10)-C(11)-C(14)-N(2)	-7.7(10)
C(10)-C(11)-C(12)-C(13)	107.3(6)
C(10)-C(11)-C(13)-C(12)	-104.0(6)
C(10)-O(1)-C(2)-C(1)	-1.0(6)
C(10)-O(1)-C(2)-C(3)	-116.6(5)
C(14)-C(11)-C(10)-N(1)	-1.3(9)
C(14)-C(11)-C(10)-O(1)	179.8(5)
C(14)-C(11)-C(12)-C(13)	-103.0(7)
C(14)-C(11)-C(13)-C(12)	109.8(6)
C(14)-O(2)-C(16)-C(15)	-15.5(6)
C(14)-O(2)-C(16)-C(17)	-129.6(6)

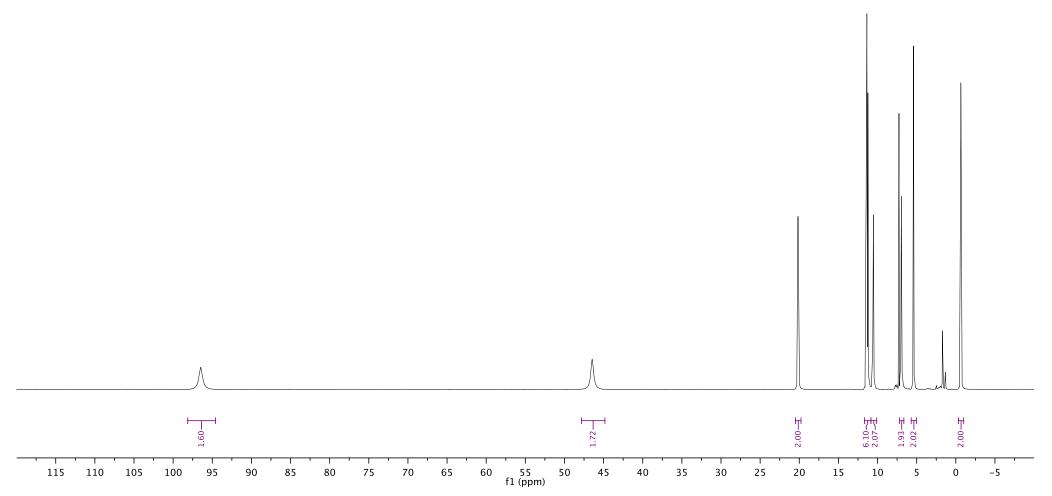

C(14)-N(2)-C(15)-C(16)	-12.9(7)
C(14)-N(2)-C(15)-C(23)	98.1(6)
O(2)-C(14)-N(2)-Ni(1)	-172.8(4)
O(2)-C(14)-N(2)-C(15)	3.3(8)
O(2)-C(16)-C(15)-N(2)	16.6(6)
O(2)-C(16)-C(15)-C(23)	-99.8(5)
O(2)-C(16)-C(17)-C(18)	93.8(6)
N(2)-C(14)-O(2)-C(16)	8.5(8)
C(23)-C(18)-C(17)-C(16)	10.7(7)
C(23)-C(22)-C(21)-C(20)	-0.7(9)
C(9)-C(1)-N(1)-Ni(1)	-74.0(5)
C(9)-C(1)-N(1)-C(10)	111.7(5)
C(9)-C(1)-C(2)-O(1)	-117.7(5)
C(9)-C(1)-C(2)-C(3)	-0.1(6)
C(9)-C(8)-C(7)-C(6)	-0.9(9)
C(9)-C(4)-C(5)-C(6)	1.6(9)
C(19)-C(18)-C(17)-C(16)	-169.1(6)
C(19)-C(20)-C(21)-C(22)	1.1(10)
C(18)-C(23)-C(15)-N(2)	-120.8(5)
C(18)-C(23)-C(15)-C(16)	-10.4(6)
C(18)-C(23)-C(22)-C(21)	0.0(9)
C(18)-C(19)-C(20)-C(21)	-0.9(10)
C(8)-C(9)-C(4)-C(3)	-179.8(6)
C(8)-C(9)-C(4)-C(5)	0.6(9)
C(20)-C(19)-C(18)-C(23)	0.2(9)
C(20)-C(19)-C(18)-C(17)	180.0(6)
C(15)-C(16)-C(17)-C(18)	-16.8(6)
C(15)-C(23)-C(18)-C(19)	179.7(5)
C(15)-C(23)-C(18)-C(17)	-0.1(7)
C(15)-C(23)-C(22)-C(21)	-179.4(6)
C(12)-C(11)-C(10)-N(1)	149.2(7)
C(12)-C(11)-C(10)-O(1)	-29.8(8)
C(12)-C(11)-C(14)-O(2)	25.0(9)
C(12)-C(11)-C(14)-N(2)	-156.9(7)
C(3)-C(4)-C(5)-C(6)	-177.8(6)
C(7)-C(6)-C(5)-C(4)	-3.6(9)
C(22)-C(23)-C(18)-C(19)	0.2(8)
C(22)-C(23)-C(18)-C(17)	-179.6(5)
C(22)-C(23)-C(15)-N(2)	58.7(8)
C(22)-C(23)-C(15)-C(16)	169.0(5)

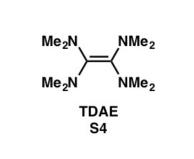
C(4)-C(9)-C(8)-C(7)	-1.0(9)
C(5)-C(6)-C(7)-C(8)	3.2(9)
C(17)-C(16)-C(15)-N(2)	133.2(5)
C(17)-C(16)-C(15)-C(23)	16.9(6)
C(13)-C(11)-C(10)-N(1)	-147.0(6)
C(13)-C(11)-C(10)-O(1)	34.0(8)
C(13)-C(11)-C(14)-O(2)	-39.4(8)
C(13)-C(11)-C(14)-N(2)	138.6(7)
C(13)-C(11)-C(10)-N(1) C(13)-C(11)-C(10)-O(1) C(13)-C(11)-C(14)-O(2)	-147.0(6) 34.0(8) -39.4(8)

Parameter	Value
Title	JLH-5-052.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	87.8
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-19T16:01:10
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1937.2
Nucleus	13C
Acquired Size	32768
Spectral Size	65536



Т 110 100 f1 (ppm)


Parameter	١	/alue		
Title	JLH-5-15	JLH–5–151–recryst		
Origin	Varian			
Solvent	cdcl3	A (s)		
Temperature	25.0	96.48		
Pulse Sequence	s2pul		,	
Number of Scans	64			
Receiver Gain	30			
Relaxation Delay	2.0000			
Pulse Width	4.1500			
Acquisition Time	1.9923			
Acquisition Date	2016-08-	- 19 T13:	13:47	
Spectrometer Frequency	399.81			
Spectral Width	65789.5			
Lowest Frequency	-13264.8			
Nucleus	1H			
Acquired Size	131072			
Spectral Size	262144			


4b

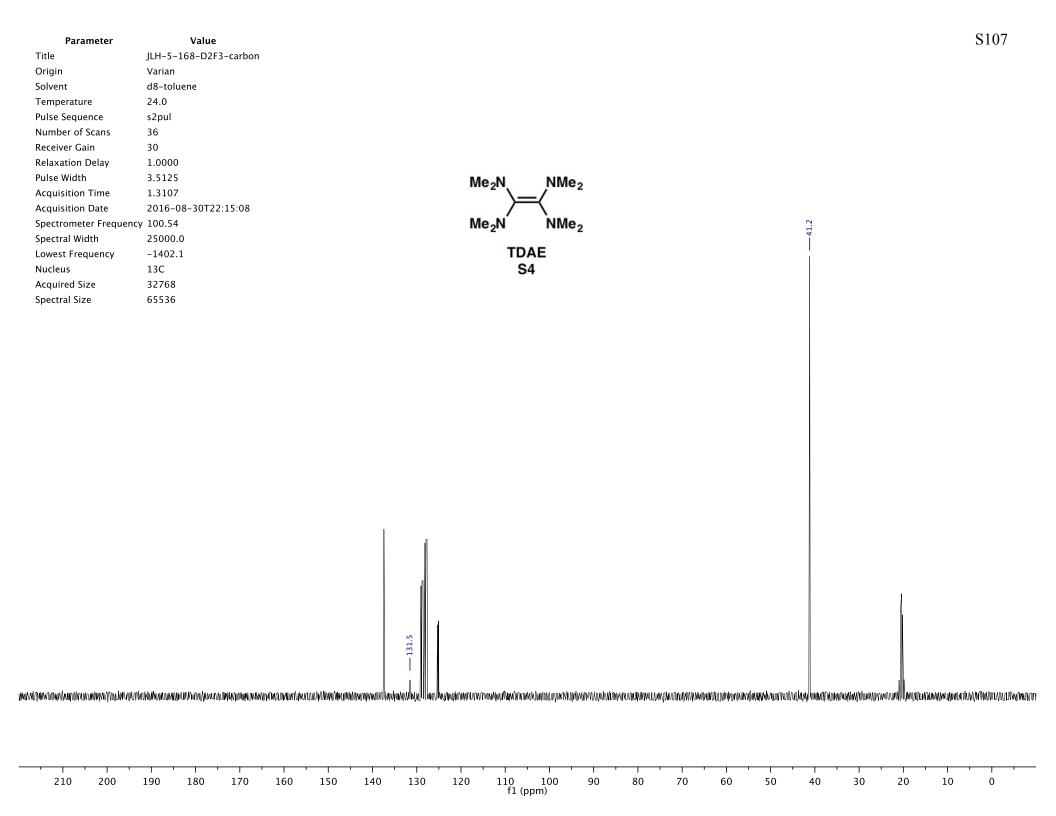
Parameter Title Origin	Value JLH-5-150 Varian						[A (s) 3.02	B (s) 2.29			S104
Origin Solvent	Varian "cdcl3"						L					
Temperature	25.0								I.			
Pulse Sequence	s2pul											
Number of Scans	8											
Receiver Gain	0											
Relaxation Delay	1.0000				Ma Ma							
Pulse Width	5.1000				Me Me							
Acquisition Time	2.4999											
Acquisition Date	2016-08-18T01:32:15			Ме		e						
Spectrometer Frequence					N N							
Spectral Width	4796.2				Me Me							
Lowest Frequency	-597.5											
Nucleus	1H				S3							
Acquired Size Spectral Size	11990 65536											
								1.00 +	19.76-			
10.5 10.0	9.5 9.0 8.5	8.0 7.5	7.0 6.5	6.0	5.5 5.0 f1 (ppm)	4.5 4.0	3.5	3.0	2.5 2.0	1.5 1.	0 0.5	0.0

Parameter	Value		
Title	JLH-5-150.2.fid		
Origin	Bruker BioSpin GmbH		
Solvent	CDCI3		
Temperature	294.9		
Pulse Sequence	zgpg30		2
Number of Scans	128	~	Ŧ
Receiver Gain	72.0		
Relaxation Delay	2.0000	Mo	
Pulse Width	10.0000	^{Me} ∕Ņ [∕] ^{Me}	
Acquisition Time	1.3631		
Acquisition Date	2016-08-19T15:48:48	Me N Me	
Spectrometer Frequence		N N	
Spectral Width	24038.5	Ńe Ńe	
Lowest Frequency	-1958.0		
Nucleus	13C	S3	
Acquired Size	32768		
Spectral Size	65536		
		~	
		100 1	
	~~~~~~	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	land lambar and the construction of the constr

Parameter	Value
Title	JLH-5-168-D2F3
Origin	Varian
Solvent	d8-toluene
Temperature	24.0
Pulse Sequence	s2pul
Number of Scans	1
Receiver Gain	20
Relaxation Delay	1.0000
Pulse Width	4.1500
Acquisition Time	20.4472
Acquisition Date	2016-08-30T22:06:00
Spectrometer Frequency	399.80
Spectral Width	6410.3
Lowest Frequency	-808.0
Nucleus	1H
Acquired Size	131072
Spectral Size	262144





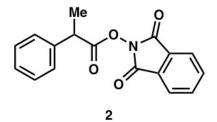

A (s) 2.57

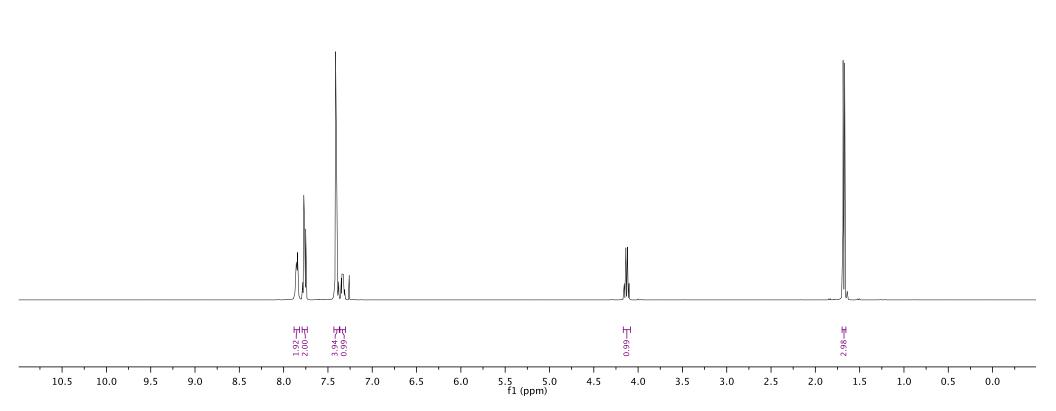
24.00-≖

0.0

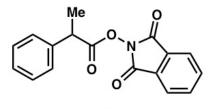
0.5

1.0

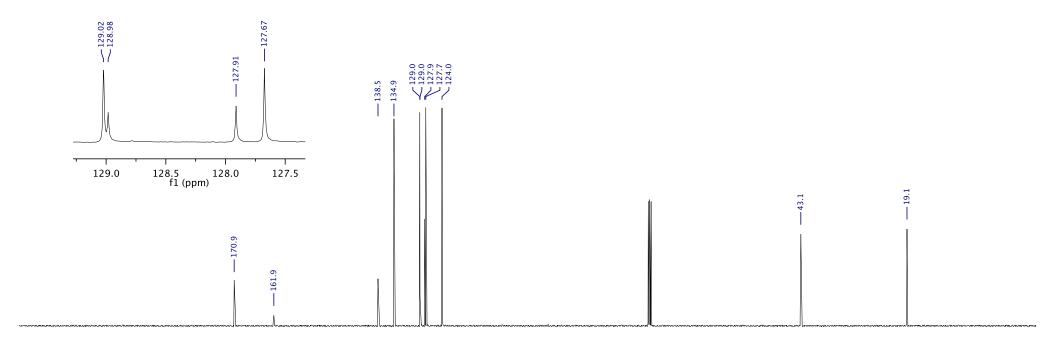




Parameter	Value	
Title	NAO-01-071-A.1.fid	B (dd)
Origin	Bruker BioSpin GmbH	7.76
Solvent	CDCI3	A (dd)
Temperature	294.9	7.85
Pulse Sequence	zg30	
Number of Scans	16	
Receiver Gain	55.5	
Relaxation Delay	1.0000	
Pulse Width	11.7000	
Acquisition Time	4.0894	
Acquisition Date	2016-08-17T23:57:55	
Spectrometer Frequency	400.13	
Spectral Width	8012.8	
Lowest Frequency	-1555.6	
Nucleus	1H	
Acquired Size	32768	
Spectral Size	65536	

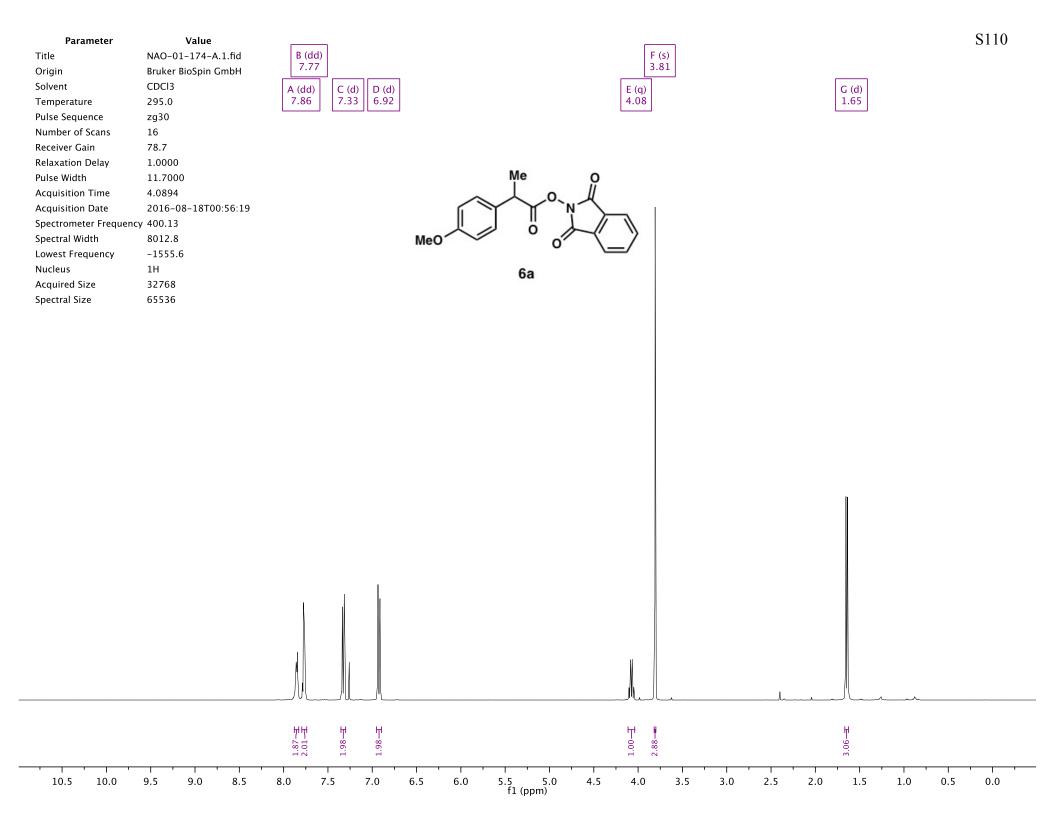




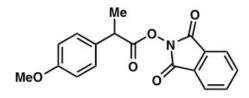


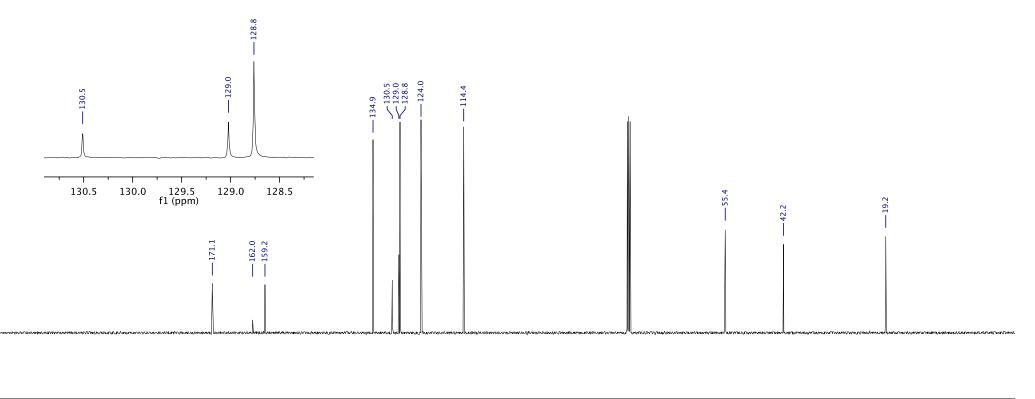




Parameter	Value
Title	NAO-01-071-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	64.2
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-18T00:05:45
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1942.9
Nucleus	13C
Acquired Size	32768
Spectral Size	65536



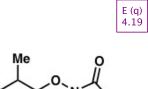

2

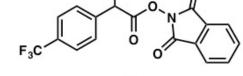



	1 1	1 1		·	·	'	'	·	'	'	·	'	·	'	'	· 1	'		'		·   ·	1 1	
2	10	200	190	180	170	160	150	140	130	120	110 f1 (	100 ppm)	90	80	70	60	50	40	30	20	10	0	

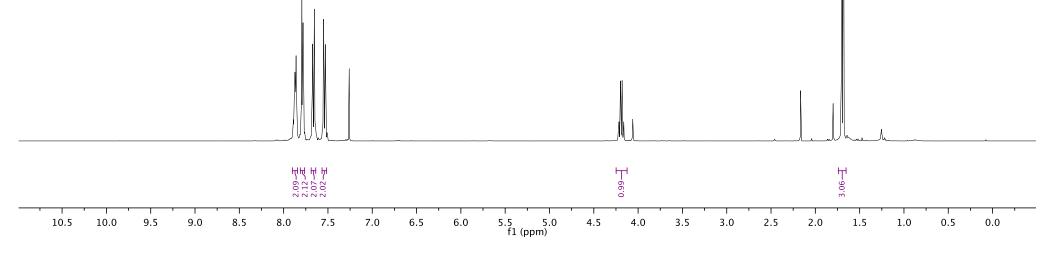


Parameter	Value
Title	NAO-01-174-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	72.0
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-18T01:04:09
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1938.0
Nucleus	13C
Acquired Size	32768
Spectral Size	65536





6a



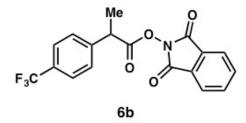

1	1 1	1	'	'	'	'	'	'	'	'	'	'	1	'	'	·	'	'	'	'	'   '		
	210	200	190	180	170	160	150	140	130	120		100 ppm)	90	80	70	60	50	40	30	20	10	0	

Parameter	Value	
Title	NAO-01-176-A.1.fid	A (dd)
Origin	Bruker BioSpin GmbH	7.87
Solvent	CDCI3	 D (d)
Temperature	295.0	7.54
Pulse Sequence	zg30	
Number of Scans	16	C (d) 7.66
Receiver Gain	98.9	
Relaxation Delay	1.0000	B (dd)
Pulse Width	11.7000	7.78
Acquisition Time	4.0894	
Acquisition Date	2016-08-17T22:00:38	
Spectrometer Frequency	400.13	
Spectral Width	8012.8	
Lowest Frequency	-1535.6	
Nucleus	1H	
Acquired Size	32768	
Spectral Size	65536	





6b

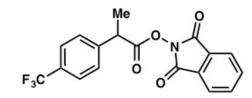



F (d) 1.69

Parameter	Value			S113
Title	NAO-01-176-A.2.fid			
Origin	Bruker BioSpin GmbH			
Solvent	CDCI3			
Temperature	294.9			
Pulse Sequence	zgpg30			
Number of Scans	128			
Receiver Gain	64.2			
Relaxation Delay	2.0000	Ma		
Pulse Width	10.0000	Me	0	
Acquisition Time	1.3631	$\wedge$	o, l	
Acquisition Date	2016-08-17T22:08:28	n T T		
Spectrometer Frequer				
Spectral Width Lowest Frequency	24038.5 -1934.6	F ₃ C	0' _/	
Lowest Frequency Nucleus	-1934.6 13C			
Acquired Size	32768	6b		
Spectral Size	65536			
			م	
			- 128.9 - 126.1 126.1 125.5	
			130.7	122.8
				— 122. 120.1
	142.4 142.4 142.4	<u>74180711007181</u>		- I
		130. 126. 126. 126. 127. 127. 127. 127. 127. 127.	and the second property of the second propert	un have an in the second second
	л <b>Л</b>			
	M	135.0	133 132 131 130 129 128 127 126 125 124	123 122 121 120
			133 132 131 130 129 128 127 126 125 124 fl (ppm)	
	142.5 142.4 142.3 f1 (ppm)			
			43.0	
			4	- 19.1
	.2.4 .2.4 .2.4 .2.4			
				1
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛			การการการการการการการการการการการการการก	มาวพพรณณา กาวพบนาพภาษาการการการการการการการการการการการการการ

140 110 100 f1 (ppm) Т Т Т 80 . 60 

Parameter	Value
Title	NAO-01-176A
Origin	Varian
Solvent	"cdcl3"
Temperature	25.0
Pulse Sequence	s2pul
Number of Scans	16
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	6.3333
Acquisition Time	0.9856
Acquisition Date	2016-08-31T23:19:24
Spectrometer Frequency	282.34
Spectral Width	64935.1
Lowest Frequency	-58259.3
Nucleus	19F
Acquired Size	64000
Spectral Size	131072

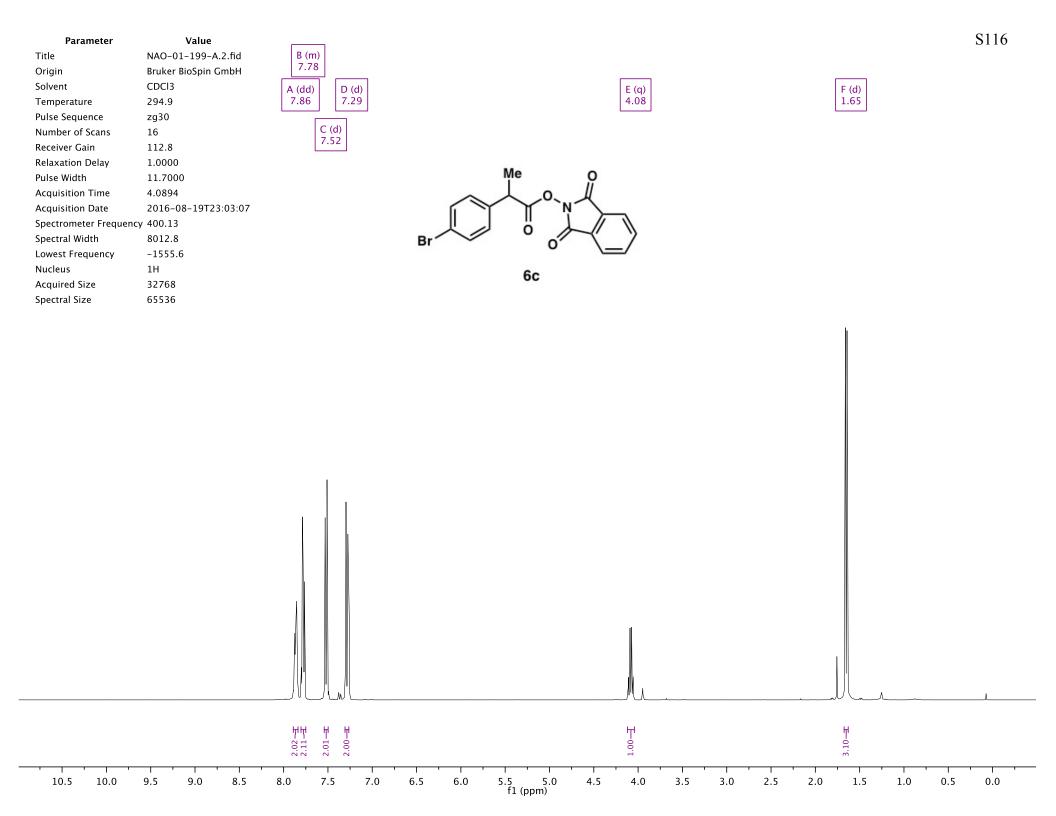



--65.8

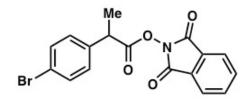
-1	1		'	1	'	'	'	'			'		1	'	'	'	'	·		'	·   ·		-
	20	10	0	-10	-20	-30	-40	-50	-60	-70		-90 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	

M000000

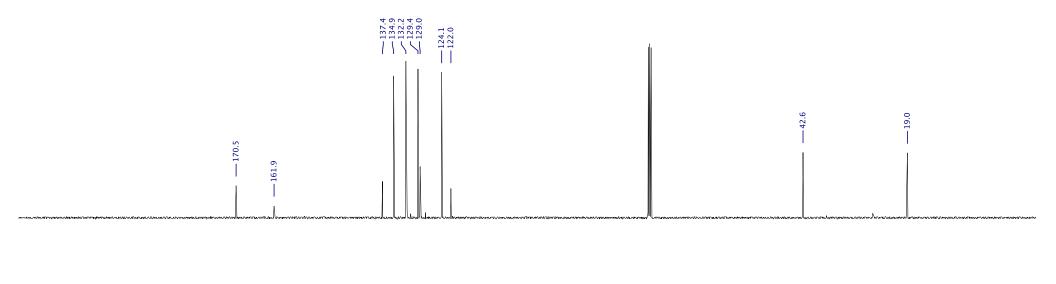
Parameter	Value
Title	NAO-01-176A-C6F6
Origin	Varian
Solvent	"cdcl3"
Temperature	25.0
Pulse Sequence	s2pul
Number of Scans	16
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	6.3333
Acquisition Time	0.9856
Acquisition Date	2016-08-31T23:23:38
Spectrometer Frequency	282.34
Spectral Width	64935.1
Lowest Frequency	-58249.7
Nucleus	19F
Acquired Size	64000
Spectral Size	131072




6b


with  $C_6F_6$ 

20 10 -140 -150 -10 -20 -30 -80 -90 f1 (ppm) -100 0 -40 -50 -60 -70 -110 -120 -130 -160 -170 -180 -190


--65.8



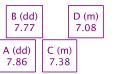
Parameter	Value
Title	NAO-01-199-A.3.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	72.0
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-19T23:11:04
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1937.5
Nucleus	13C
Acquired Size	32768
Spectral Size	65536



6c

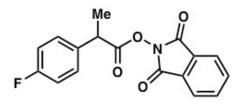


	1 1		· I	'	·	· I	· I		' '	'	' '	· · ·		· I	' '	· ·	· ·	'			1	
210	200	190	180	170	160	150	140	130	120		100 opm)	90	80	70	60	50	40	30	20	10	0	

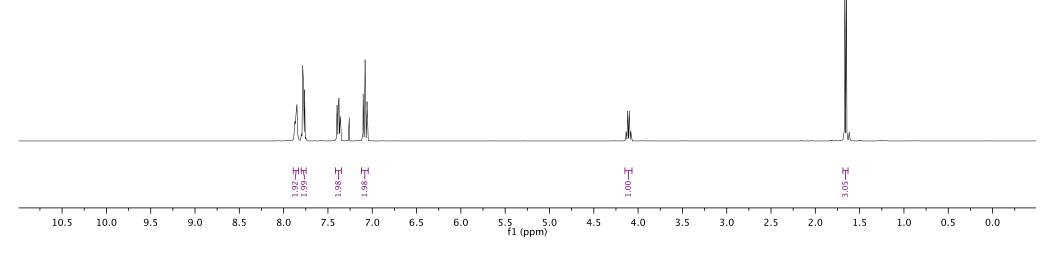

Parameter	Value	
Title	NAO-01-194-A.1.fid	B (dd)
Origin	Bruker BioSpin GmbH	7.77
Solvent	CDCI3	A (dd)
Temperature	294.9	7.86
Pulse Sequence	zg30	
Number of Scans	16	
Receiver Gain	87.8	
Relaxation Delay	1.0000	
Pulse Width	11.7000	
Acquisition Time	4.0894	
Acquisition Date	2016-09-23T19:21:20	
Spectrometer Frequency	400.13	
Spectral Width	8012.8	
Lowest Frequency	-1535.6	
Nucleus	1H	

32768

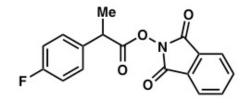
65536


Acquired Size

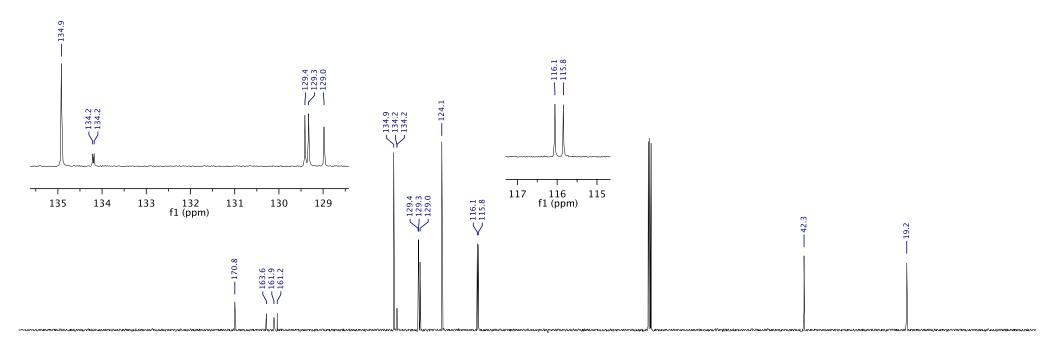
Spectral Size









6d



Parameter	Value
Title	NAO-01-194-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	55.5
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-09-23T19:29:17
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1958.4
Nucleus	13C
Acquired Size	32768
Spectral Size	65536







110 100 f1 (ppm) 

Parameter	Value
Title	NAO-1-194A
Origin	Varian
Solvent	"cdcl3"
Temperature	25.0
Pulse Sequence	s2pul
Number of Scans	16
Receiver Gain	30
Relaxation Delay	1.0000
Pulse Width	6.3333
Acquisition Time	0.9856
Acquisition Date	2017-01-09T22:18:30
Spectrometer Frequency	282.34
Spectral Width	64935.1
Lowest Frequency	-56468.7
Nucleus	19F
Acquired Size	64000
Spectral Size	131072

20

10

-10

0

-20

-30

-50

-60

-70

-40



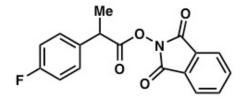
1.00---

-110

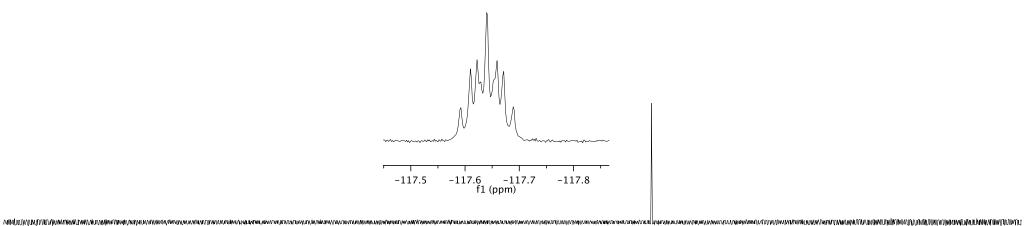
-120

-140

-150


-160

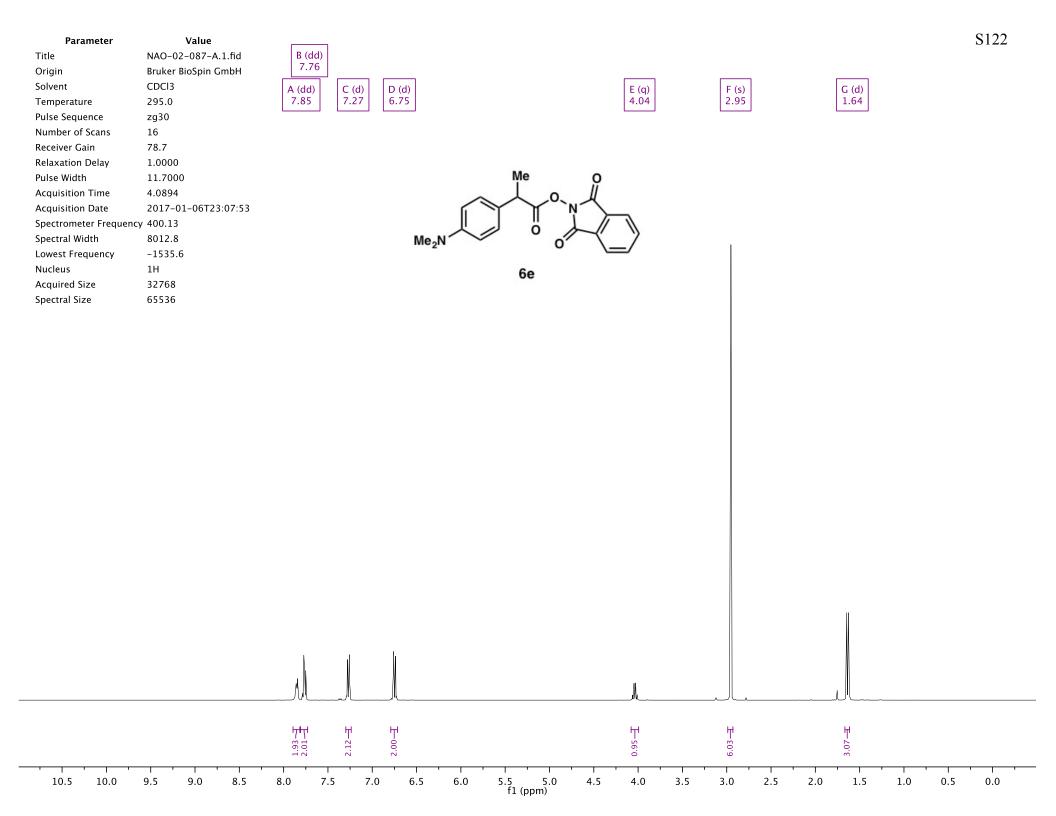
-170


-180

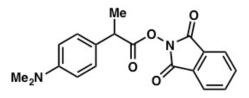
-190

-130

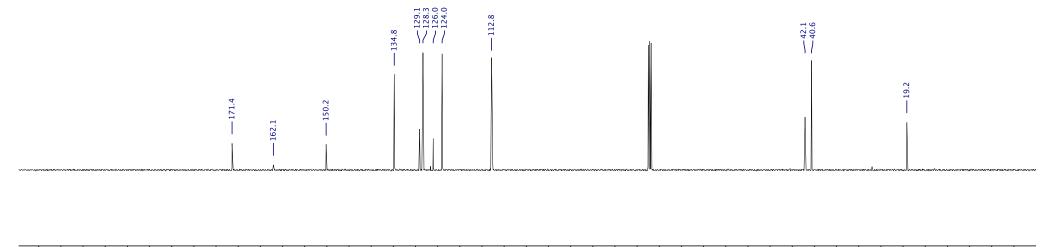



6d



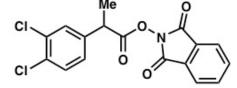

-80 -90 f1 (ppm)

-100

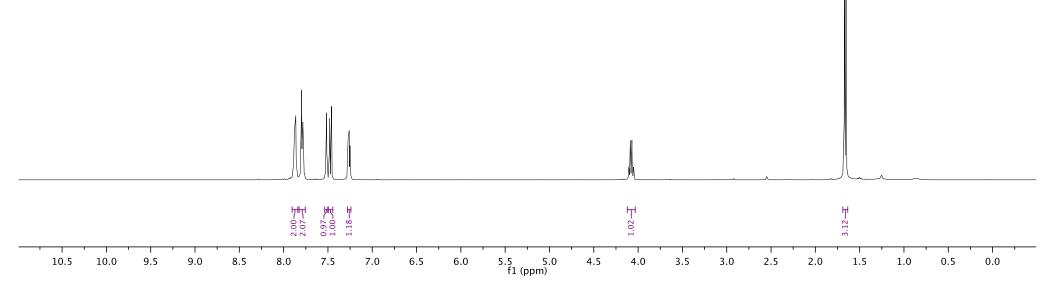

	<b>Value</b> NAO-1-194A-C6F6 Varian		A (tt) -117.64	S121
lvent	"cdcl3"			
	25.0			
Ilse Sequence umber of Scans	s2pul 16			
	30			
	1.0000			
	6.3333	Me	0	
	0.9856		Ш	
equisition Date	2017-01-09T22:35:50	$\sim$	N	
ectrometer Frequency			Ϊ <u>λ</u>	
ectral Width	64935.1			
west Frequency	-56468.7	F ~ c	) <u> </u>	
	-56468.7 19F			
cquired Size	64000	6d		
	131072		F	
ectral Size	131072	with C ₆	6	
		_ ///\//// ▲		
		VINANNV		
		~~~~~ V V(~		
				
		–117.5 –117.6 –117 f1 (ppm)	'.7 –117.8	
		TT (Ppin)		
๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	สหน่างจากกุญหน่ายกับของมาต่อมากกฎหน่ายกับไปการการแหน่มายไปของบาทแรงมีการเป็นสมบัน 	สมาริษณีการที่สาวที่มีสาวมีหลางสาวที่สาวที่สาวที่สาวมาการที่สาวมีสาวมาการที่สาวมาการที่สาวมาการที่สาวมาการที่สาวมาการที่	งของการแห่งแห่งของการของการของการของการของการที่ได้สมองการเป็นที่สามสุดมอกจากและเสารสามสุดมันการที่ 	หมารถางหมองปาหการแหน่งการเหล่าวของสาวสังนารอยู่ใน <mark>ไป</mark> ประการการการการการการการการการการการการการก
			1	
			1.00	

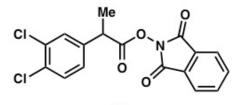
Parameter	Value
Title	NAO-02-087-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	78.7
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2017-01-06T23:15:50
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1958.4
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

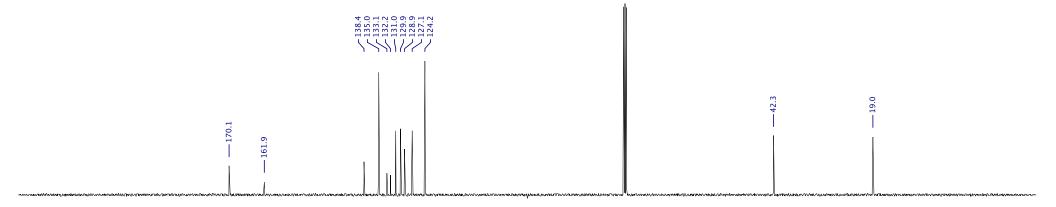
6e

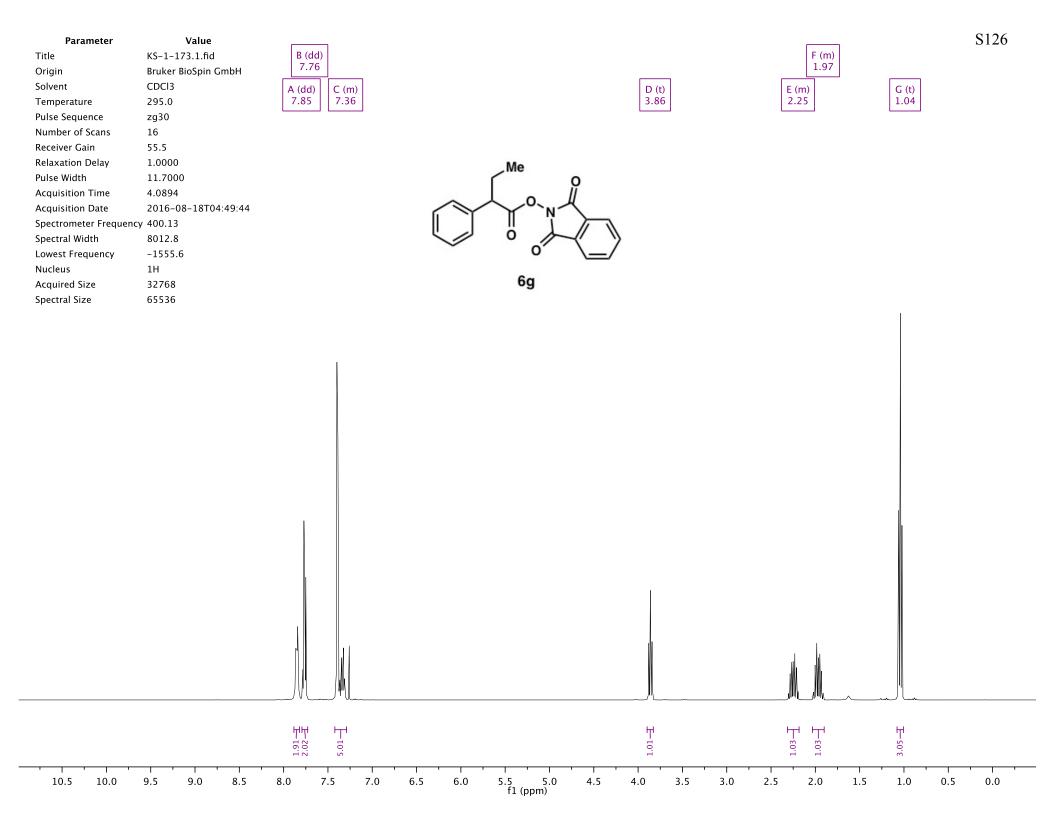

110 100 f1 (ppm) Т . 160

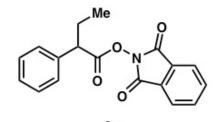
Parameter	Value		-		
Title	NAO-02-060-A.1.fid	B (dd)			dd)
Origin	Bruker BioSpin GmbH	7.79		7.	26
Solvent	CDCI3	A (dd)	D	(d)	
Temperature	294.9	7.87	7.	47	
Pulse Sequence	zg30	 Г			
Number of Scans	16		C (
Receiver Gain	127.1	L	7.5	2	
Relaxation Delay	1.0000				
Pulse Width	11.7000				
Acquisition Time	4.0894				
Acquisition Date	2017-01-06T22:09:26				
Spectrometer Frequency	400.13				
Spectral Width	8012.8				
Lowest Frequency	-1535.6				
Nucleus	1H				
Acquired Size	32768				
Spectral Size	65536				

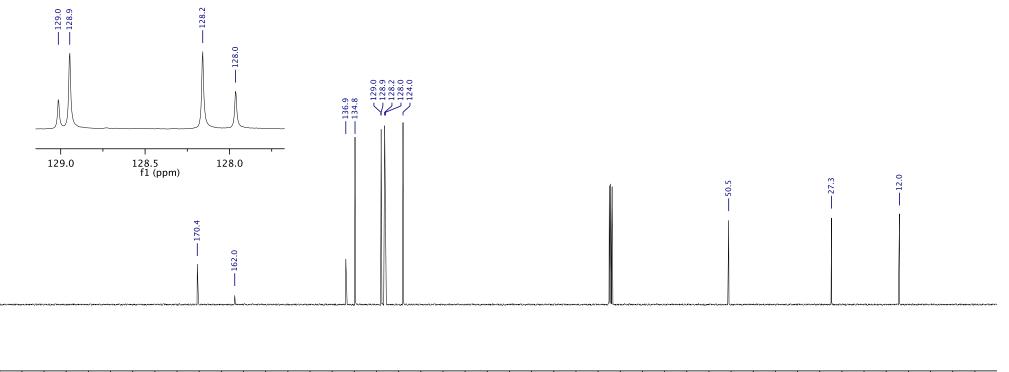





6f


Parameter	Value
Title	NAO-02-060-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	64.2
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2017-01-06T22:17:23
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1958.4
Nucleus	13C
Acquired Size	32768
Spectral Size	65536


6f


' 1	· ·				'	'		· ·		' 1	' I	'	·	· 1	· 1	1	· 1	·	' 1				_
210	200	190	180	170	160	150	140	130	120	110	100 f1 (ppm)	90)	80	70	60	50	40	30	20	10	0	-10	

Parameter	Value
Title	KS-1-173.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	87.8
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-18T04:57:35
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1940.8
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

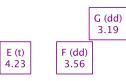
6g

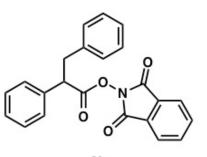
110 100 f1 (ppm)

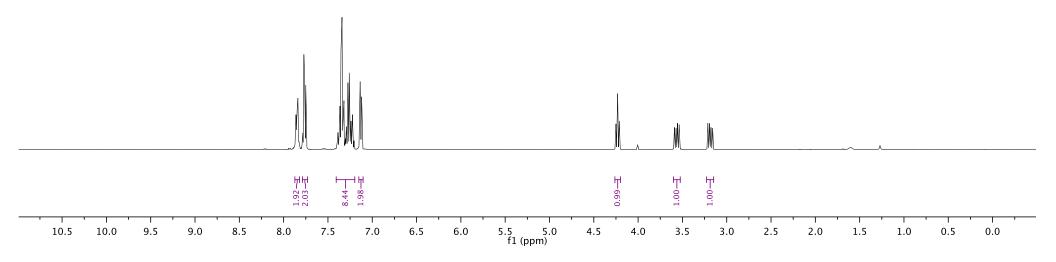
Parameter	Value		_
Title	KS-1-203.1.fid	B (dd)	
Origin	Bruker BioSpin GmbH	7.76	
Solvent	CDCI3	A (dd)	
Temperature	295.0	7.85	
Pulse Sequence	zg30		
Number of Scans	16		
Receiver Gain	64.2		
Relaxation Delay	1.0000		
Pulse Width	11.7000		
Acquisition Time	4.0894		
Acquisition Date	2016-08-18T02:52:51		
Spectrometer Frequency	400.13		
Spectral Width	8012.8		
Lowest Frequency	-1555.6		
Nucleus	1H		

32768

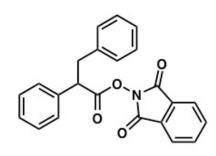
65536

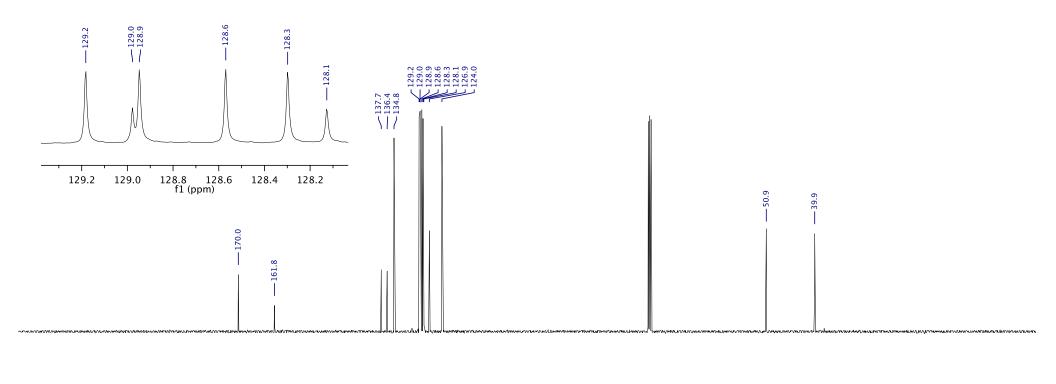

Acquired Size


Spectral Size


D (m) 7.13

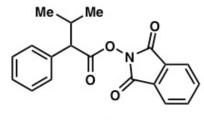
C (m) 7.30



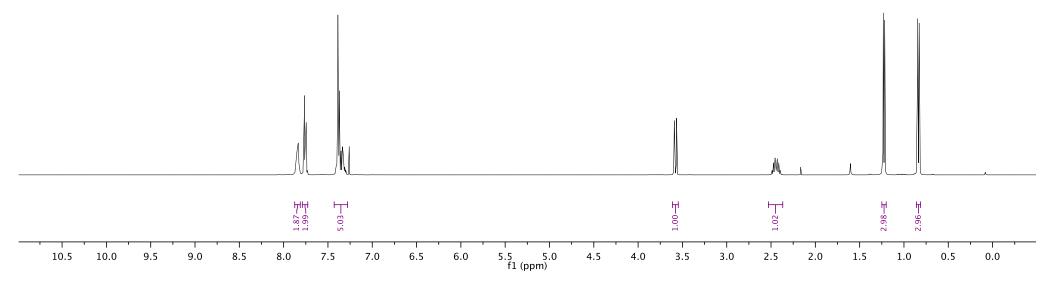

6h

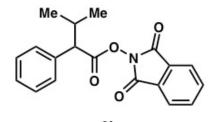
Parameter	Value
Title	KS-1-203.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	72.0
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-18T03:00:41
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1941.0
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

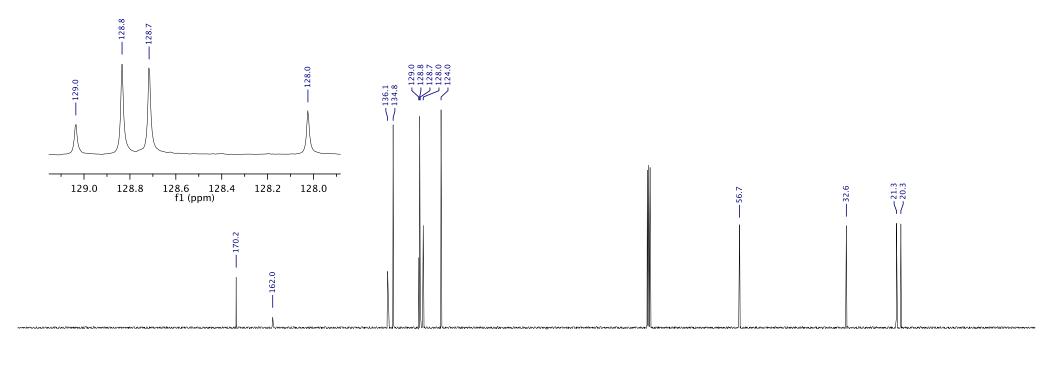
6h


Т 110 100 f1 (ppm)

Parameter	Value	
Title	NAO-01-186-A.1.fid	B (dd
Origin	Bruker BioSpin GmbH	7.76
Solvent	CDCl3	A (dd)
Temperature	295.0	7.84
Pulse Sequence	zg30	
Number of Scans	16	
Receiver Gain	55.5	
Relaxation Delay	1.0000	
Pulse Width	11.7000	
Acquisition Time	4.0894	
Acquisition Date	2016-08-18T05:47:44	
Spectrometer Frequency	400.13	
Spectral Width	8012.8	
Lowest Frequency	-1555.6	
Nucleus	1H	
Acquired Size	32768	
Spectral Size	65536	

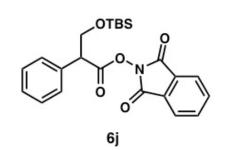


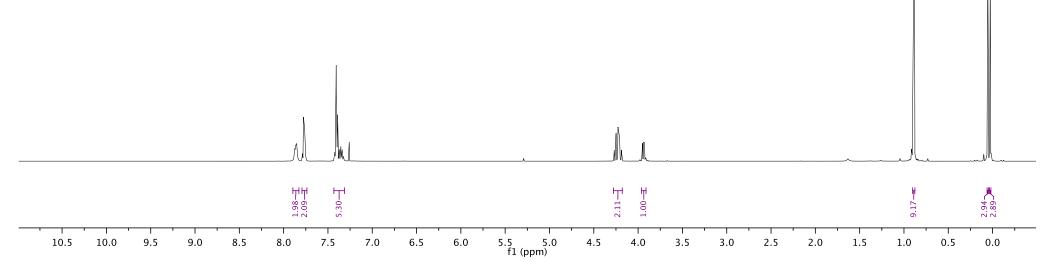

F (d)	G (d)
1.23	0.84


6i

Parameter	Value
Title	NAO-01-186-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	294.9
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	78.7
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-18T05:55:35
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1939.0
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

6i


110 100 f1 (ppm)


Parameter	Value		I
Title	JLH-5-143.1.fid	B (dd)	
Origin	Bruker BioSpin GmbH	7.77	
Solvent	CDCI3	A (dd)	C (m)
Temperature	295.0	7.86	7.37
Pulse Sequence	zg30		
Number of Scans	16		
Receiver Gain	30.3		
Relaxation Delay	1.0000		
Pulse Width	11.7000		
Acquisition Time	4.0894		
Acquisition Date	2016-08-18T03:51:09		
Spectrometer Frequency	400.13		
Spectral Width	8012.8		
Lowest Frequency	-1555.6		
Nucleus	1H		
Acquired Size	32768		
Spectral Size	65536		

F (s) 0.89

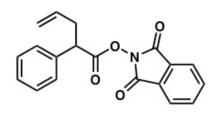
143.2.fid BioSpin GmbH
BioSpin GmbH
OTBS
0
18-18103:59:00
0 \/
6
6j
128.6 128.4 128.2 ppm)
- 169.0 161.8 161.8 161.8 161.8 161.8

f1 (ppm)

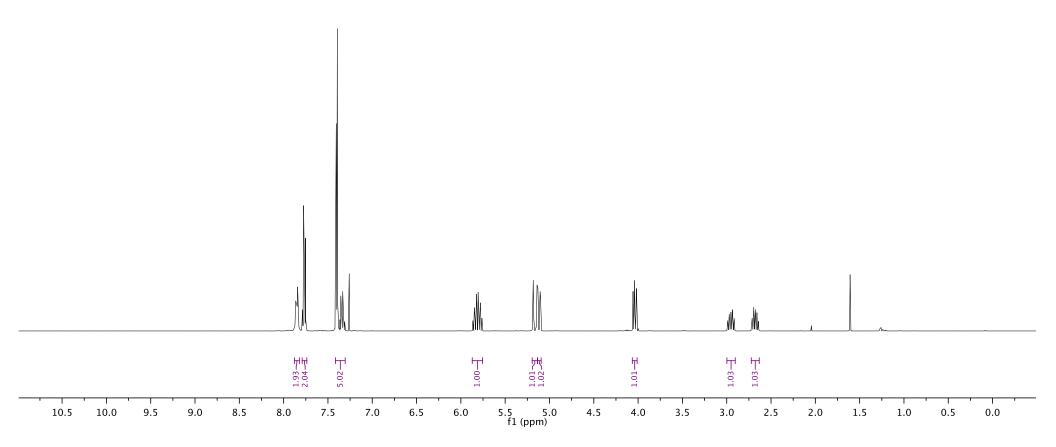
Parameter	Value			-
Title	NAO-01-211-A.1.fid		B (dd)	
Origin	Bruker BioSpin GmbH		7.76	
Solvent	CDCI3	Γ	A (dd)	C (m)
Temperature	294.9		7.85	7.37
Pulse Sequence	zg30			
Number of Scans	16			
Receiver Gain	64.2			
Relaxation Delay	1.0000			
Pulse Width	11.7000			
Acquisition Time	4.0894			
Acquisition Date	2016-08-19T22:04:00			
Spectrometer Frequency	400.13			
Spectral Width	8012.8			
Lowest Frequency	-1555.6			

1H

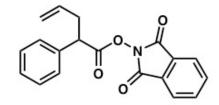
32768

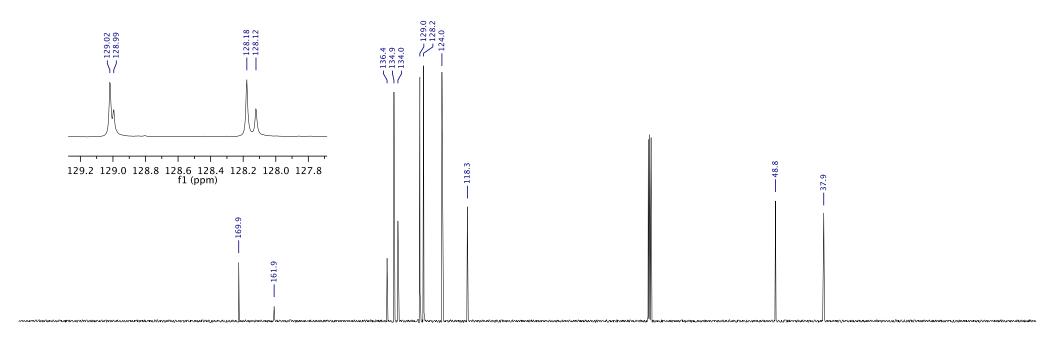

65536

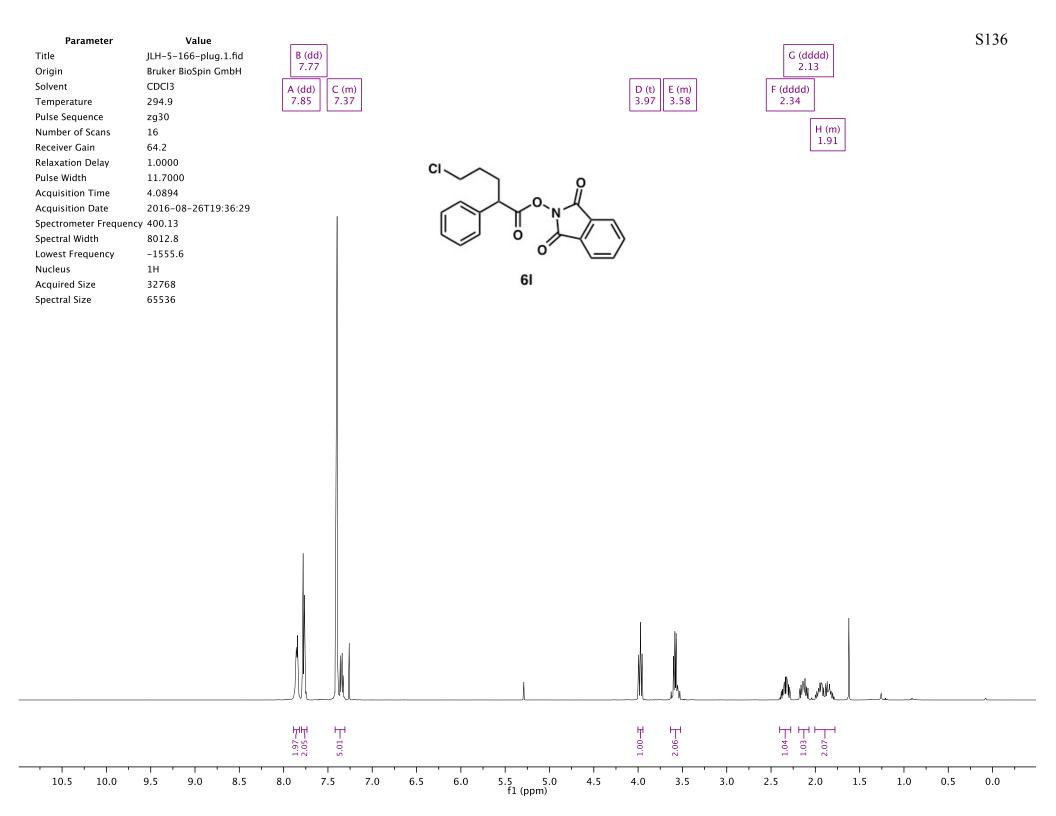
Nucleus

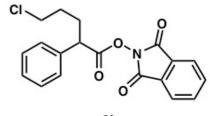

Acquired Size

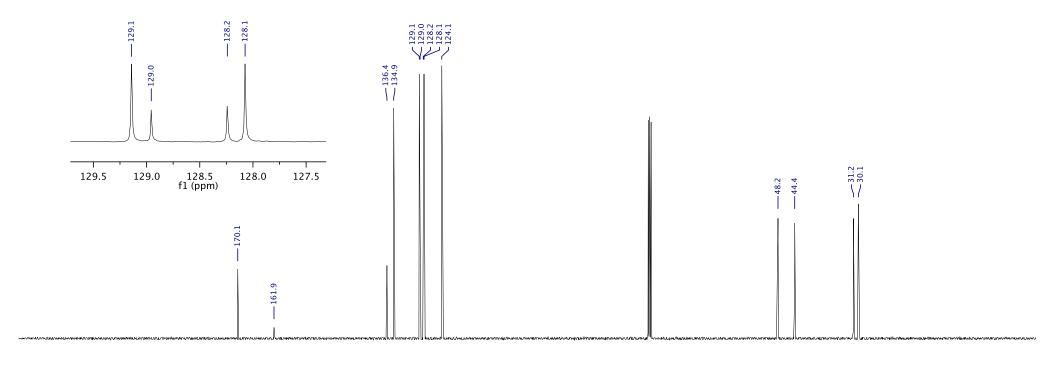
Spectral Size

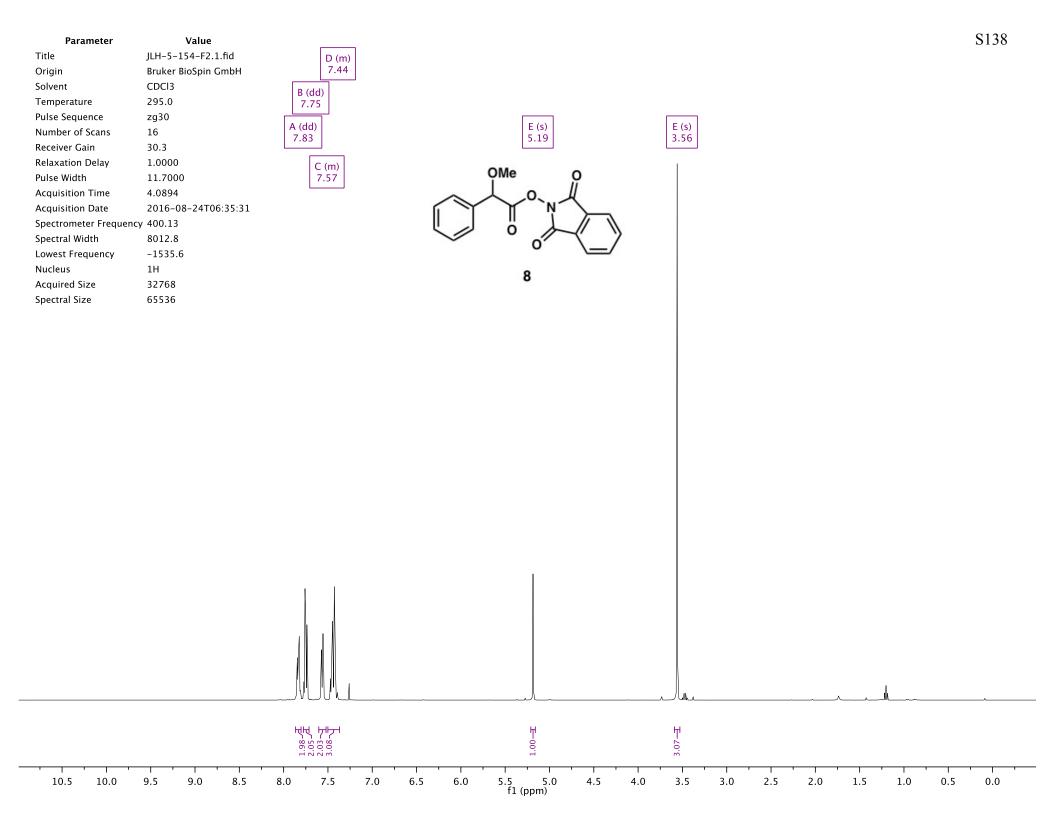


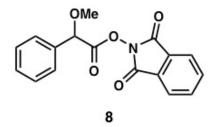

6k

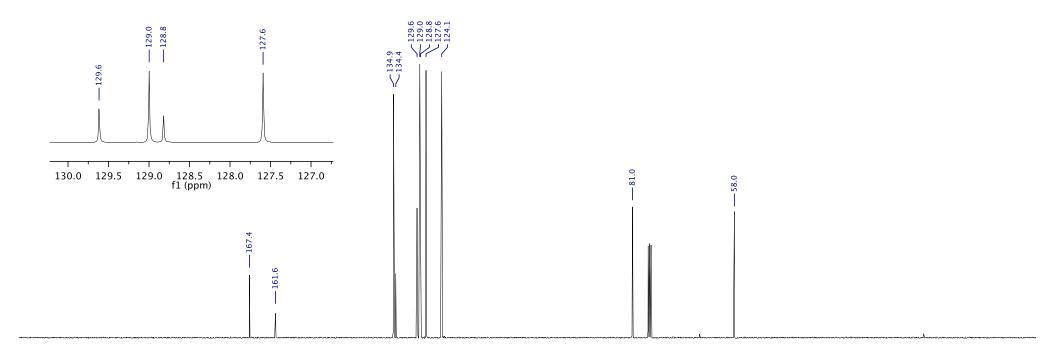

Parameter	Value
Title	NAO-01-211-A.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	78.7
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-19T22:11:57
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1940.1
Nucleus	13C
Acquired Size	32768
Spectral Size	65536


6k

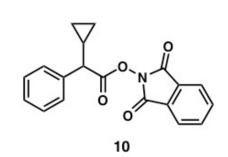

110 100 f1 (ppm)

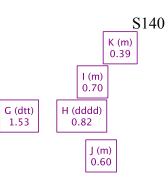

Parameter	Value
Title	JLH-5-166-plug.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	87.8
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-26T19:44:19
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1940.8
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

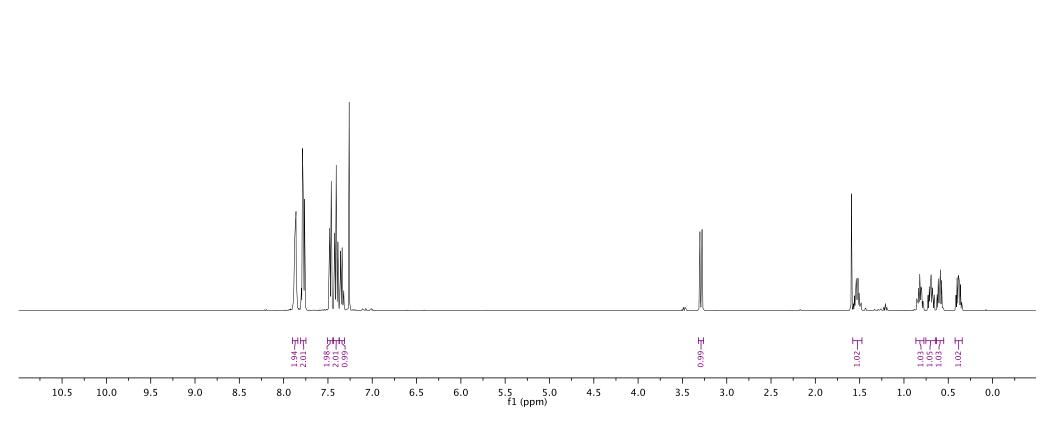

61



1		1 1	- I I	1		' 1	· /		'	· 1	·	'	· 1	' 1	, 1	, I	' 1	'				1	-
	210	200	190	180	170	160	150	140	130	120		100 ppm)	90	80	70	60	50	40	30	20	10	0	

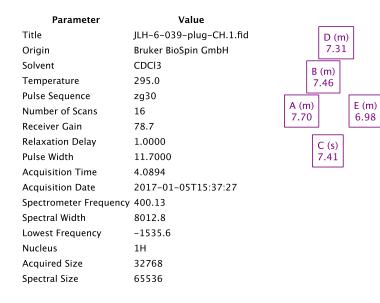

Parameter	Value
Title	JLH-5-154-F2.2.fid
Origin	Bruker BioSpin GmbH
Solvent	CDCI3
Temperature	295.0
Pulse Sequence	zgpg30
Number of Scans	128
Receiver Gain	78.7
Relaxation Delay	2.0000
Pulse Width	10.0000
Acquisition Time	1.3631
Acquisition Date	2016-08-24T06:43:59
Spectrometer Frequency	100.62
Spectral Width	24038.5
Lowest Frequency	-1951.5
Nucleus	13C
Acquired Size	32768
Spectral Size	65536

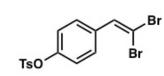



		1	·	· I	· I	· · ·	·	'	· I	· I	· ·	· · · ·	'	'	' '	· I	· I	· I	·	' ' '	1	
210	200	190	180	170	160	150	140	130	120	110 f1 (100 ppm)	90	80	70	60	50	40	30	20	10	0	

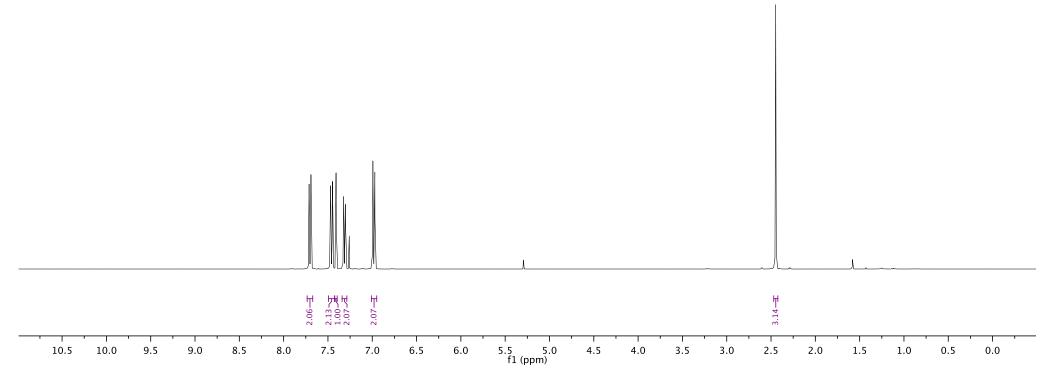
Parameter	Value	
Title	NAO-01-241-A-03.1.fid	
Origin	Bruker BioSpin GmbH	
Solvent	CDCI3	B (m) E (m)
Temperature	295.0	7.78 7.35
Pulse Sequence	zg30	
Number of Scans	16	A (dd) D (m) 7.87 7.41
Receiver Gain	112.8	
Relaxation Delay	1.0000	C (m)
Pulse Width	11.7000	7.47
Acquisition Time	4.0894	
Acquisition Date	2016-09-15T04:42:26	
Spectrometer Frequency	400.13	
Spectral Width	8012.8	
Lowest Frequency	-1555.6	
Nucleus	1H	
Acquired Size	32768	
Spectral Size	65536	

F (d) 3.29



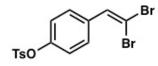


Parameter	Value			S141
Title	NAO-01-241-A-03.2.fid			
Origin	Bruker BioSpin GmbH			
Solvent	CDCI3			
Temperature	294.9			
Pulse Sequence	zgpg30			
Number of Scans	128			
Receiver Gain	78.7			
Relaxation Delay	2.0000	∇		
Pulse Width	10.0000	Ý o		
Acquisition Time	1.3631			
Acquisition Date	2016-09-15T04:50:24			
Spectrometer Frequence	ty 100.62			
Spectral Width	24038.5			
Lowest Frequency	-1936.3	• 0 [°] _/		
Nucleus	13C			
Acquired Size	32768	10		
Spectral Size	65536			
				- 0
				- 4.91
				\bigwedge
128.9	-128.1			
- 13				
1.0		.9 1128.1 128.1 128.1 128.2		
.129.1				
				, , , , , , , , , , , , , , , , , , ,
				4.95 4.90 4.85 f1 (ppm)
A A				·- (PP····)
<u> </u>			4	14.6 4.9 4.9
129.2 129.0 12	8.8 128.6 128.4 128.2 128.0 127.8		- 53.4	Ť Y
	28.8 128.6 128.4 128.2 128.0 127.8 fl (ppm)			
	0.0			
	— 17 162.0			
	1 7			
๛๛๛๚๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛	กษณฑฑรรรณ เมษาระสุมพรรรณ ในการระสามารถสามารถสามารถสามารถ	หมายสามารถและสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถสามารถส	ฟโนงงกรรณะและและและและและและและและและและและและและ	๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛๛

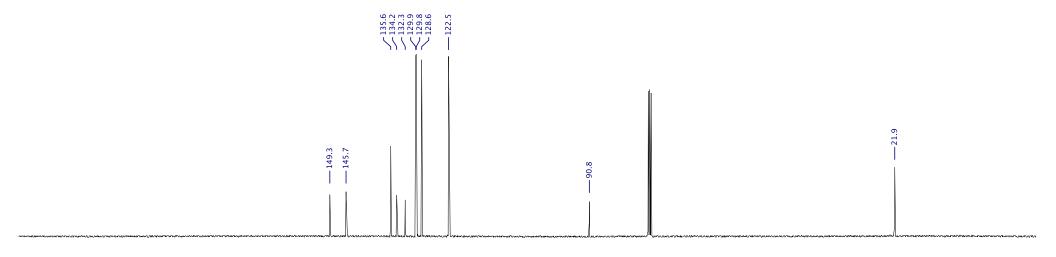

110 100 f1 (ppm) Т Т Т Т 80

~~~

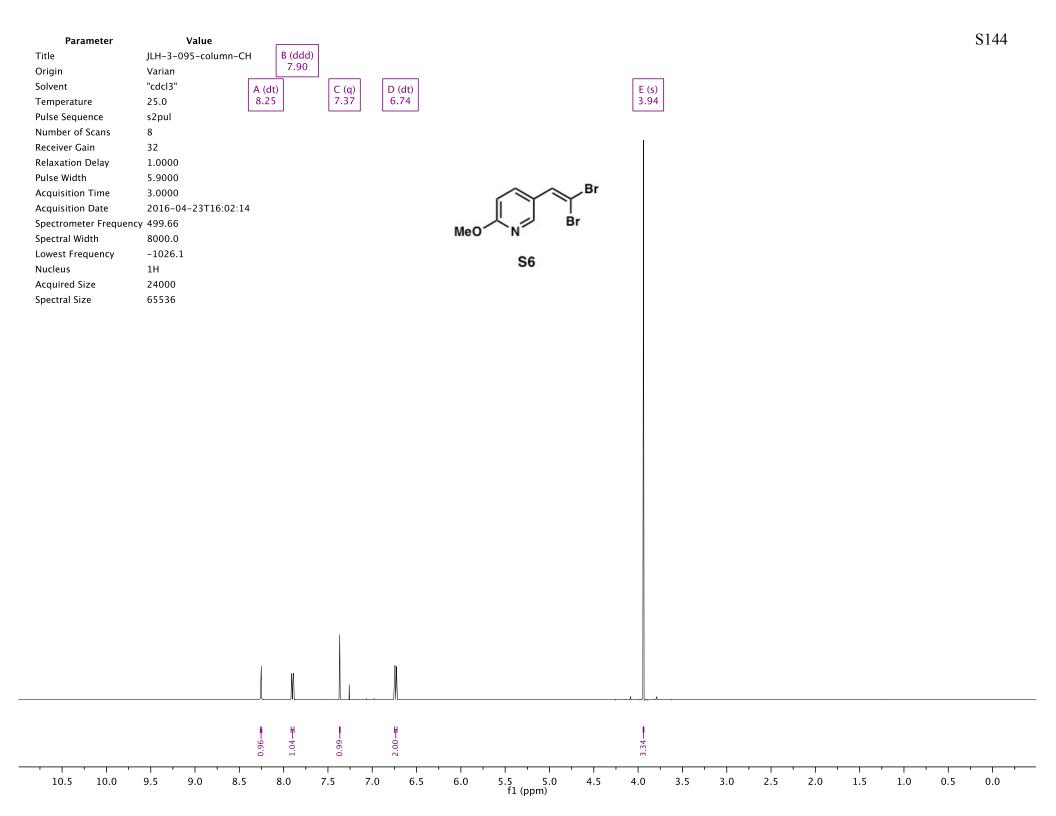




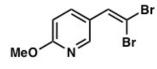


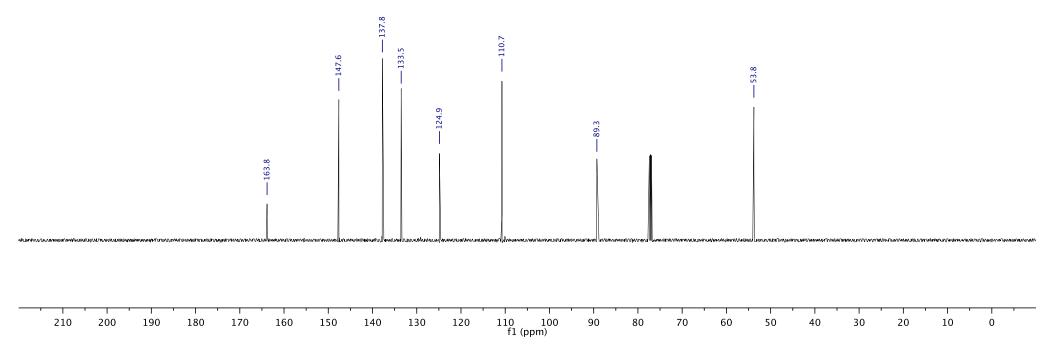

F (s) 2.45


| Parameter              | Value                   |
|------------------------|-------------------------|
| Title                  | JLH-6-039-plug-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH     |
| Solvent                | CDCI3                   |
| Temperature            | 294.9                   |
| Pulse Sequence         | zgpg30                  |
| Number of Scans        | 128                     |
| Receiver Gain          | 72.0                    |
| Relaxation Delay       | 2.0000                  |
| Pulse Width            | 10.0000                 |
| Acquisition Time       | 1.3631                  |
| Acquisition Date       | 2017-01-05T15:45:24     |
| Spectrometer Frequency | 100.62                  |
| Spectral Width         | 24038.5                 |
| Lowest Frequency       | -1958.4                 |
| Nucleus                | 13C                     |
| Acquired Size          | 32768                   |
| Spectral Size          | 65536                   |

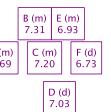


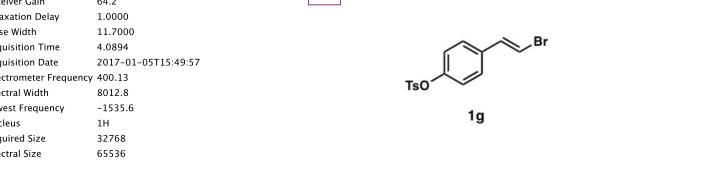

S5

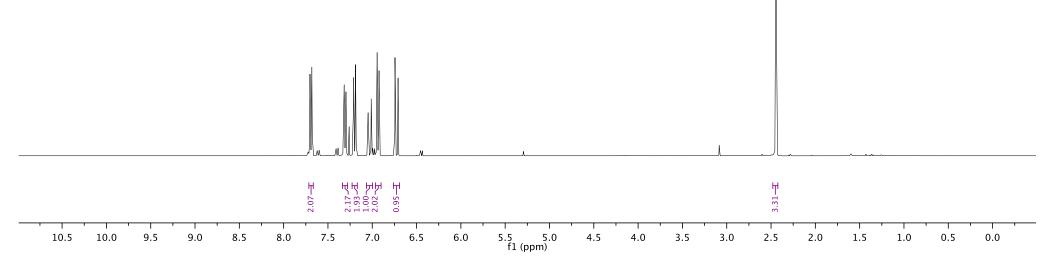



110 100 f1 (ppm) Т 



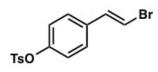

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-3-095-column-CH |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 256                 |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 4.5000              |
| Acquisition Time       | 1.0420              |
| Acquisition Date       | 2016-04-23T16:03:02 |
| Spectrometer Frequency | 125.65              |
| Spectral Width         | 31446.5             |
| Lowest Frequency       | -1874.1             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



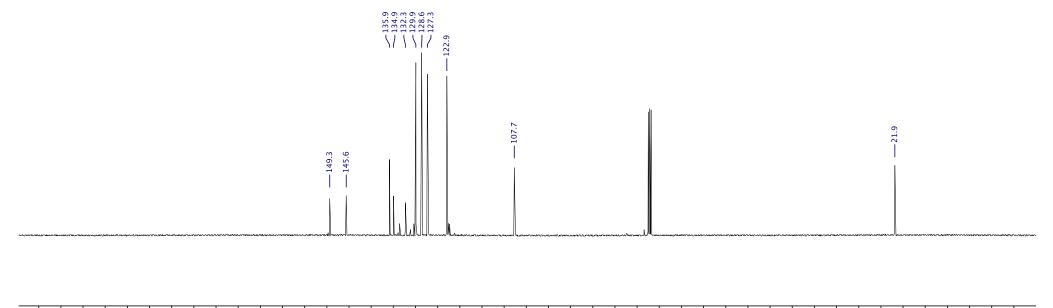


S6



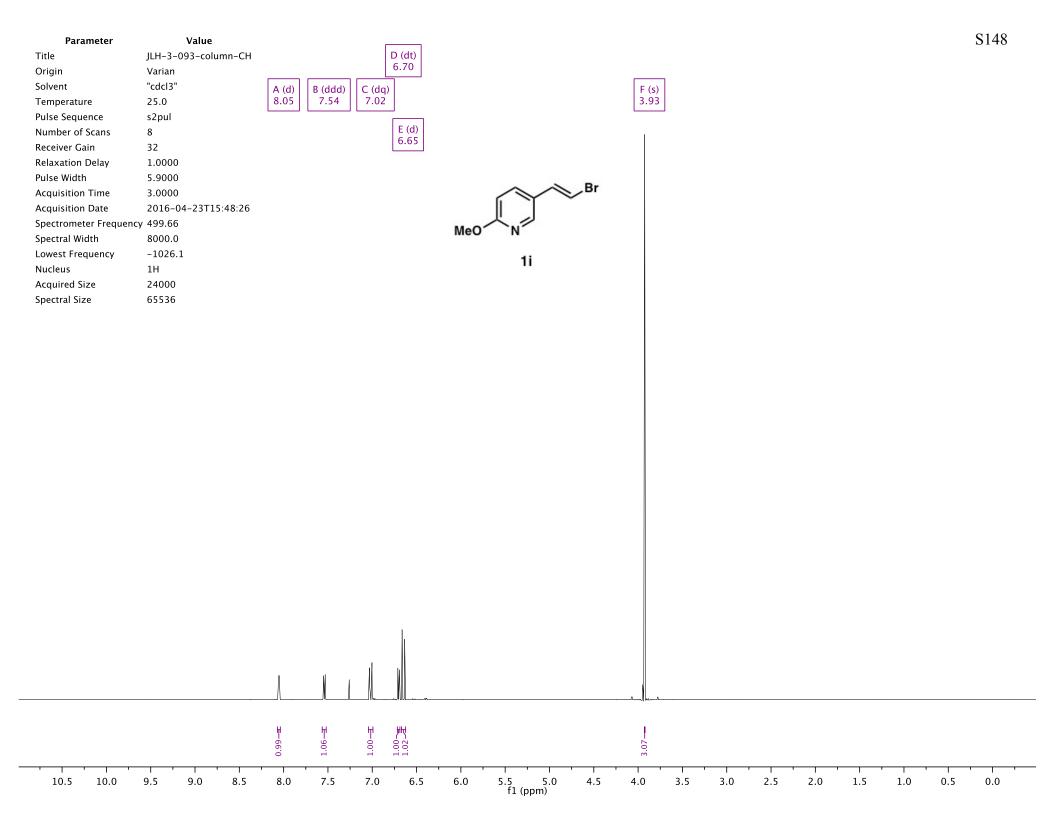
| Parameter              | Value               |      |
|------------------------|---------------------|------|
| Title                  | AHC-7-91-2-CH.1.fid |      |
| Origin                 | Bruker BioSpin GmbH |      |
| Solvent                | CDCI3               | A (m |
| Temperature            | 294.9               | 7.69 |
| Pulse Sequence         | zg30                |      |
| Number of Scans        | 16                  |      |
| Receiver Gain          | 64.2                |      |
| Relaxation Delay       | 1.0000              |      |
| Pulse Width            | 11.7000             |      |
| Acquisition Time       | 4.0894              |      |
| Acquisition Date       | 2017-01-05T15:49:57 |      |
| Spectrometer Frequency | 400.13              |      |
| Spectral Width         | 8012.8              |      |
| Lowest Frequency       | -1535.6             |      |
| Nucleus                | 1H                  |      |
| Acquired Size          | 32768               |      |
| Spectral Size          | 65536               |      |
|                        |                     |      |



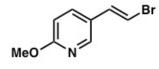


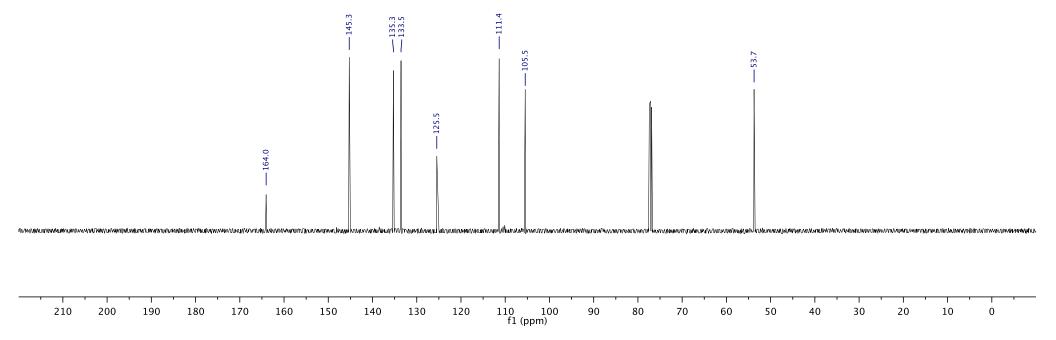

G (s) 2.44

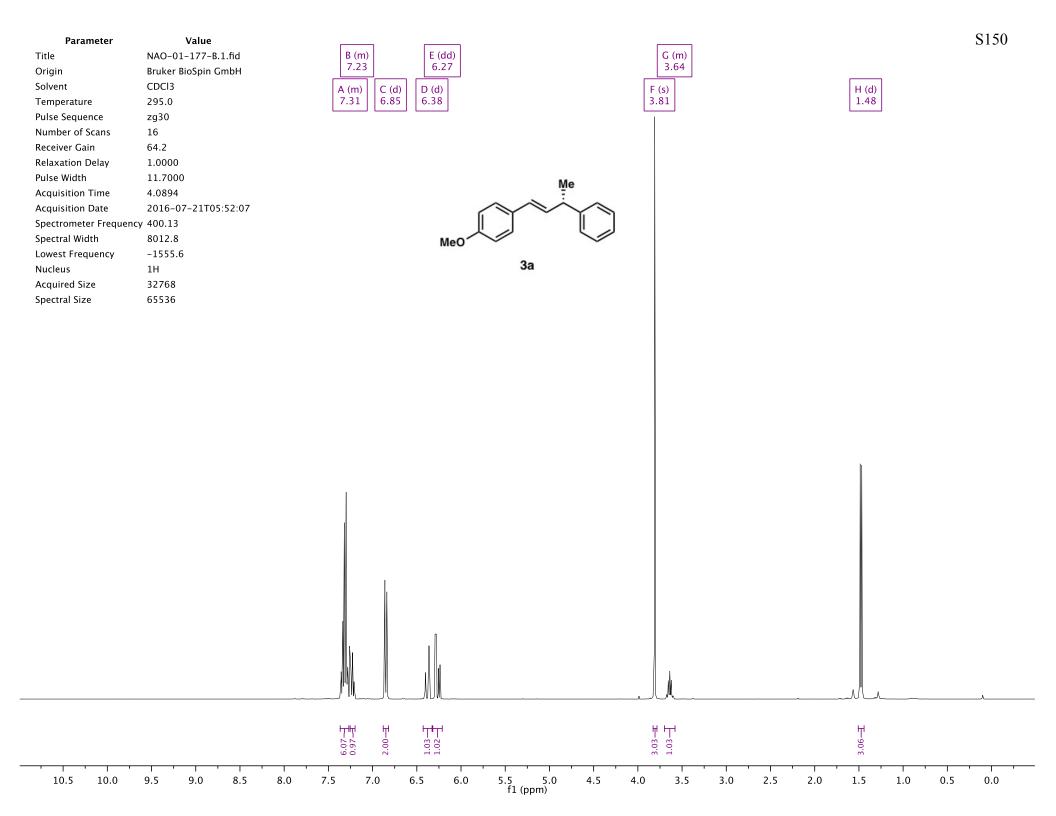

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | AHC-7-91-2-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 55.5                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2017-01-05T15:57:47 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1958.0             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



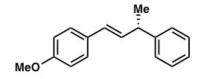

1g



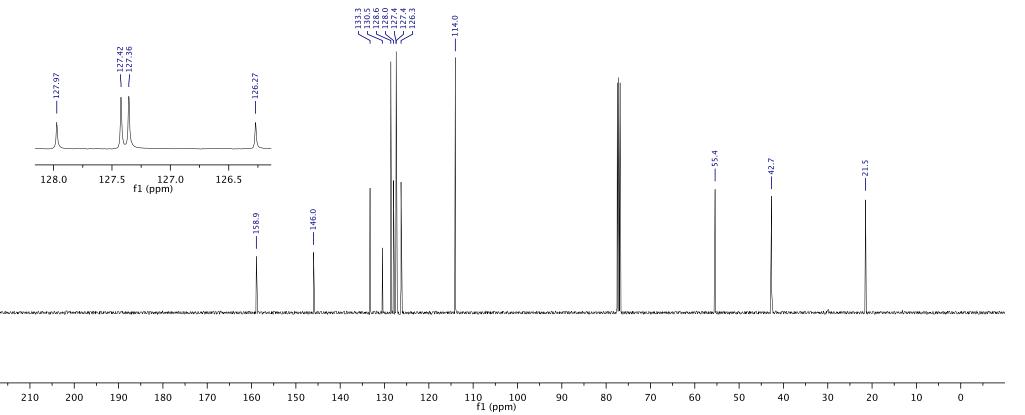

110 100 f1 (ppm) Т . 90 . 30 

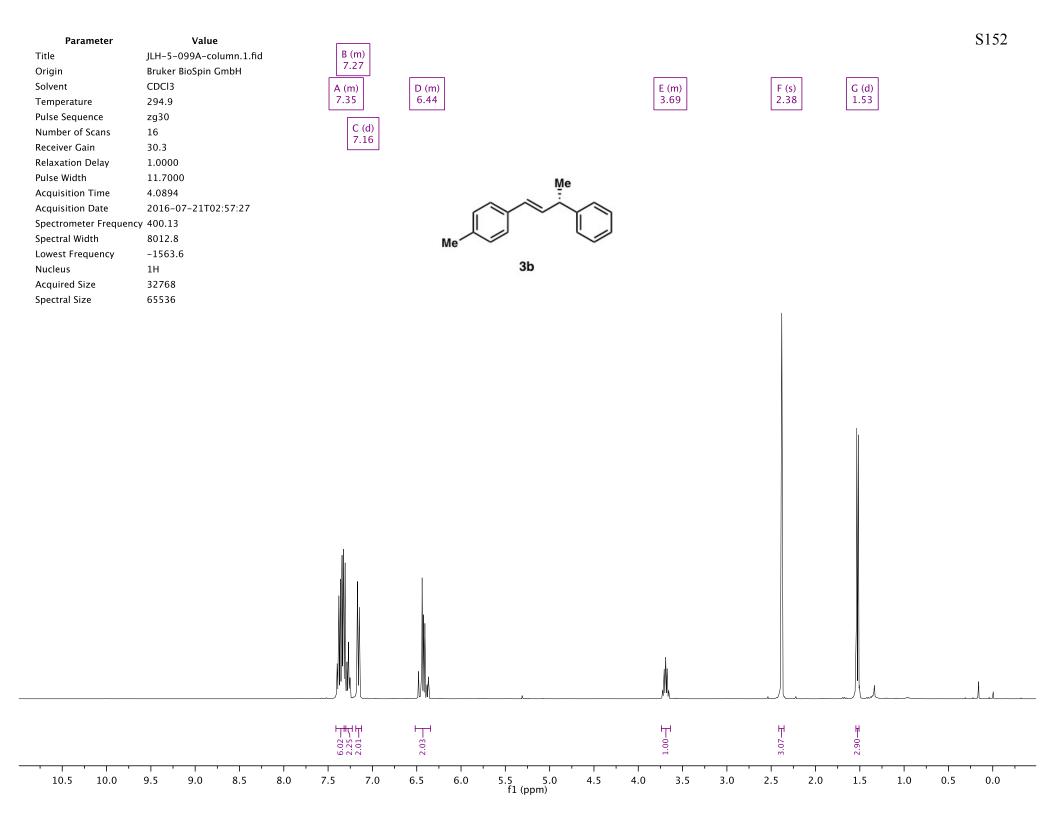



| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-3-093-column-CH |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 256                 |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 4.5000              |
| Acquisition Time       | 1.0420              |
| Acquisition Date       | 2016-04-23T15:49:14 |
| Spectrometer Frequency | 125.65              |
| Spectral Width         | 31446.5             |
| Lowest Frequency       | -1872.8             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



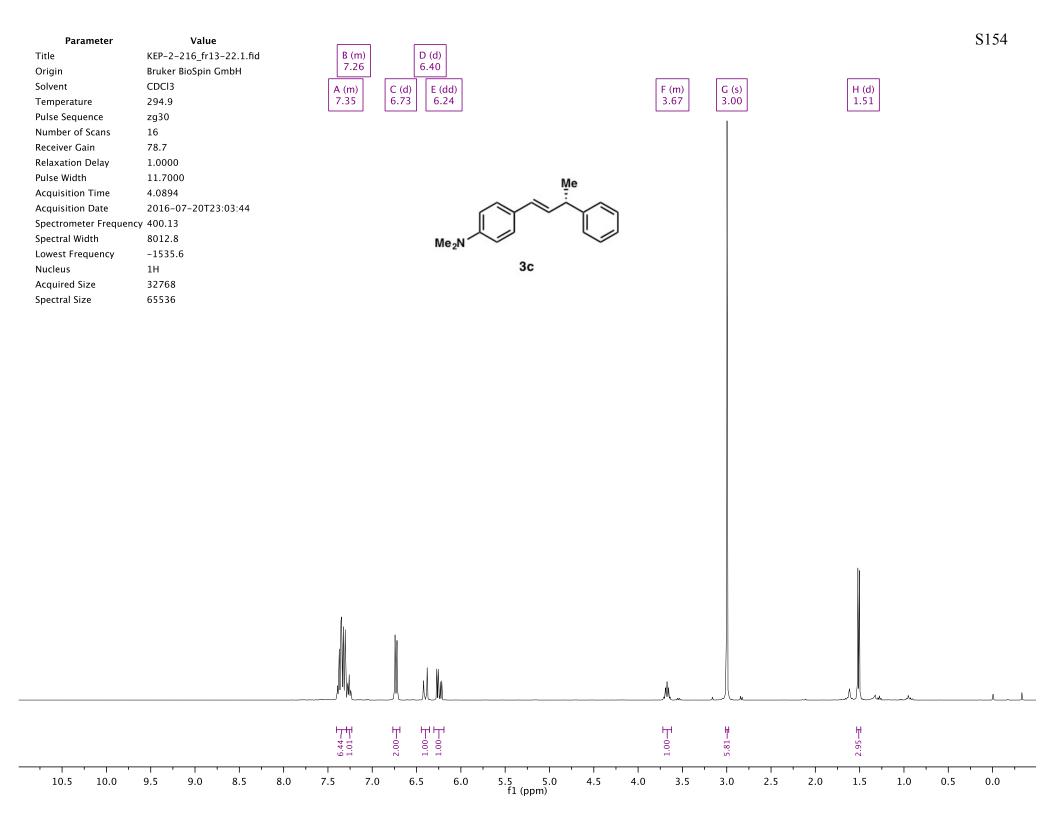

1i



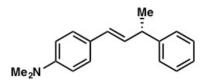




| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-177-B.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 72.0                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-07-21T05:59:57 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1938.4             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |

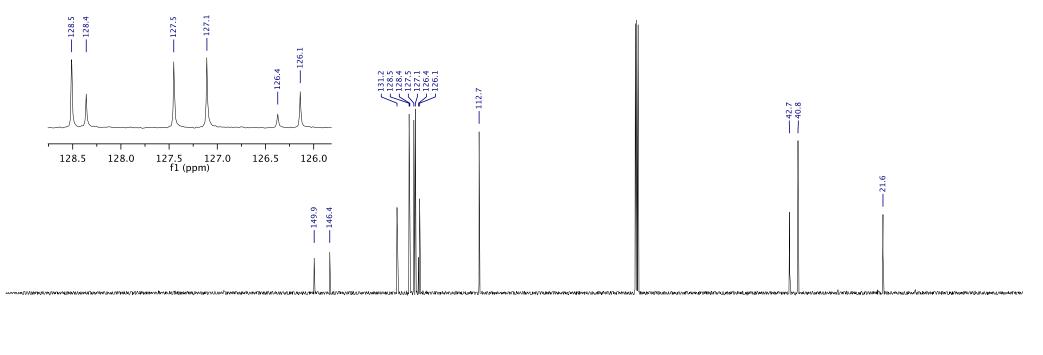




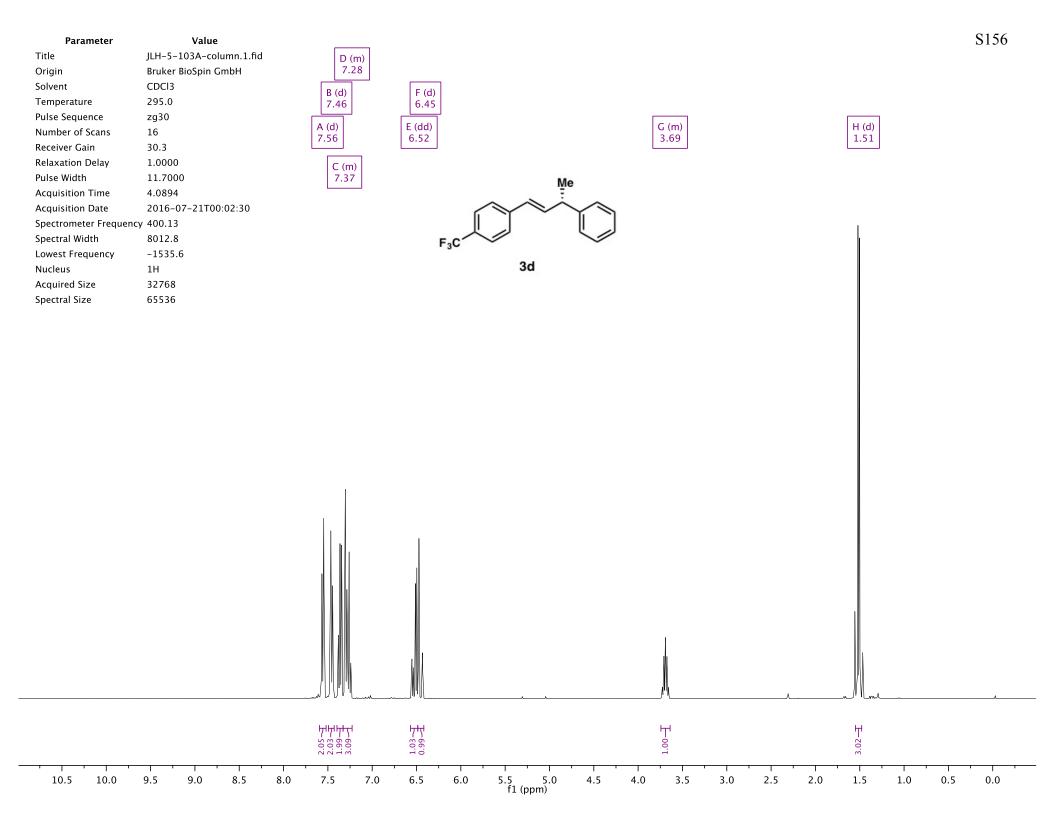



| Parameter            | Value                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | S153              |
|----------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Title                | JLH-5-099A-column.2.fid              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Origin               | Bruker BioSpin GmbH                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Solvent              | CDCI3                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Temperature          | 294.9                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Pulse Sequence       | zgpg30                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Number of Scans      | 128                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Receiver Gain        | 87.8                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Relaxation Delay     | 2.0000                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Pulse Width          | 10.0000                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Acquisition Time     | 1.3631                               | Me                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Acquisition Date     | 2016-07-21T03:05:17                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Spectrometer Frequer |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Spectral Width       | 24038.5                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Lowest Frequency     | -1949.5                              | Me + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   |
| Nucleus              | 13C                                  | 3b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
| Acquired Size        | 32768                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Spectral Size        | 65536                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      | 2001<br>2001<br>2001<br>2001<br>2001<br>2001<br>2001<br>2001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rù wi             |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | - 21.5<br>- 21.3  |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| -129.3<br>128.6      | -128.5<br>-127.5<br>-126.3<br>-126.3 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| 2 E                  |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ЛЛ                |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      | 22.0 2:<br>f1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.5 21.0<br>(ppm) |
|                      |                                      | 0,4.4<br>0,0,ú,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      | 136.9<br>134.3<br>21.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.3               |
| 129                  | 128 127 126<br>f1 (ppm)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Ĵ                 |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | i<br>I            |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      | 142.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
|                      |                                      | www.walawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/lawa.a.du/ | Lawannen          |


110 100 f1 (ppm) Т ا 80 20 . 50 

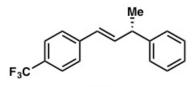



| Parameter              | Value                   |
|------------------------|-------------------------|
| Title                  | KEP-2-216_fr13-22.2.fid |
| Origin                 | Bruker BioSpin GmbH     |
| Solvent                | CDCI3                   |
| Temperature            | 294.9                   |
| Pulse Sequence         | zgpg30                  |
| Number of Scans        | 128                     |
| Receiver Gain          | 87.8                    |
| Relaxation Delay       | 2.0000                  |
| Pulse Width            | 10.0000                 |
| Acquisition Time       | 1.3631                  |
| Acquisition Date       | 2016-07-20T23:11:35     |
| Spectrometer Frequency | 100.62                  |
| Spectral Width         | 24038.5                 |
| Lowest Frequency       | -1937.0                 |
| Nucleus                | 13C                     |
| Acquired Size          | 32768                   |
| Spectral Size          | 65536                   |








110 100 f1 (ppm) 



|                        | Value                   |                  |                                          | S157                                    |
|------------------------|-------------------------|------------------|------------------------------------------|-----------------------------------------|
| Title                  | JLH-5-103A-column.2.fid |                  |                                          |                                         |
| Origin                 | Bruker BioSpin GmbH     |                  |                                          |                                         |
| Solvent                | CDCI3                   |                  |                                          |                                         |
| Temperature            | 294.9                   |                  |                                          |                                         |
| Pulse Sequence         | zgpg30                  |                  |                                          |                                         |
| Number of Scans        | 128                     |                  |                                          |                                         |
| Receiver Gain          | 72.0                    |                  |                                          |                                         |
| Relaxation Delay       | 2.0000                  |                  |                                          |                                         |
| Pulse Width            | 10.0000                 |                  | Me                                       |                                         |
| Acquisition Time       | 1.3631                  |                  |                                          |                                         |
| Acquisition Date       | 2016-07-21T00:10:20     |                  | $\sim$                                   |                                         |
| Spectrometer Frequence |                         |                  |                                          |                                         |
| Spectral Width         | 24038.5                 | F <sub>3</sub> C | $\checkmark$                             |                                         |
| Lowest Frequency       | -1937.2                 | 3d               |                                          |                                         |
| Nucleus                | 13C                     | 50               |                                          |                                         |
| Acquired Size          | 32768                   |                  |                                          |                                         |
| Spectral Size          | 65536                   |                  |                                          |                                         |
|                        |                         |                  | 5.821<br>5.821<br>130 129 128 127 126 f. | <sup>1</sup><br>125 124 123 122 121 120 |
|                        | 141.2 141.1<br>f1 (ppm) |                  |                                          | 21.2                                    |

110 100 f1 (ppm) Т Т Т 80 . 160 . 90 . 60 

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-5-103A          |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 16                  |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 6.3333              |
| Acquisition Time       | 0.9856              |
| Acquisition Date       | 2016-08-31T23:36:19 |
| Spectrometer Frequency | 282.34              |
| Spectral Width         | 64935.1             |
| Lowest Frequency       | -58252.6            |
| Nucleus                | 19F                 |
| Acquired Size          | 64000               |
| Spectral Size          | 131072              |
| Absolute Reference     |                     |





-65.6

| -1 | 1  | ' ' | 1 | 1 |     | '   | 1   | ·   · |     | '   |     | '   | '     | ·    | '    | '    | '    | '    | '    |      | '    | 1    |      |
|----|----|-----|---|---|-----|-----|-----|-------|-----|-----|-----|-----|-------|------|------|------|------|------|------|------|------|------|------|
|    | 20 | 10  |   | 0 | -10 | -20 | -30 | -40   | -50 | -60 | -70 | -80 | -90   | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180 | -190 |
|    |    |     |   |   |     |     |     |       |     |     |     | f1  | (ppm) |      |      |      |      |      |      |      |      |      |      |

พบกการเกม

| Title JLH-5-1<br>Origin Varian | 03A-C6F6      |
|--------------------------------|---------------|
| Origin Varian                  |               |
|                                |               |
| Solvent "cdcl3"                |               |
| Temperature 25.0               |               |
| Pulse Sequence s2pul           |               |
| Number of Scans 16             |               |
| Receiver Gain 30               |               |
| Relaxation Delay 1.0000        |               |
| Pulse Width 6.3333             |               |
| Acquisition Time 0.9856        |               |
| Acquisition Date 2016-0        | 8-31T23:40:31 |
| Spectrometer Frequency 282.34  |               |
| Spectral Width 64935.1         | L             |
| Lowest Frequency -58228        | .3            |
| Nucleus 19F                    |               |
| Acquired Size 64000            |               |
| Spectral Size 131072           |               |
|                                |               |
|                                |               |
|                                |               |

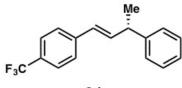
10

20

-10

-20

-30


-40

-50

-60

-70

0





-80 -90 f1 (ppm) -100

-110

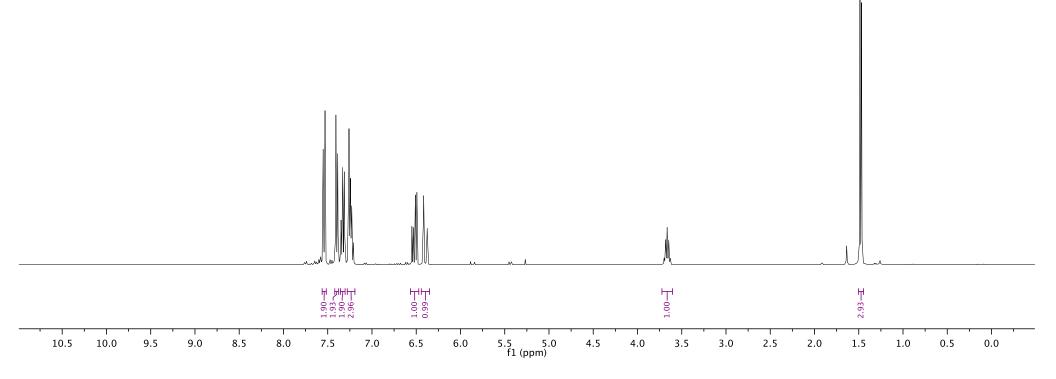
-120

-130

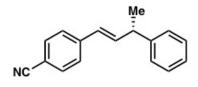
-140

-150

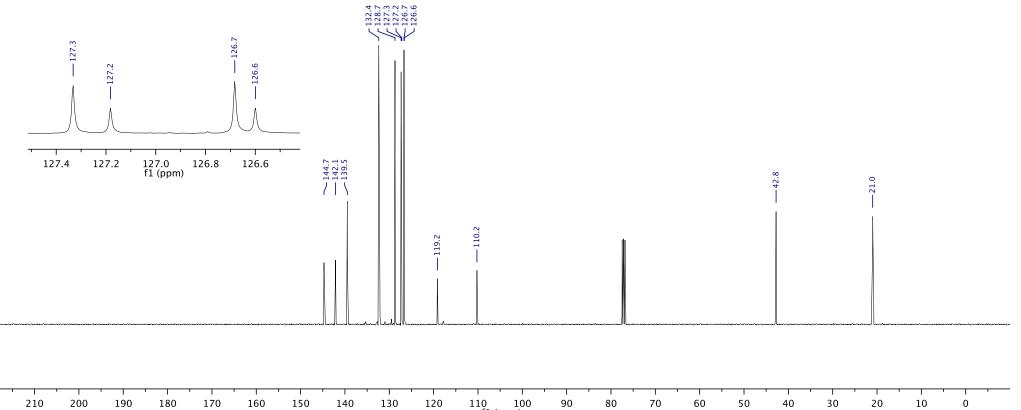
-160


-170

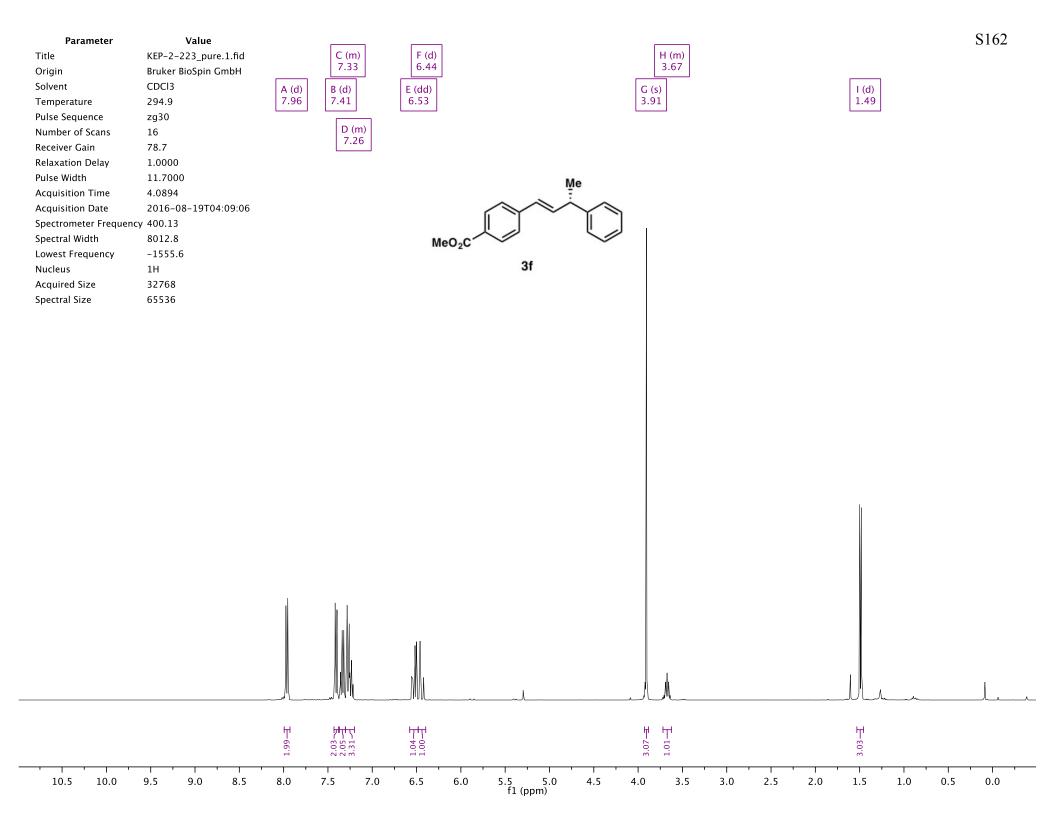
-190


-180

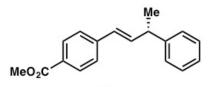
-65.6


| Parameter           | Value                   |       |        |     |  |
|---------------------|-------------------------|-------|--------|-----|--|
| Title               | JLH-5-102A-column.1.fid | D (m) |        |     |  |
| Drigin              | Bruker BioSpin GmbH     | 7.24  |        |     |  |
| Solvent             | CDCI3                   | B (d) | F (d)  |     |  |
| Temperature         | 294.9                   | 7.40  | 6.40   |     |  |
| Pulse Sequence      | zg30                    | A (d) | E (dd) |     |  |
| Number of Scans     | 16                      | 7.54  | 6.52   |     |  |
| Receiver Gain       | 30.3                    |       |        |     |  |
| Relaxation Delay    | 1.0000                  | C (m) |        |     |  |
| Pulse Width         | 11.7000                 | 7.33  |        | Me  |  |
| Acquisition Time    | 4.0894                  |       |        | Ŧ   |  |
| Acquisition Date    | 2016-07-21T01:59:17     |       |        | ✎∽ੵ |  |
| Spectrometer Freque | ncy 400.13              |       |        |     |  |
| Spectral Width      | 8012.8                  |       | NC     | 1   |  |
| Lowest Frequency    | -1555.6                 |       |        |     |  |
| Nucleus             | 1H                      |       | Зе     |     |  |
| Acquired Size       | 32768                   |       |        |     |  |
| Spectral Size       | 65536                   |       |        |     |  |

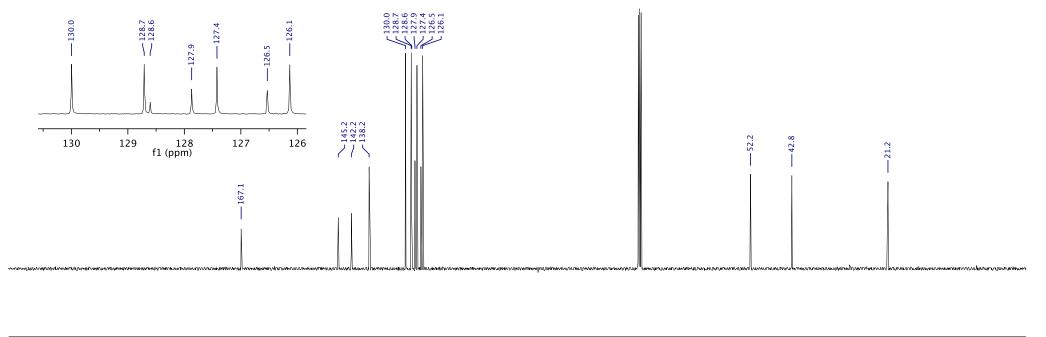



| Parameter              | Value                   |
|------------------------|-------------------------|
| Title                  | JLH-5-102A-column.2.fid |
| Origin                 | Bruker BioSpin GmbH     |
| Solvent                | CDCI3                   |
| Temperature            | 295.0                   |
| Pulse Sequence         | zgpg30                  |
| Number of Scans        | 128                     |
| Receiver Gain          | 78.7                    |
| Relaxation Delay       | 2.0000                  |
| Pulse Width            | 10.0000                 |
| Acquisition Time       | 1.3631                  |
| Acquisition Date       | 2016-07-21T02:07:07     |
| Spectrometer Frequency | 100.62                  |
| Spectral Width         | 24038.5                 |
| Lowest Frequency       | -1955.3                 |
| Nucleus                | 13C                     |
| Acquired Size          | 32768                   |
| Spectral Size          | 65536                   |




3e




70 110 100 f1 (ppm) 



| Parameter              | Value                |
|------------------------|----------------------|
| Title                  | KEP-2-223_pure.2.fid |
| Origin                 | Bruker BioSpin GmbH  |
| Solvent                | CDCI3                |
| Temperature            | 294.9                |
| Pulse Sequence         | zgpg30               |
| Number of Scans        | 128                  |
| Receiver Gain          | 87.8                 |
| Relaxation Delay       | 2.0000               |
| Pulse Width            | 10.0000              |
| Acquisition Time       | 1.3631               |
| Acquisition Date       | 2016-08-19T04:16:57  |
| Spectrometer Frequency | 100.62               |
| Spectral Width         | 24038.5              |
| Lowest Frequency       | -1936.8              |
| Nucleus                | 13C                  |
| Acquired Size          | 32768                |
| Spectral Size          | 65536                |





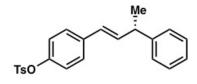


Т 110 100 f1 (ppm) . 70 

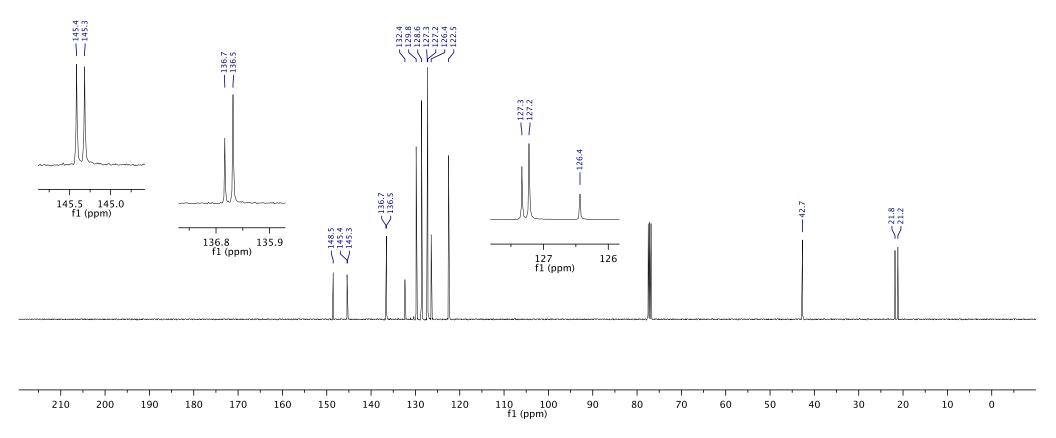
| Parameter                            | Value                         |                                                 |                  |               |               |               | S164     |
|--------------------------------------|-------------------------------|-------------------------------------------------|------------------|---------------|---------------|---------------|----------|
| Title                                | JLH-6-027A-column-CH.1.fid    | C (m)<br>7.25                                   |                  |               |               |               |          |
| Origin<br>Solvent                    | Bruker BioSpin GmbH           |                                                 |                  |               |               |               |          |
| Solvent<br>Temperature               | CDCl3<br>294.9                | A (d) B (m) D (d)<br>7.70 7.32 6.90             | E (m)<br>6.35    | F (m)<br>3.63 | G (s)<br>2.45 | H (d)<br>1.46 |          |
| Pulse Sequence                       | zg30                          |                                                 |                  | 5105          |               |               |          |
| Number of Scans                      | 16                            |                                                 |                  |               |               |               |          |
| Receiver Gain                        | 30.3                          |                                                 |                  |               |               |               |          |
| Relaxation Delay                     | 1.0000                        |                                                 |                  |               |               |               |          |
| Pulse Width                          | 11.7000                       |                                                 | Me               |               |               |               |          |
| Acquisition Time<br>Acquisition Date | 4.0894<br>2016-12-23T14:59:22 |                                                 |                  |               |               |               |          |
| Spectrometer Frequen                 |                               |                                                 |                  |               |               |               |          |
| Spectral Width                       | 8012.8                        |                                                 | TsO              |               |               |               |          |
| Lowest Frequency                     | -1535.6                       |                                                 |                  |               |               |               |          |
| Nucleus                              | 1H                            |                                                 | 3g               |               |               |               |          |
| Acquired Size                        | 32768                         |                                                 |                  |               |               |               |          |
| Spectral Size                        | 65536                         |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               | ili i                                           |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 |                  |               |               |               |          |
|                                      |                               |                                                 | Λ                | ٨             |               | I II          |          |
|                                      |                               | / [n/ "[n]/                                     |                  | /\            |               |               | <b>`</b> |
|                                      |                               |                                                 | щ                | L-1           | ц             | ц             |          |
|                                      |                               | 2.03 <u>년</u><br>5.01 <u>년</u><br>1.98 <u>년</u> | 1<br>2<br>3<br>3 | 1.00-Д        | 3.04 <b>→</b> | 2.93 म        |          |
|                                      |                               | 2.(<br>5.(<br>1.5                               | 2.0              | 1.0           | 3.(           | 2.5           |          |

\_\_\_\_ 7.5 3.5 10.0 9.5 7.0 6.5 4.0 2.5 10.5 9.0 8.5 1 5.5 5.0 f1 (ppm) 4.5 8.0 6.0 3.0

1.5


2.0

1.0


0.0

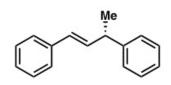
0.5

| Parameter              | Value                      |
|------------------------|----------------------------|
| Title                  | JLH-6-027A-column-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH        |
| Solvent                | CDCI3                      |
| Temperature            | 295.0                      |
| Pulse Sequence         | zgpg30                     |
| Number of Scans        | 128                        |
| Receiver Gain          | 64.2                       |
| Relaxation Delay       | 2.0000                     |
| Pulse Width            | 10.0000                    |
| Acquisition Time       | 1.3631                     |
| Acquisition Date       | 2016-12-23T15:07:12        |
| Spectrometer Frequency | 100.62                     |
| Spectral Width         | 24038.5                    |
| Lowest Frequency       | -1958.0                    |
| Nucleus                | 13C                        |
| Acquired Size          | 32768                      |
| Spectral Size          | 65536                      |

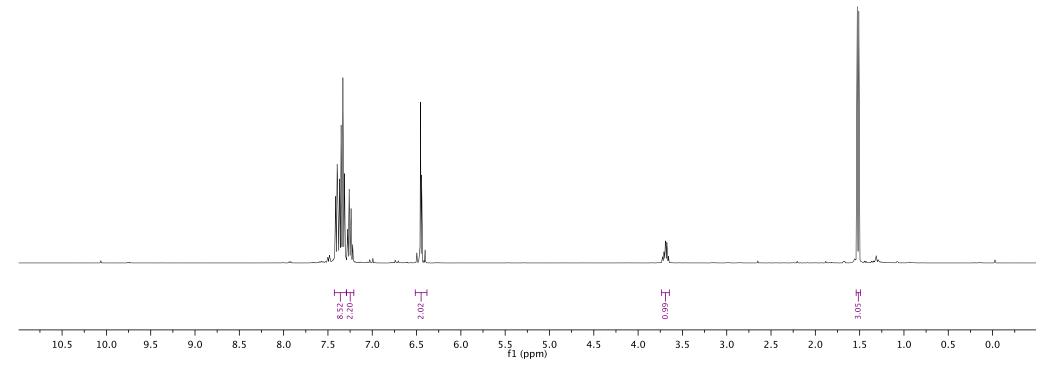


3g



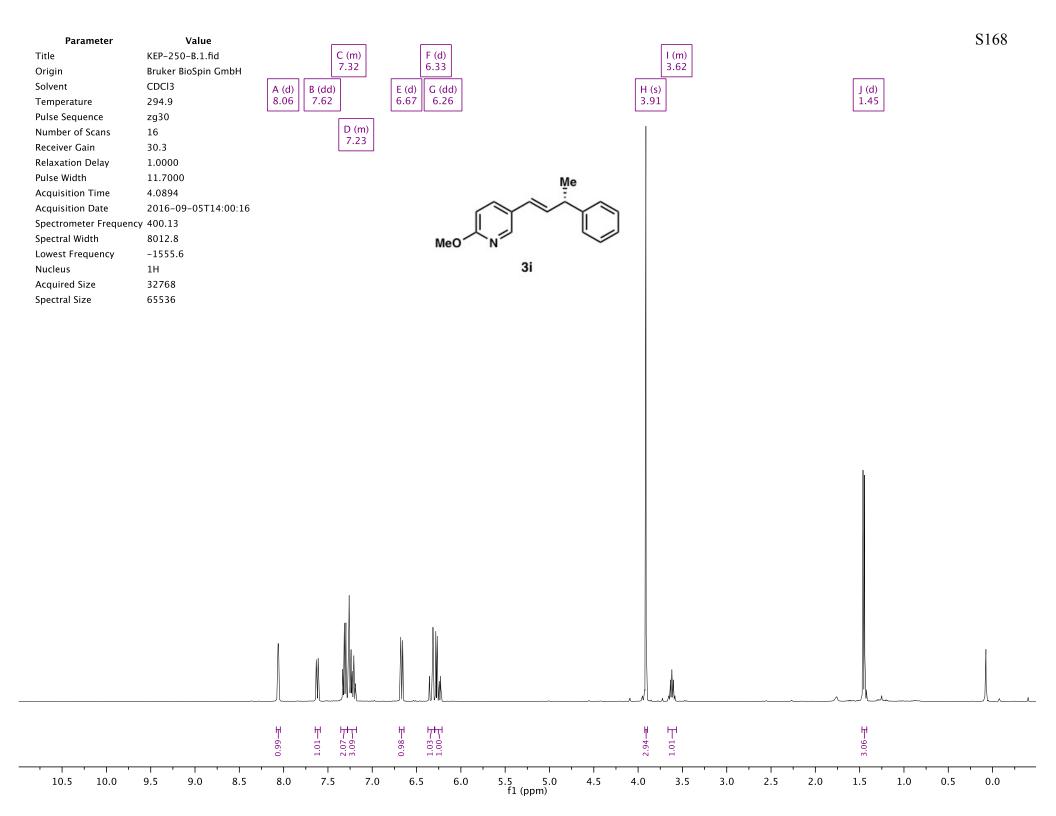

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-5-126.1.fid     |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zg30                |
| Number of Scans        | 16                  |
| Receiver Gain          | 30.3                |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 11.7000             |
| Acquisition Time       | 4.0894              |
| Acquisition Date       | 2016-08-19T13:43:12 |
| Spectrometer Frequency | 400.13              |
| Spectral Width         | 8012.8              |
| Lowest Frequency       | -1553.2             |
| Nucleus                | 1H                  |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |

| B (m<br>7.26 |  |               |
|--------------|--|---------------|
| (m)<br>7.36  |  | C (m)<br>6.46 |

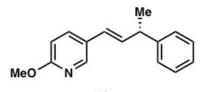

A (m) 7.36



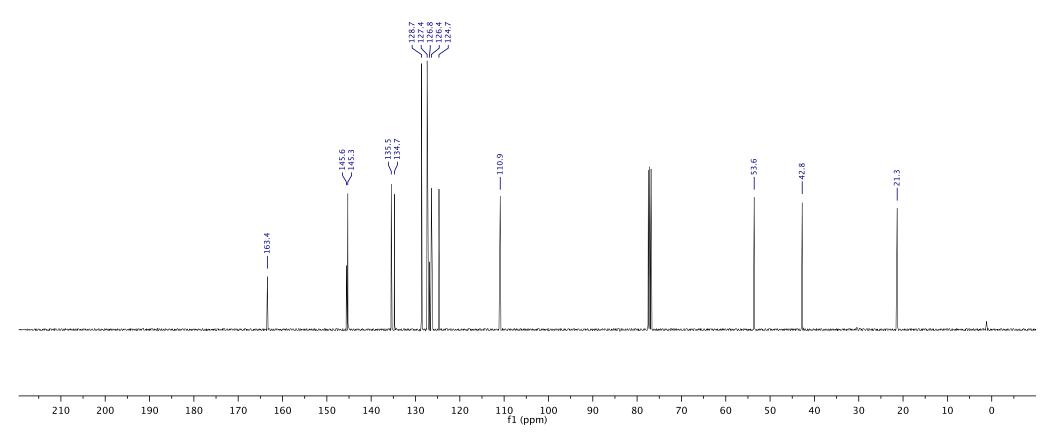


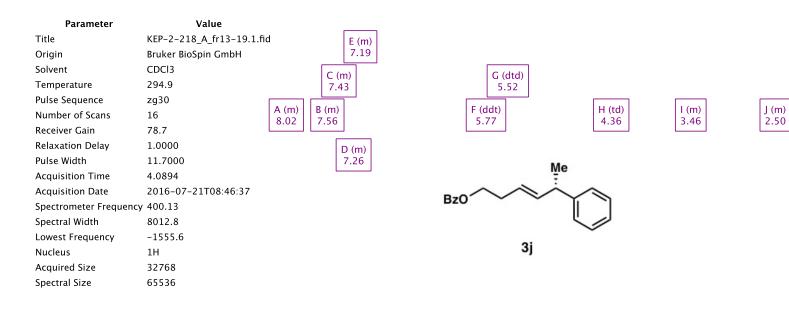


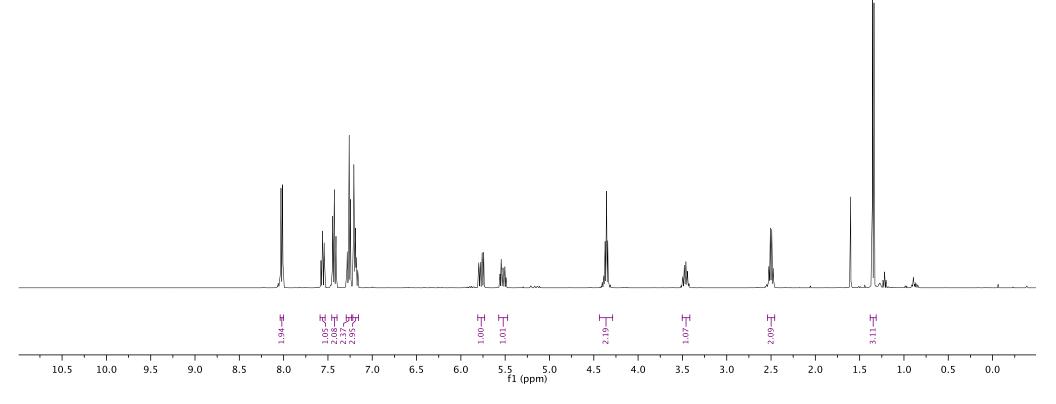

3h




| Parameter                       | Value                   |                                          | S167 |
|---------------------------------|-------------------------|------------------------------------------|------|
| Title                           | JLH-5-126.2.fid         |                                          |      |
| Origin                          | Bruker BioSpin GmbH     |                                          |      |
| Solvent                         | CDCI3                   |                                          |      |
| Temperature                     | 294.9                   |                                          |      |
| Pulse Sequence                  | zgpg30                  |                                          |      |
| Number of Scans                 | 128                     |                                          |      |
| Receiver Gain                   | 72.0                    |                                          |      |
| Relaxation Delay                | 2.0000                  |                                          |      |
| Pulse Width<br>Acquisition Time | 10.0000<br>1.3631       | Me                                       |      |
| Acquisition Time                | 2016-08-19T13:51:02     |                                          |      |
| Spectrometer Frequen            |                         |                                          |      |
| Spectral Width                  | 24038.5                 |                                          |      |
| Lowest Frequency                | -1943.9                 | • •                                      |      |
| Nucleus                         | 13C                     | 3h                                       |      |
| Acquired Size                   | 32768                   |                                          |      |
| Spectral Size                   | 65536                   |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         | 128.5<br>127.1<br>26.3<br>126.3<br>126.3 |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
| .127.4                          | 2<br>126.3<br>126.3     |                                          |      |
|                                 | 127.2                   |                                          |      |
| 1                               |                         |                                          |      |
|                                 |                         |                                          |      |
| A                               |                         |                                          |      |
|                                 |                         | N m                                      |      |
| 1075                            |                         |                                          |      |
| 127.5                           | 127.0 126.5<br>f1 (ppm) |                                          |      |
|                                 |                         | 45.7                                     |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |
|                                 |                         |                                          |      |

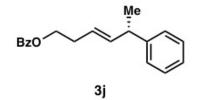

110 100 f1 (ppm) Т Т Т Т Т 

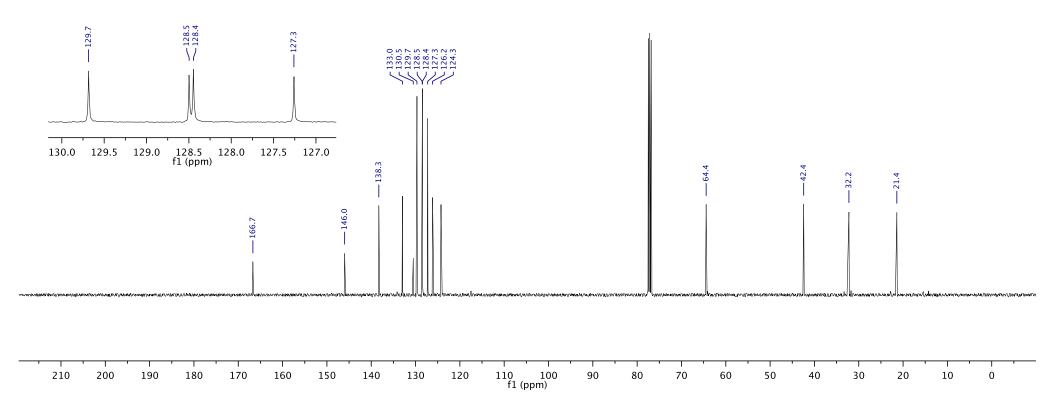




| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | KEP-250-B.2.fid     |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 64.2                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-09-05T14:08:13 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1830.5             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



3i



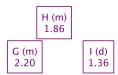



K (d) 1.35

| Parameter              | Value                     |
|------------------------|---------------------------|
| Title                  | KEP-2-218_A_fr13-19.2.fid |
| Origin                 | Bruker BioSpin GmbH       |
| Solvent                | CDCI3                     |
| Temperature            | 295.0                     |
| Pulse Sequence         | zgpg30                    |
| Number of Scans        | 128                       |
| Receiver Gain          | 78.7                      |
| Relaxation Delay       | 2.0000                    |
| Pulse Width            | 10.0000                   |
| Acquisition Time       | 1.3631                    |
| Acquisition Date       | 2016-07-21T08:54:27       |
| Spectrometer Frequency | 100.62                    |
| Spectral Width         | 24038.5                   |
| Lowest Frequency       | -1936.2                   |
| Nucleus                | 13C                       |
| Acquired Size          | 32768                     |
| Spectral Size          | 65536                     |

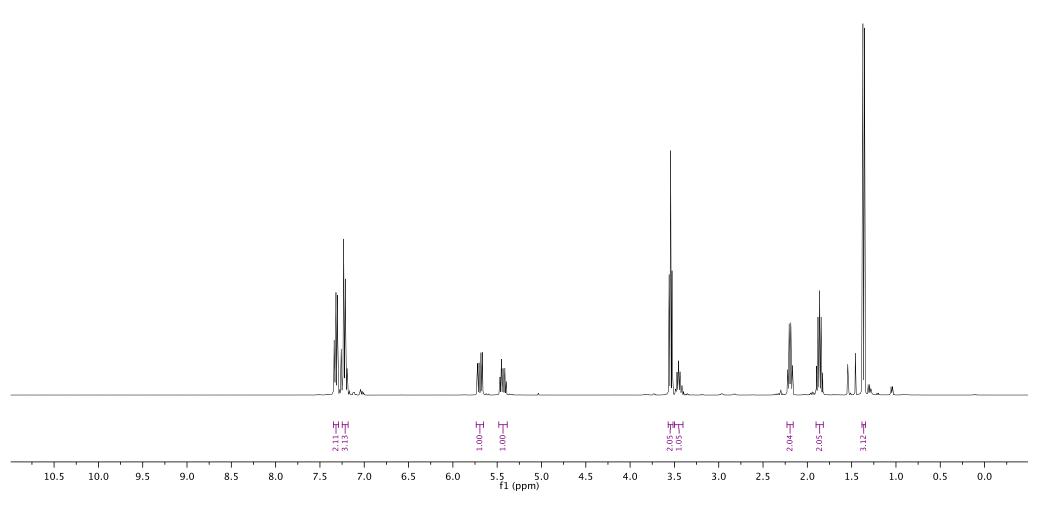




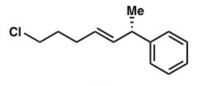

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-5-109B.1.fid    |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zg30                |
| Number of Scans        | 16                  |
| Receiver Gain          | 30.3                |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 11.7000             |
| Acquisition Time       | 4.0894              |
| Acquisition Date       | 2016-08-19T12:45:00 |
| Spectrometer Frequency | 400.13              |
| Spectral Width         | 8012.8              |
| Lowest Frequency       | -1555.6             |
| Nucleus                | 1H                  |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



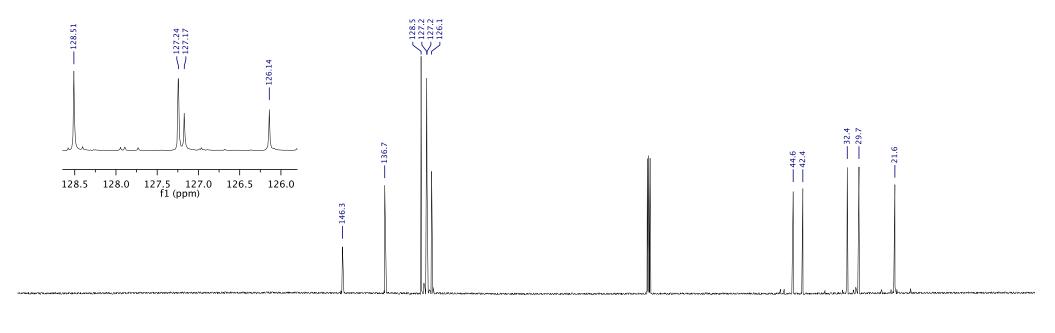
B (m) 7.22


A (m) 7.32









3k



| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-5-109B.2.fid    |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 295.0               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 38.0                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-08-19T12:52:47 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1939.6             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |







Т 110 100 f1 (ppm) 

| Parameter            | Value                |        |         |         |                  | S174 |
|----------------------|----------------------|--------|---------|---------|------------------|------|
| Title                | KEP-2-224_pure.1.fid | B (m)  | D (dtd) |         |                  |      |
| Origin               | Bruker BioSpin GmbH  | 7.20   | 5.46    |         |                  |      |
| Solvent              | CDCI3                | A (m)  | C (ddt) | E (m)   | F (m) G (m) H (r | n)   |
| Temperature          | 294.9                | 7.30   | 5.60    | 3.43    | 2.02 1.32 0.8    | 9    |
| Pulse Sequence       | zg30                 |        |         |         |                  |      |
| Number of Scans      | 16                   |        |         |         |                  |      |
| Receiver Gain        | 64.2                 |        |         |         |                  |      |
| Relaxation Delay     | 1.0000               |        |         |         |                  |      |
| Pulse Width          | 11.7000              |        | Ме      |         |                  |      |
| Acquisition Time     | 4.0894               |        |         |         |                  |      |
| Acquisition Date     | 2016-08-19T05:07:09  |        | Me      | $\land$ |                  |      |
| Spectrometer Frequer | ncy 400.13           |        |         |         |                  |      |
| Spectral Width       | 8012.8               |        | 5       |         |                  |      |
| Lowest Frequency     | -1535.6              |        | 21      |         |                  |      |
| Nucleus              | 1H                   |        | 31      |         |                  |      |
| Acquired Size        | 32768                |        |         |         |                  |      |
| Spectral Size        | 65536                |        |         |         |                  |      |
|                      |                      |        | 11      |         |                  |      |
|                      |                      |        |         |         |                  |      |
|                      |                      | ŀŢŀŀŢŀ | וידו    | ۲       | ਮ ਮੋ ਮ           |      |
|                      |                      | 2.91   | 1.00    | 1.00    | 2:01 <u> </u>    |      |

5.5 5.0 f1 (ppm)

7.5 7.0

. 6.5 6.0

10.0

10.5

9.5

9.0

8.5

8.0

3.5

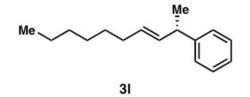
3.0

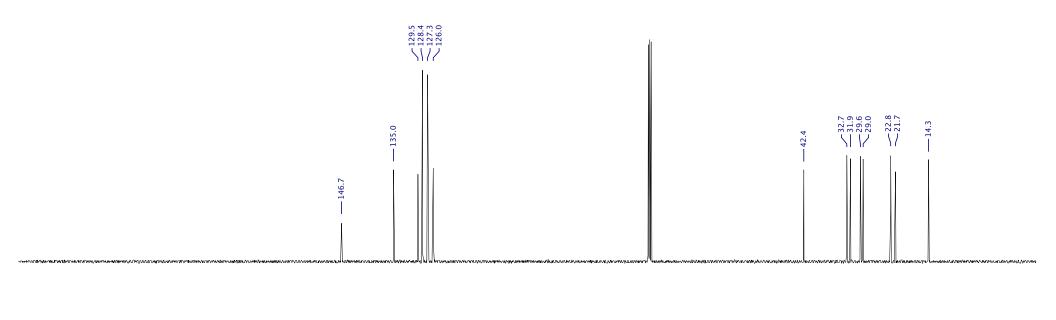
2.0

1.5

0.5

0.0

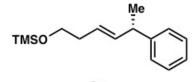

1.0


2.5

4.0

4.5

| Parameter              | Value                |
|------------------------|----------------------|
| Title                  | KEP-2-224_pure.2.fid |
| Origin                 | Bruker BioSpin GmbH  |
| Solvent                | CDCI3                |
| Temperature            | 295.0                |
| Pulse Sequence         | zgpg30               |
| Number of Scans        | 128                  |
| Receiver Gain          | 98.9                 |
| Relaxation Delay       | 2.0000               |
| Pulse Width            | 10.0000              |
| Acquisition Time       | 1.3631               |
| Acquisition Date       | 2016-08-19T05:14:59  |
| Spectrometer Frequency | 100.62               |
| Spectral Width         | 24038.5              |
| Lowest Frequency       | -1933.2              |
| Nucleus                | 13C                  |
| Acquired Size          | 32768                |
| Spectral Size          | 65536                |





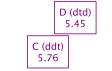


110 100 f1 (ppm) Т 

| <b>Parameter</b><br>Title<br>Origin<br>Solvent<br>Temperature<br>Pulse Sequence                                                                                                                                        | Value<br>JLH-6-042A-column-CH.1.fid<br>Bruker BioSpin GmbH<br>CDCI3<br>294.9<br>zg30                                    | B (m)<br>7.22<br>A (m)<br>7.31                                                                                                                                                                                                         | D (dtd)<br>5.47<br>C (ddt)<br>5.69 | F (m)<br>3.45<br>E (t)<br>3.61 | G (qt)<br>2.28 | H (d)<br>1.36 | S176    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|--------------------------------|----------------|---------------|---------|
| Number of Scans<br>Receiver Gain<br>Relaxation Delay<br>Pulse Width<br>Acquisition Time<br>Acquisition Date<br>Spectrometer Frequer<br>Spectral Width<br>Lowest Frequency<br>Nucleus<br>Acquired Size<br>Spectral Size | 16<br>30.3<br>1.0000<br>11.7000<br>4.0894<br>2017-01-07T19:20:30<br>400.13<br>8012.8<br>-1535.6<br>1H<br>32768<br>65536 |                                                                                                                                                                                                                                        | TMSO<br>3m                         |                                |                |               |         |
|                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                                                                                        |                                    |                                |                |               |         |
|                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                                                                                        |                                    |                                |                |               |         |
|                                                                                                                                                                                                                        |                                                                                                                         |                                                                                                                                                                                                                                        | M                                  | M                              |                |               |         |
|                                                                                                                                                                                                                        |                                                                                                                         | 1<br>3.01<br>3.01<br>1<br>4<br>3.01<br>1<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>4<br>5<br>6<br>1<br>4<br>4<br>5<br>7<br>1<br>4<br>7<br>5<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7 | Ч<br>                              | - 1.01工                        | - 1            | 3.01-1        | 9.13-   |
| 10.5 10.0                                                                                                                                                                                                              | 9.5 9.0 8.5 8.0                                                                                                         | 7.5 7.0 6.5                                                                                                                                                                                                                            | 6.0 5.5 5.0 4.5<br>f1 (ppm)        | 4.0 3.5 3.0                    | 2.5 2.0        | 1.5 1.0       | 0.5 0.0 |

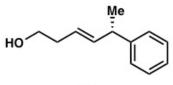
| Parameter              | Value                      |
|------------------------|----------------------------|
| Title                  | JLH-6-042A-column-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH        |
| Solvent                | CDCI3                      |
| Temperature            | 294.9                      |
| Pulse Sequence         | zgpg30                     |
| Number of Scans        | 128                        |
| Receiver Gain          | 64.2                       |
| Relaxation Delay       | 2.0000                     |
| Pulse Width            | 10.0000                    |
| Acquisition Time       | 1.3631                     |
| Acquisition Date       | 2017-01-07T19:28:21        |
| Spectrometer Frequency | 100.62                     |
| Spectral Width         | 24038.5                    |
| Lowest Frequency       | -1918.3                    |
| Nucleus                | 13C                        |
| Acquired Size          | 32768                      |
| Spectral Size          | 65536                      |



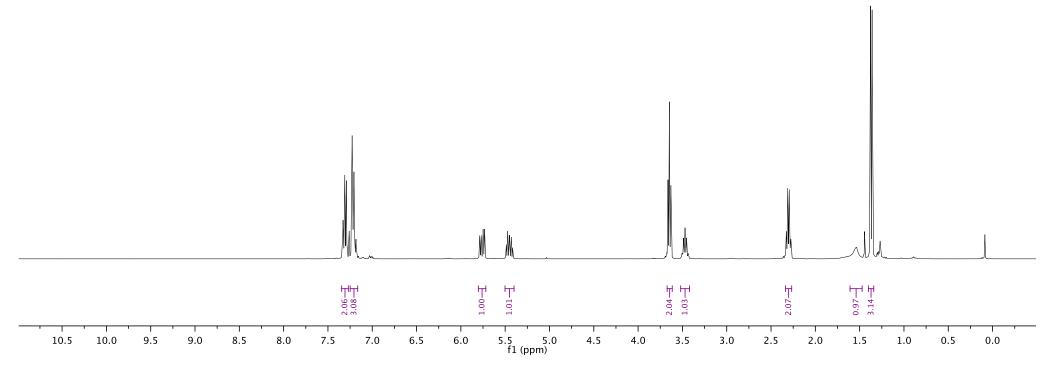

3m



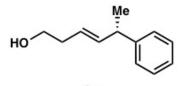
-0.3


110 100 f1 (ppm) Т 

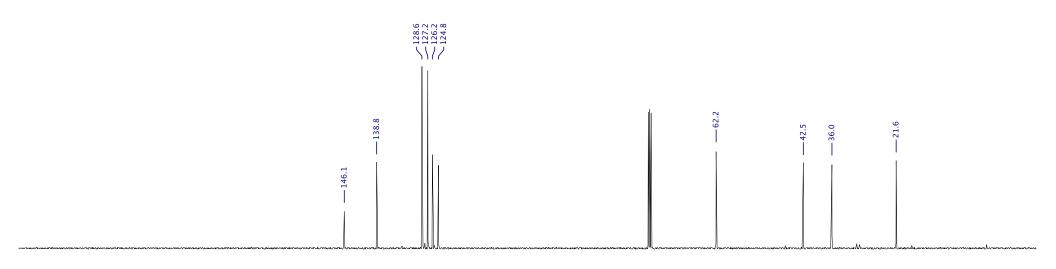
| Parameter              | Value                    |       |
|------------------------|--------------------------|-------|
| Title                  | JLH-6-043-crude-CH.1.fid | B (m) |
| Origin                 | Bruker BioSpin GmbH      | 7.22  |
| Solvent                | CDCI3                    | A (m) |
| Temperature            | 295.0                    | 7.31  |
| Pulse Sequence         | zg30                     |       |
| Number of Scans        | 16                       |       |
| Receiver Gain          | 50.3                     |       |
| Relaxation Delay       | 1.0000                   |       |
| Pulse Width            | 11.7000                  |       |
| Acquisition Time       | 4.0894                   |       |
| Acquisition Date       | 2017-01-08T14:57:21      |       |
| Spectrometer Frequency | 400.13                   |       |
| Spectral Width         | 8012.8                   |       |
| Lowest Frequency       | -1535.6                  |       |
| Nucleus                | 1H                       |       |
| Acquired Size          | 32768                    |       |
| Spectral Size          | 65536                    |       |




| F (m)<br>3.47 |  |
|---------------|--|
| (t)<br>65     |  |


|               |         | (<br>1.   |  |
|---------------|---------|-----------|--|
| G (q)<br>2.30 | H<br>1. | (s)<br>54 |  |








| Parameter              | Value                    |
|------------------------|--------------------------|
| Title                  | JLH-6-043-crude-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH      |
| Solvent                | CDCI3                    |
| Temperature            | 295.0                    |
| Pulse Sequence         | zgpg30                   |
| Number of Scans        | 128                      |
| Receiver Gain          | 64.2                     |
| Relaxation Delay       | 2.0000                   |
| Pulse Width            | 10.0000                  |
| Acquisition Time       | 1.3631                   |
| Acquisition Date       | 2017-01-08T15:05:12      |
| Spectrometer Frequency | 100.62                   |
| Spectral Width         | 24038.5                  |
| Lowest Frequency       | -1958.0                  |
| Nucleus                | 13C                      |
| Acquired Size          | 32768                    |
| Spectral Size          | 65536                    |



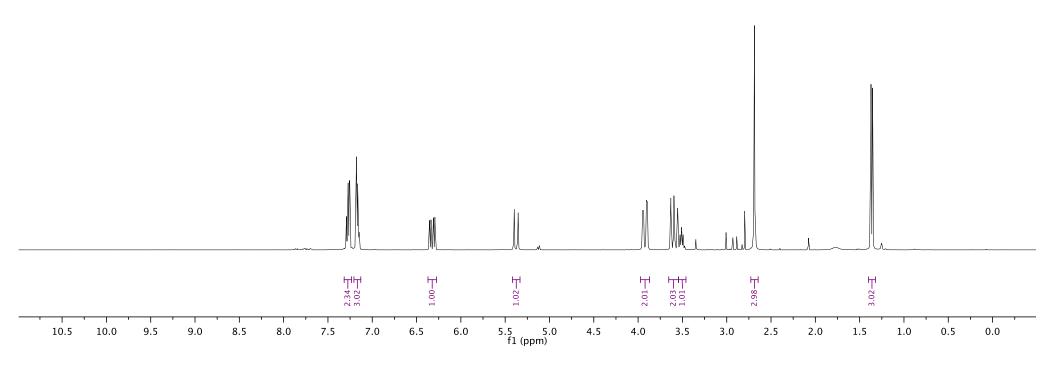
**S**7



110 100 f1 (ppm) Т Т 

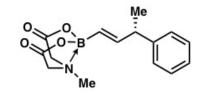
| Parameter            | Value                      |       |        |                      |              |       |       |
|----------------------|----------------------------|-------|--------|----------------------|--------------|-------|-------|
| Title                | JLH-6-030A-column-CH.1.fid | B (m) |        |                      | F (dd)       |       |       |
| Origin               | Bruker BioSpin GmbH        | 7.16  |        |                      | 3.59         |       |       |
| Solvent              | CDCI3                      | A (m) | C (dd) | D (dd)               | E (dd) G (m) | H (s) | I (d) |
| Temperature          | 294.9                      | 7.27  | 6.32   | 5.38                 | 3.92 3.50    | 2.69  | 1.36  |
| Pulse Sequence       | zg30                       |       |        |                      |              |       |       |
| Number of Scans      | 16                         |       |        |                      |              |       |       |
| Receiver Gain        | 78.7                       |       |        |                      |              |       |       |
| Relaxation Delay     | 1.0000                     |       |        |                      |              |       |       |
| Pulse Width          | 11.7000                    |       | 101    | Me                   |              |       |       |
| Acquisition Time     | 4.0894                     |       | 0      |                      | ~            |       |       |
| Acquisition Date     | 2016-12-23T14:46:52        |       | 0      | ,0- <u></u> ₿´ ╰´ `` |              |       |       |
| Spectrometer Frequer | ncy 400.13                 |       | 1      | <u></u>              |              |       |       |
| Spectral Width       | 8012.8                     |       | -      | N<br>Me              | $\checkmark$ |       |       |
| Lowest Frequency     | -1535.6                    |       |        | We                   |              |       |       |

1H

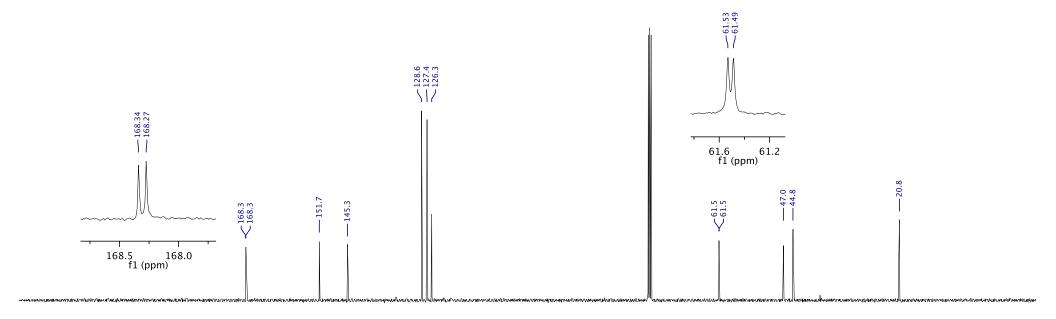

32768

65536

Acquired Size


Spectral Size

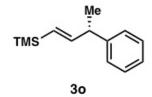
Nucleus

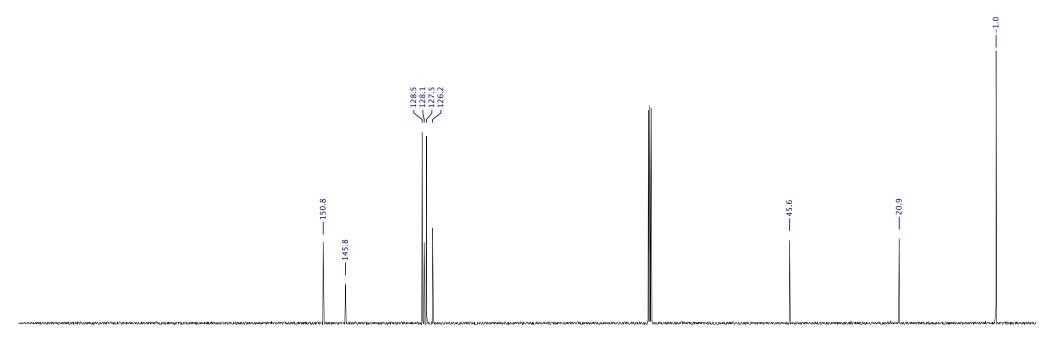



3n

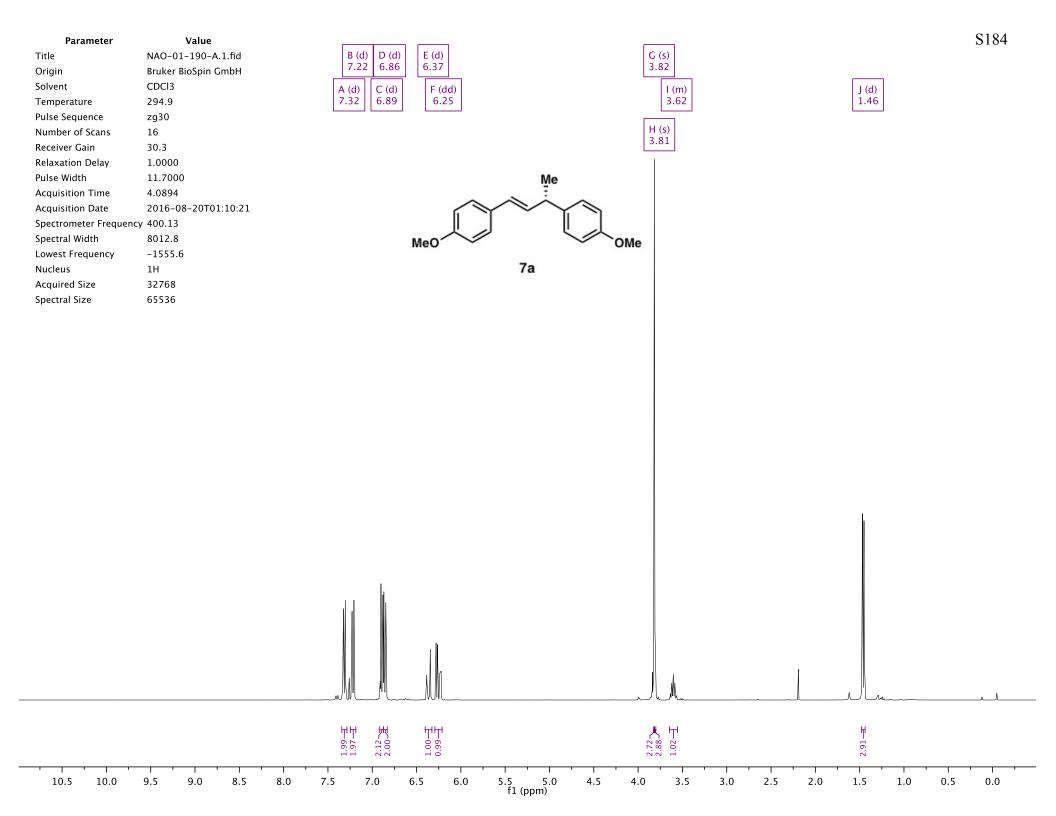
| Parameter              | Value                      |
|------------------------|----------------------------|
| Title                  | JLH-6-030A-column-CH.2.fid |
| Origin                 | Bruker BioSpin GmbH        |
| Solvent                | CDCI3                      |
| Temperature            | 295.0                      |
| Pulse Sequence         | zgpg30                     |
| Number of Scans        | 128                        |
| Receiver Gain          | 64.2                       |
| Relaxation Delay       | 2.0000                     |
| Pulse Width            | 10.0000                    |
| Acquisition Time       | 1.3631                     |
| Acquisition Date       | 2016-12-23T14:54:42        |
| Spectrometer Frequency | 100.62                     |
| Spectral Width         | 24038.5                    |
| Lowest Frequency       | -1958.0                    |
| Nucleus                | 13C                        |
| Acquired Size          | 32768                      |
| Spectral Size          | 65536                      |



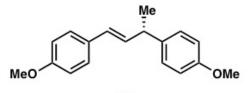

3n



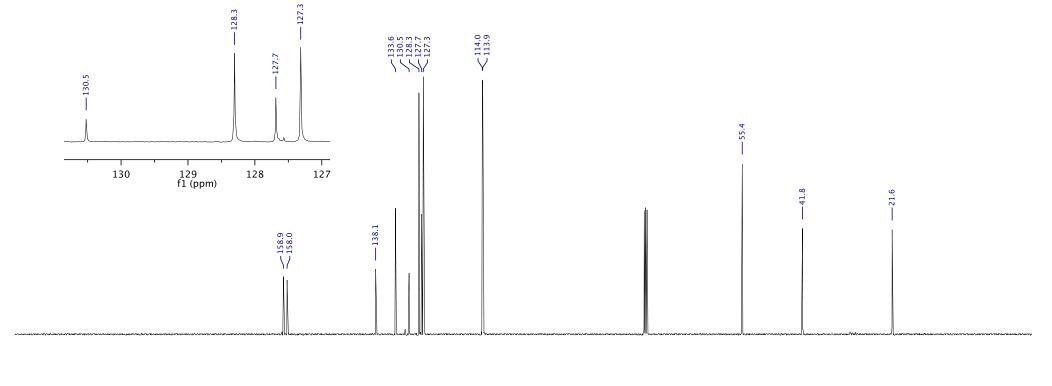

110 100 f1 (ppm) 


| Parameter                     | Value               |                    |                                   |                   |               | S182             |
|-------------------------------|---------------------|--------------------|-----------------------------------|-------------------|---------------|------------------|
| Title                         | KEP-2-219_TMS.1.fid | B (m)<br>7.21      |                                   |                   |               |                  |
| Origin<br>Solvent             | Bruker BioSpin GmbH |                    |                                   |                   |               |                  |
| Solvent                       | CDCl3<br>294.9      | A (m)<br>7.32      | C (dd) D (dd)<br>6.19 5.68        | E (m)<br>3.48     | F (d)<br>1.36 | G (s)<br>0.06    |
| Temperature<br>Pulse Sequence | 294.9<br>zg30       | 1.32               | 0.13 3.00                         | 5.40              | 1.50          | 0.00             |
| Number of Scans               | 2g30<br>16          |                    |                                   |                   |               |                  |
| Receiver Gain                 | 72.0                |                    |                                   |                   |               |                  |
| Relaxation Delay              | 1.0000              |                    |                                   |                   |               |                  |
| Pulse Width                   | 11.7000             |                    |                                   |                   |               |                  |
| Acquisition Time              | 4.0894              |                    | Me                                |                   |               |                  |
| Acquisition Date              | 2016-07-22T06:34:10 |                    | $\sim$                            |                   |               |                  |
| Spectrometer Frequen          |                     |                    | TMS 🔨 🏹 📉                         |                   |               |                  |
| Spectral Width                | 8012.8              |                    | L                                 |                   |               |                  |
| Lowest Frequency              | -1555.6             |                    | ~                                 |                   |               |                  |
| Nucleus                       | 1H                  |                    | 30                                |                   |               |                  |
| Acquired Size                 | 32768               |                    |                                   |                   |               |                  |
| Spectral Size                 | 65536               |                    |                                   |                   |               |                  |
|                               |                     |                    |                                   |                   | Ь             |                  |
|                               |                     | M                  | nA AA                             | da -              |               |                  |
|                               |                     |                    |                                   | /m                |               |                  |
|                               |                     | 2.03 山山<br>3.00 山山 | 1.00 上<br>1.00 上                  | 1.06 十            | 3.12 —        | 8.98<br><b>H</b> |
| 10.5 10.0                     | 9.5 9.0 8.5 8.0     | 7.5 7.0 6          | 5.5 6.0 5.5 5.0 4.5 4<br>f1 (ppm) | 0 3.5 3.0 2.5 2.0 | 1.5 1.0 0.5   | 0.0              |

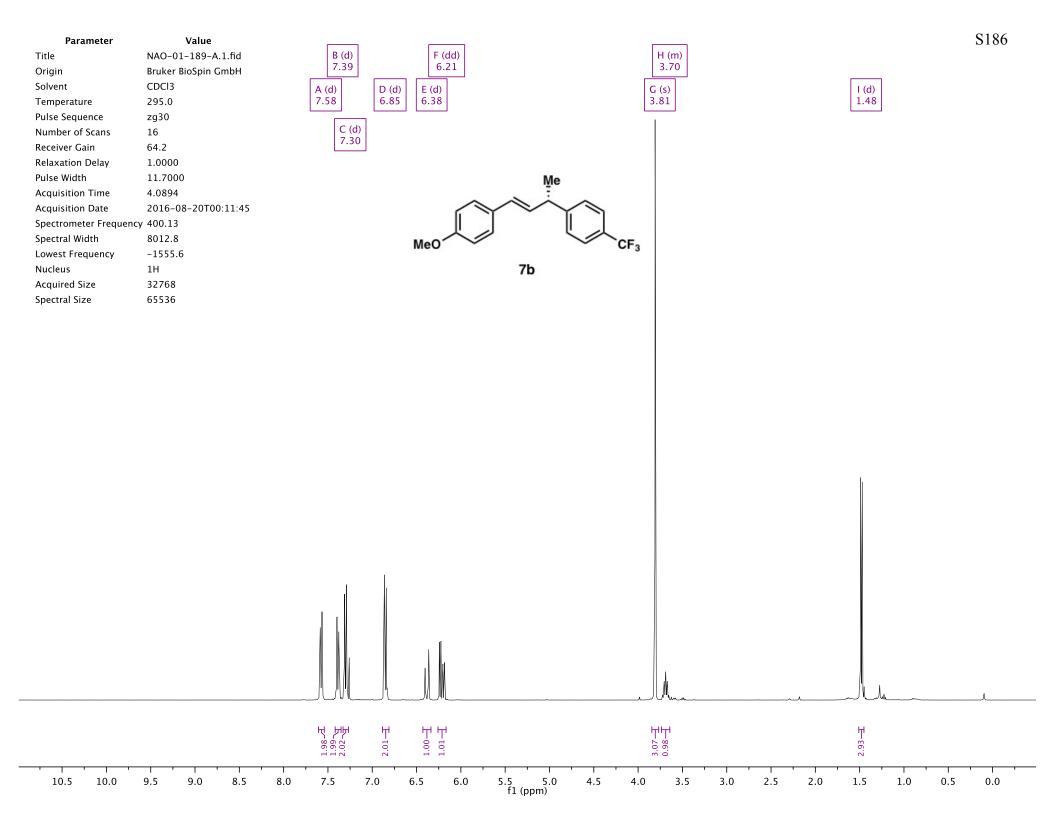
| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | KEP-2-219_TMS.2.fid |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 295.0               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 72.0                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-07-22T06:42:00 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -2045.2             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |







|     | 1   | ' ' | · I | · I | · · | · I | ' ' |     | ·   | ' | · I         | · I | · I | · · | ' ' | · · | · · | ' 1 | '  |    | 1 |  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|---|-------------|-----|-----|-----|-----|-----|-----|-----|----|----|---|--|
| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 |   | 100<br>ppm) | 90  | 80  | 70  | 60  | 50  | 40  | 30  | 20 | 10 | 0 |  |



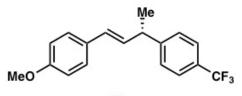

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-190-A.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 64.2                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-08-20T01:18:18 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1958.4             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



7a



110 100 f1 (ppm) 

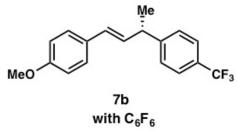



| OriginBrukeSolventCDCITemperature294.9Pulse SequencezgpgNumber of Scans128Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363                                                                                                       | 9<br>130<br>00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>5.5<br>58  | MeO | Me<br>CF <sub>3</sub><br>7b |                         |         | S187  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|-----|-----------------------------|-------------------------|---------|-------|
| SolventCDCITemperature294.9Pulse SequencezgpgNumber of Scans128Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.00Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276 | 13<br>9<br>130<br>00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5 | MeO | CF3                         |                         |         |       |
| Temperature294.3Pulse SequencezgpgNumber of Scans128Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.365Acquisition Date2016Spectrometer Frequency100.00Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276            | 9<br>130<br>00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>5.5<br>58  | MeO | CF3                         |                         |         |       |
| Pulse SequencezgpgNumber of Scans128Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.00Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                            | 30<br>00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5             | MeO | CF3                         |                         |         |       |
| Number of Scans128Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.00Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                              | 00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5                   | MeO | CF3                         |                         |         |       |
| Receiver Gain64.2Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.00Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                | 00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5                   | MeO | CF3                         |                         |         |       |
| Relaxation Delay2.000Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.0Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                  | 00<br>000<br>31<br>5-08-20T00:19:42<br>62<br>38.5<br>55.5                   | MeO | CF3                         |                         |         |       |
| Pulse Width10.00Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.0Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                       | 000<br>31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5                         | MeO | CF3                         |                         |         |       |
| Acquisition Time1.363Acquisition Date2016Spectrometer Frequency100.0Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                                       | 31<br>5-08-20T00:19:42<br>62<br>88.5<br>55.5                                | MeO | CF3                         |                         |         |       |
| Acquisition Date2016Spectrometer Frequency100.0Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                                                            | 5-08-20T00:19:42<br>62<br>88.5<br>55.5                                      | MeO | CF3                         |                         |         |       |
| Spectrometer Frequency100.4Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                                                                                | 62<br>88.5<br>55.5                                                          | MeO |                             |                         |         |       |
| Spectral Width2403Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                                                                                                           | 38.5<br>5.5<br>58                                                           | MeO |                             |                         |         |       |
| Lowest Frequency-193Nucleus13CAcquired Size3276                                                                                                                                                                                                             | 5.5                                                                         | MeO |                             |                         |         |       |
| Nucleus13CAcquired Size3276                                                                                                                                                                                                                                 | 58                                                                          |     |                             |                         |         |       |
| Acquired Size 3276                                                                                                                                                                                                                                          | 58                                                                          |     | 7 <b>b</b><br>              |                         |         |       |
|                                                                                                                                                                                                                                                             |                                                                             |     |                             |                         |         |       |
| Spectral Size 6553                                                                                                                                                                                                                                          | 36                                                                          |     |                             |                         |         |       |
|                                                                                                                                                                                                                                                             |                                                                             |     |                             |                         |         |       |
| / / / / 150.1<br>/ 150.1                                                                                                                                                                                                                                    | -                                                                           |     |                             | 126 125 124<br>f1 (ppm) | 123 122 | *<br> |
|                                                                                                                                                                                                                                                             | 150.03<br>m)<br>I 1051<br>I 1051<br>I 1051<br>I 1051                        |     |                             | 55.4                    |         |       |

110 100 f1 (ppm) 150 140 

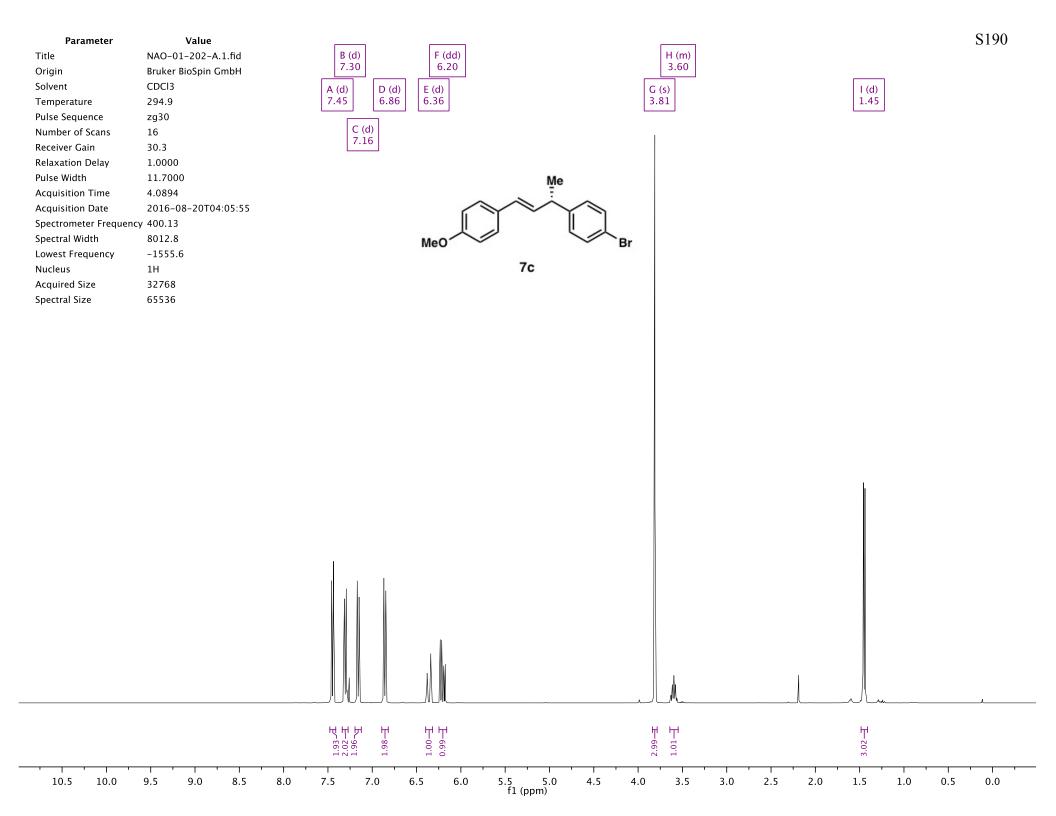
\*.MM

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-189A         |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 16                  |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 6.3333              |
| Acquisition Time       | 0.9856              |
| Acquisition Date       | 2016-08-31T23:27:51 |
| Spectrometer Frequency | 282.34              |
| Spectral Width         | 64935.1             |
| Lowest Frequency       | -57338.6            |
| Nucleus                | 19F                 |
| Acquired Size          | 64000               |
| Spectral Size          | 131072              |

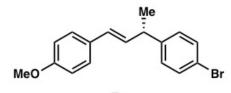



7b

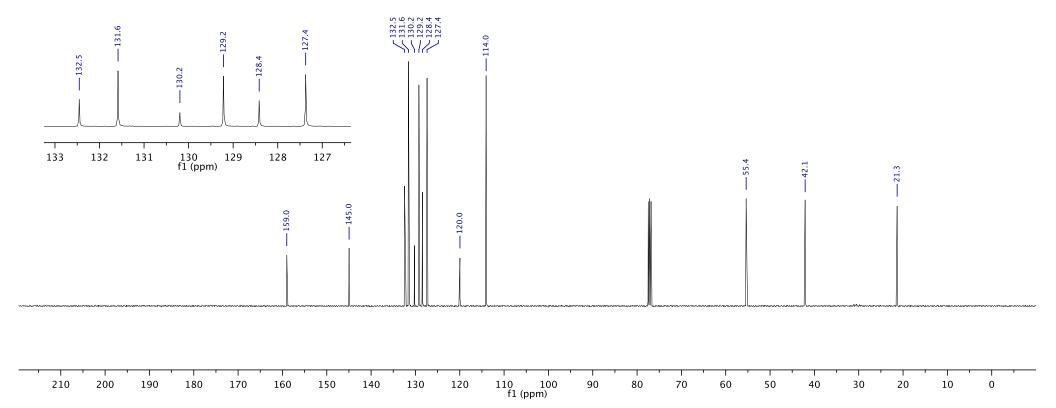
-65.4

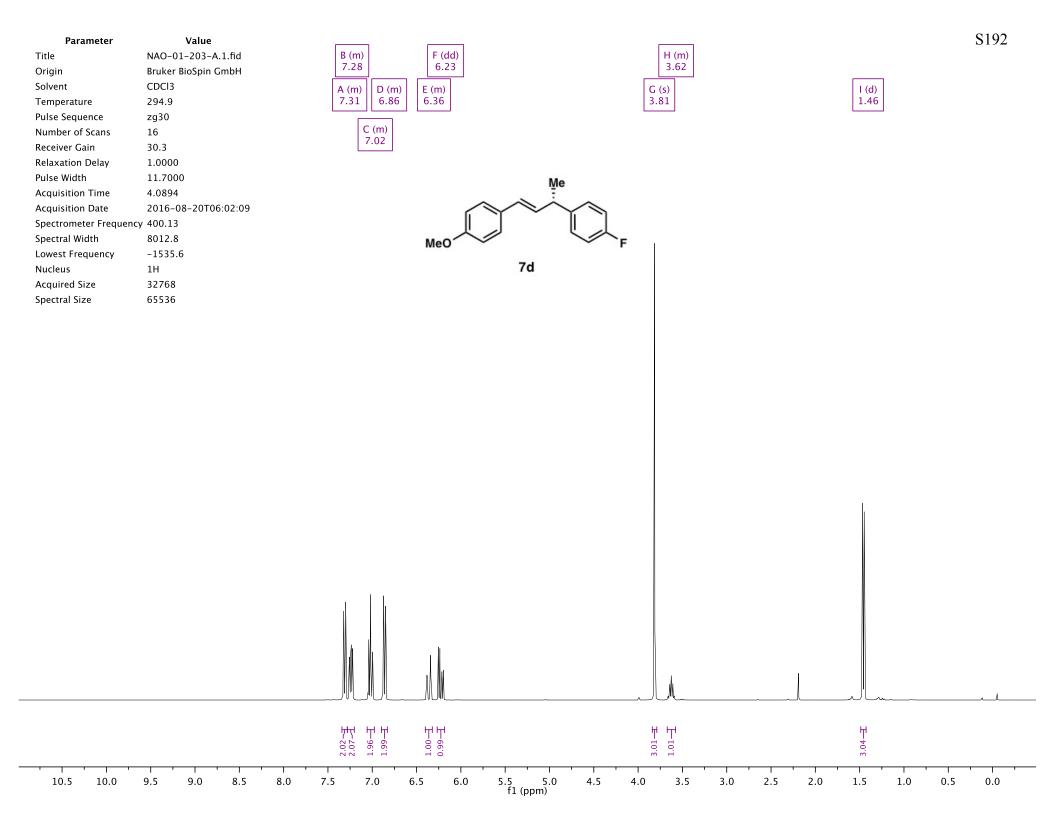

|         |             |             |                         |           |           |           |             | 1 1 1 1   |
|---------|-------------|-------------|-------------------------|-----------|-----------|-----------|-------------|-----------|
| 20 10 0 | -10 -20 -30 | -40 -50 -60 | -70 -80 -90<br>f1 (ppm) | -100 -110 | -120 -130 | -140 -150 | -160 -170 - | -180 -190 |

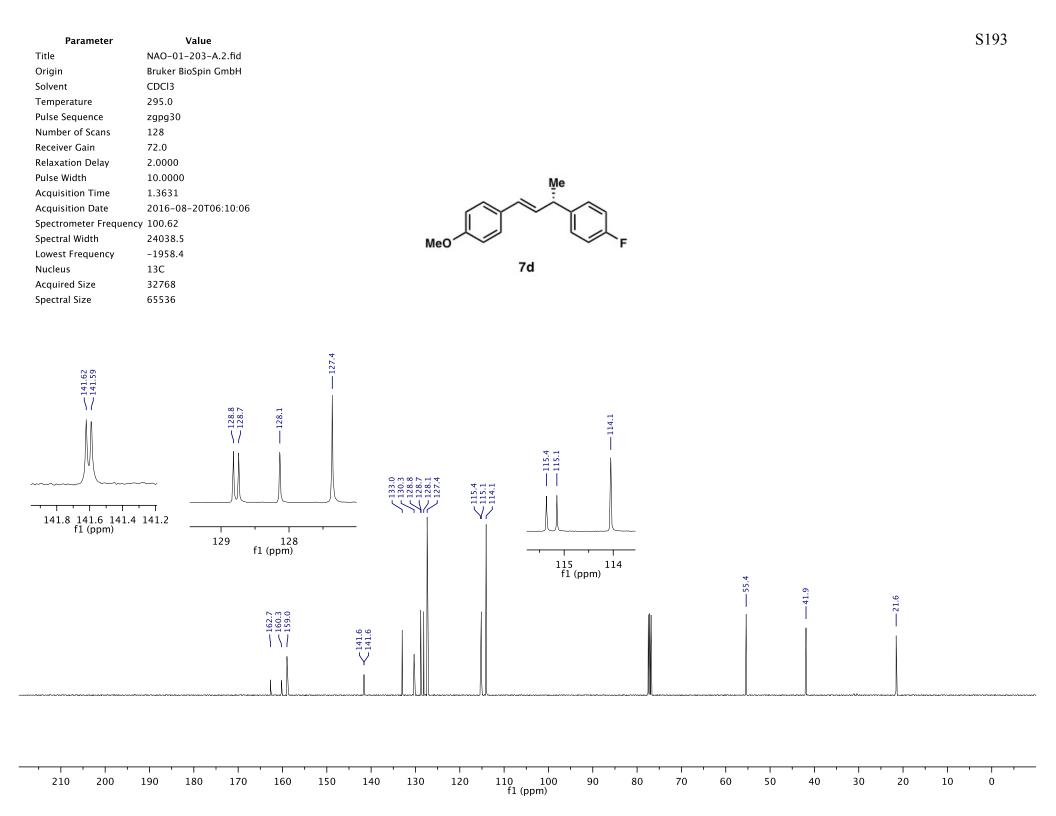
| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-189A-C6F6    |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 16                  |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 6.3333              |
| Acquisition Time       | 0.9856              |
| Acquisition Date       | 2016-08-31T23:32:04 |
| Spectrometer Frequency | 282.34              |
| Spectral Width         | 64935.1             |
| Lowest Frequency       | -58230.0            |
| Nucleus                | 19F                 |
| Acquired Size          | 64000               |
| Spectral Size          | 131072              |



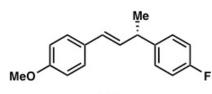

-65.4


| <br> |    | 1 | ·   | · 1 |     | ·   |     | · · · |     | · | '            | 1    | · 1  |      | ·    | ·    | ·    |      |      | · · · · |      | - |
|------|----|---|-----|-----|-----|-----|-----|-------|-----|---|--------------|------|------|------|------|------|------|------|------|---------|------|---|
| 20   | 10 | 0 | -10 | -20 | -30 | -40 | -50 | -60   | -70 |   | –90<br>(ppm) | -100 | -110 | -120 | -130 | -140 | -150 | -160 | -170 | -180    | -190 |   |



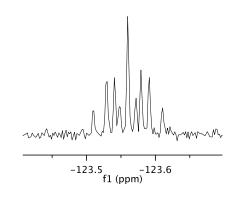


| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-202-A.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 295.0               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 72.0                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-08-20T04:13:52 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1944.9             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |

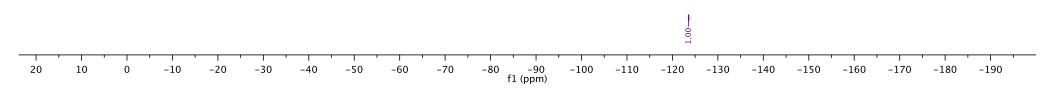


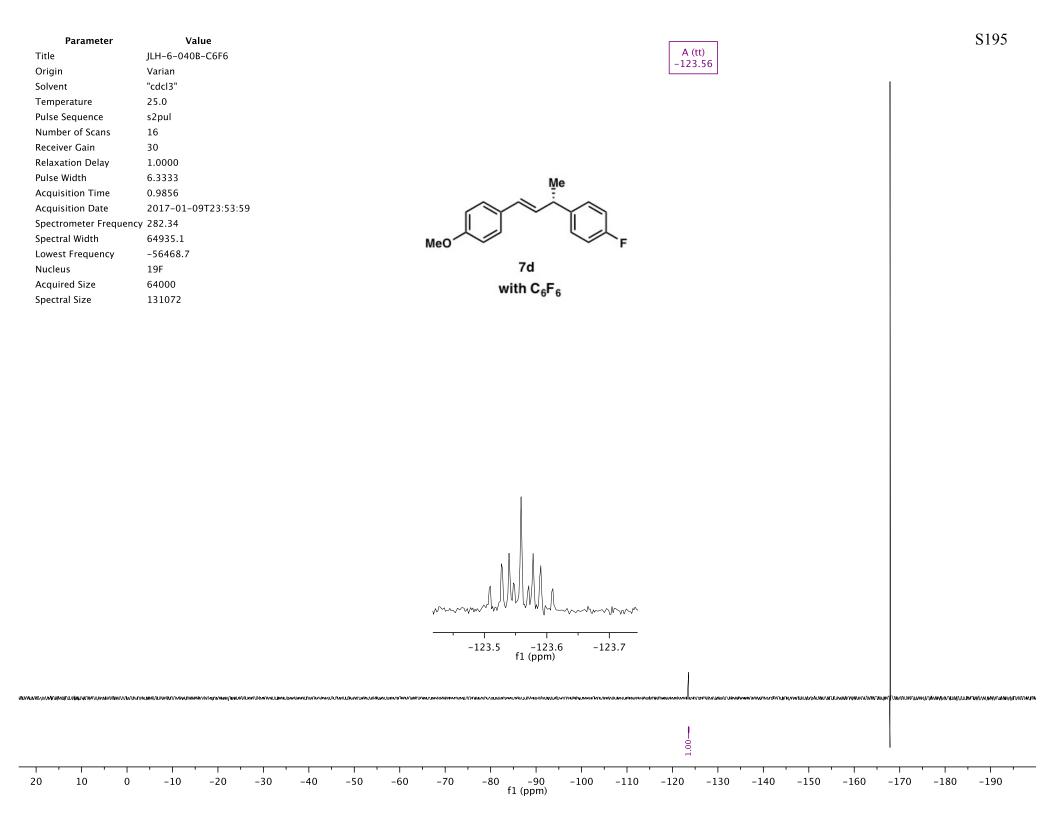

7c





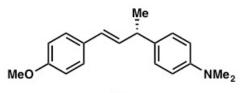




| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | JLH-6-040B          |
| Origin                 | Varian              |
| Solvent                | "cdcl3"             |
| Temperature            | 25.0                |
| Pulse Sequence         | s2pul               |
| Number of Scans        | 16                  |
| Receiver Gain          | 30                  |
| Relaxation Delay       | 1.0000              |
| Pulse Width            | 6.3333              |
| Acquisition Time       | 0.9856              |
| Acquisition Date       | 2017-01-09T23:50:23 |
| Spectrometer Frequency | 282.34              |
| Spectral Width         | 64935.1             |
| Lowest Frequency       | -56468.7            |
| Nucleus                | 19F                 |
| Acquired Size          | 64000               |
| Spectral Size          | 131072              |

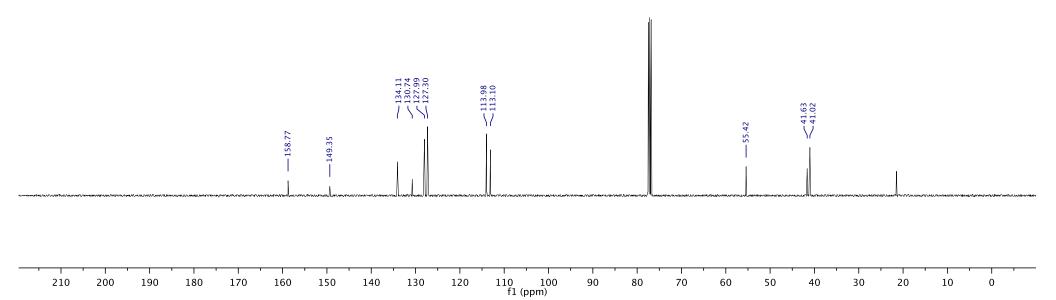


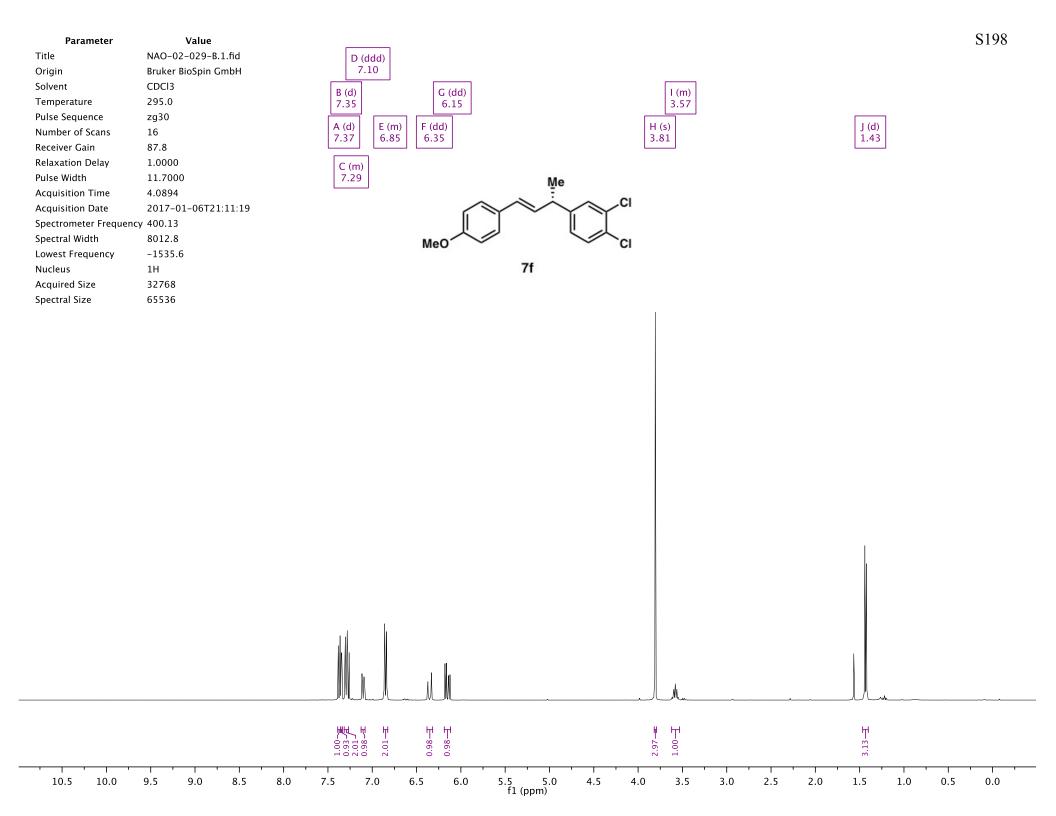

A (tt) -123.56

7d

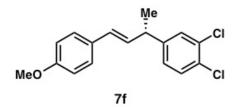


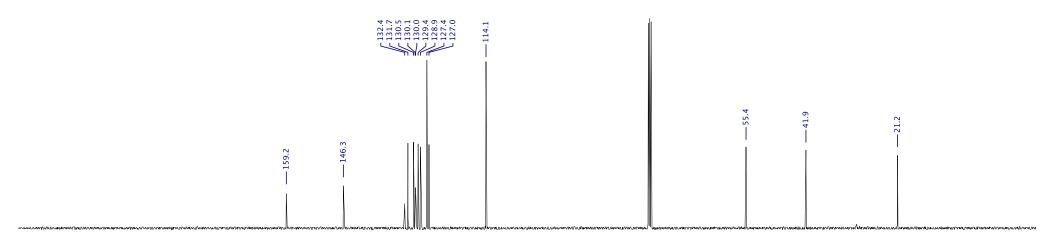


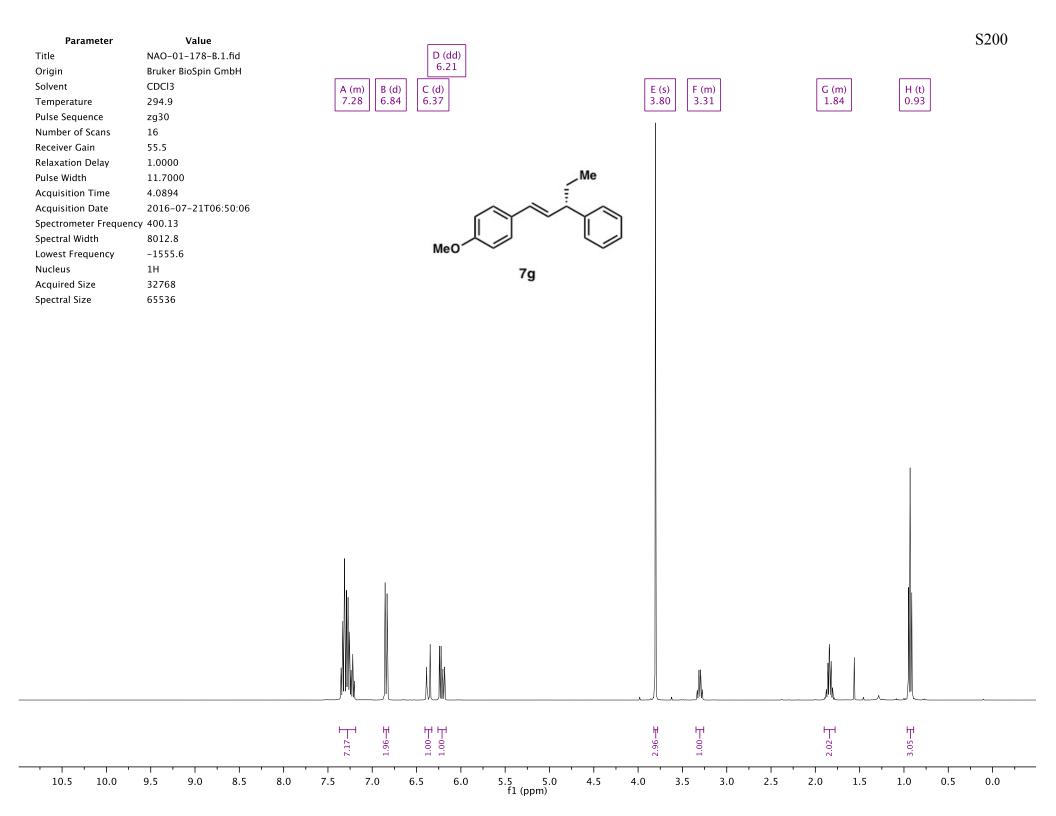


| Parameter           | Value               |                                              |                                       | S196                |
|---------------------|---------------------|----------------------------------------------|---------------------------------------|---------------------|
| Title               | NAO-02-090-B.1.fid  | B (d) D (d) F (dd)<br>7.15 6.73 6.23         | H (m)<br>3.54                         |                     |
| Origin              | Bruker BioSpin GmbH |                                              |                                       |                     |
| Solvent             | CDCI3               | A (d) C (d) E (dd)                           | G (s) I (s)                           | J (d)               |
| Temperature         | 295.0               | 7.29 6.83 6.34                               | 3.80 2.93                             | 1.42                |
| Pulse Sequence      | zg30                |                                              |                                       |                     |
| Number of Scans     | 16                  |                                              |                                       |                     |
| Receiver Gain       | 127.1               |                                              |                                       |                     |
| Relaxation Delay    | 1.0000              |                                              |                                       |                     |
| Pulse Width         | 11.7000             | Me                                           | e                                     |                     |
| Acquisition Time    | 4.0894              |                                              |                                       |                     |
| Acquisition Date    | 2017-01-10T01:11:22 |                                              | $\searrow$                            |                     |
| Spectrometer Freque | ency 400.13         |                                              |                                       |                     |
| Spectral Width      | 8012.8              | MeO                                          | NMe <sub>2</sub>                      |                     |
| Lowest Frequency    | -1535.6             |                                              | 2                                     |                     |
| Nucleus             | 1H                  | 7e                                           |                                       |                     |
| Acquired Size       | 32768               |                                              |                                       |                     |
| Spectral Size       | 65536               |                                              |                                       |                     |
|                     |                     |                                              |                                       |                     |
|                     |                     |                                              | M                                     |                     |
|                     |                     | 2:01<br>1:97 古<br>1:00 古<br>1:00 古<br>1:00 古 | 2.98 프<br>0.99 - <u>1</u><br>6.08 - 표 | 2.97 土              |
| 10.5 10.0           | 9.5 9.0 8.5 8.      | 0 7.5 7.0 6.5 6.0 5.5 5.<br>f1 (ppm)         | 0 4.5 4.0 3.5 3.0 2.5                 | 2.0 1.5 1.0 0.5 0.0 |

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-02-090-B.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 295.0               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 124                 |
| Receiver Gain          | 87.8                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2017-01-10T01:19:06 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1958.4             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |

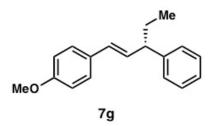


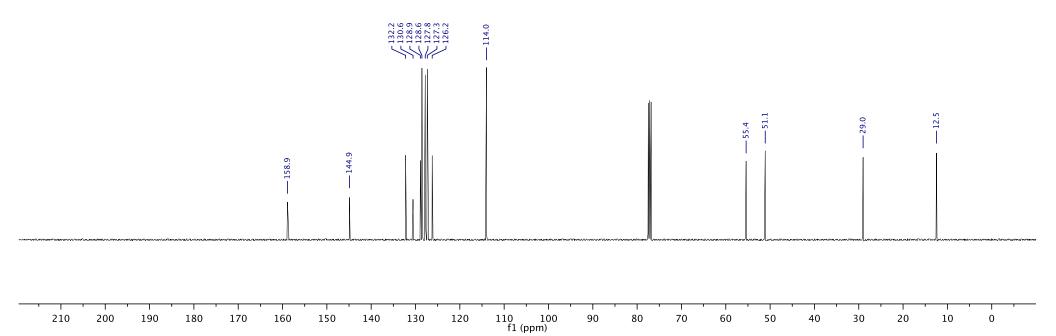



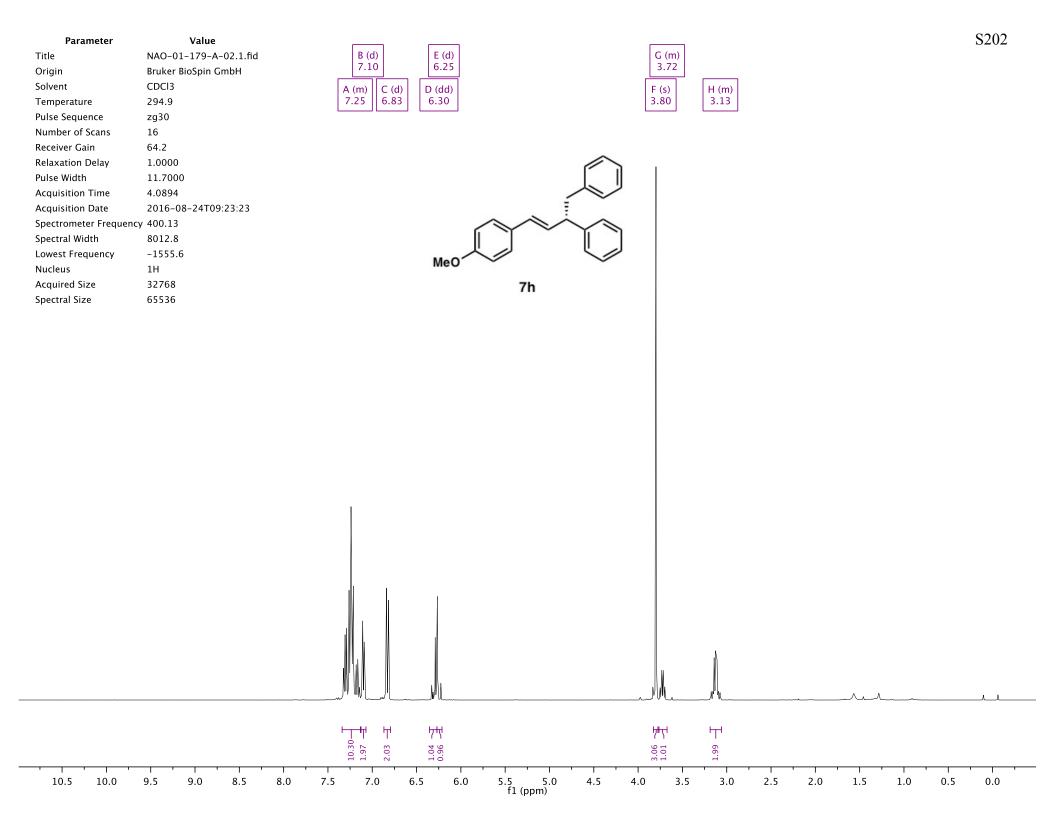


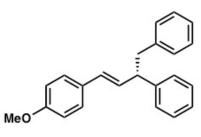

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-02-029-B.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 55.5                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2017-01-06T21:19:16 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1958.4             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |



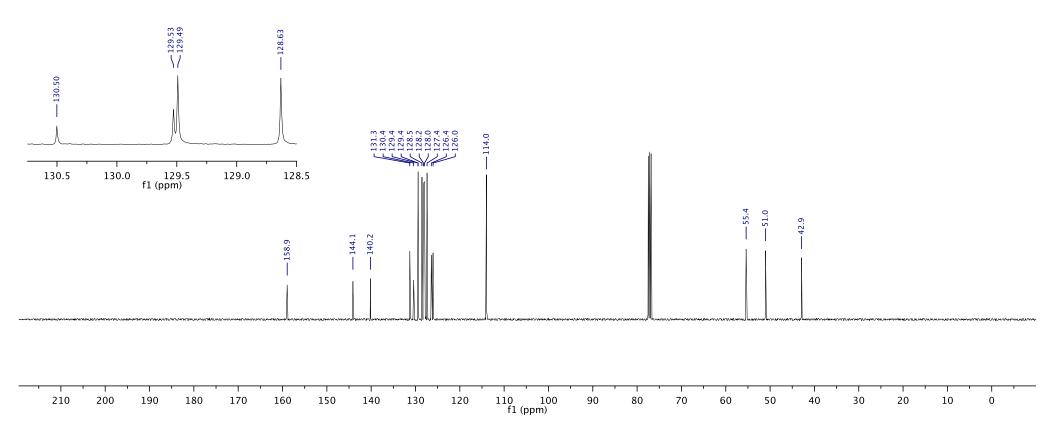





110 100 f1 (ppm) Т T Т 



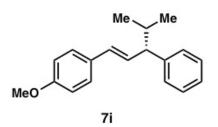

| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-178-B.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 295.0               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 78.7                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-07-21T06:57:56 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1939.0             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |







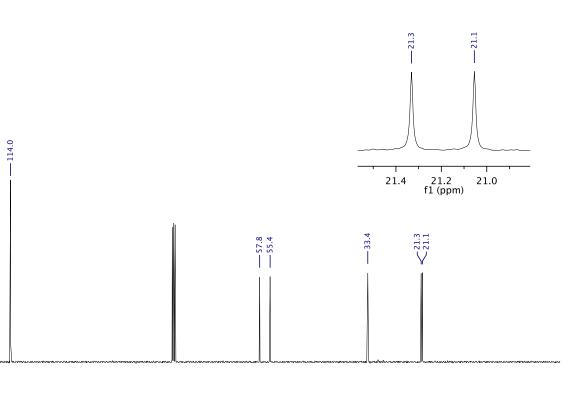

| Parameter              | Value                 |
|------------------------|-----------------------|
| Title                  | NAO-01-179-A-02.2.fid |
| Origin                 | Bruker BioSpin GmbH   |
| Solvent                | CDCI3                 |
| Temperature            | 295.0                 |
| Pulse Sequence         | zgpg30                |
| Number of Scans        | 128                   |
| Receiver Gain          | 78.7                  |
| Relaxation Delay       | 2.0000                |
| Pulse Width            | 10.0000               |
| Acquisition Time       | 1.3631                |
| Acquisition Date       | 2016-08-24T09:31:20   |
| Spectrometer Frequency | 100.62                |
| Spectral Width         | 24038.5               |
| Lowest Frequency       | -1939.9               |
| Nucleus                | 13C                   |
| Acquired Size          | 32768                 |
| Spectral Size          | 65536                 |




7h



| Parameter                       | Value                         |                                              |          |        |              |                                  | 5204 |
|---------------------------------|-------------------------------|----------------------------------------------|----------|--------|--------------|----------------------------------|------|
| Title                           | NAO-01-191-B.1.fid            | B (m) E (dd)<br>7.22 6.26                    |          |        |              | J (d)<br>0.82                    |      |
| Origin                          | Bruker BioSpin GmbH           |                                              |          | []     |              |                                  |      |
| Solvent                         | CDCI3                         | A (m) C (d) D (d)                            | F (s)    | G (t)  | H (m)        | l (d)                            |      |
| Temperature                     | 294.9                         | 7.31 6.84 6.36                               | 3.80     | 3.04   | 2.05         | 1.02                             |      |
| Pulse Sequence                  | zg30                          |                                              |          |        |              |                                  |      |
| Number of Scans                 | 16                            |                                              |          |        |              |                                  |      |
| Receiver Gain                   | 30.3                          |                                              |          |        |              |                                  |      |
| Relaxation Delay                | 1.0000                        | Me. Me                                       |          |        |              |                                  |      |
| Pulse Width<br>Acquisition Time | 11.7000<br>4.0894             | Me Ve                                        |          |        |              |                                  |      |
| Acquisition Time                | 4.0894<br>2016-08-20T03:07:45 |                                              |          |        |              |                                  |      |
| Spectrometer Frequer            |                               |                                              | ז        |        |              |                                  |      |
| Spectral Width                  | 8012.8                        |                                              | J        |        |              |                                  |      |
| Lowest Frequency                | -1555.6                       | MeO                                          |          |        |              |                                  |      |
| Nucleus                         | 1H                            |                                              |          |        |              |                                  |      |
| Acquired Size                   | 32768                         | 7i                                           |          |        |              |                                  |      |
| Spectral Size                   | 65536                         |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              | h i                              |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               |                                              |          |        | 1            |                                  |      |
|                                 |                               |                                              |          | 1      |              |                                  |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               | //////////////////////////                   |          | M      |              | _^II                             |      |
|                                 |                               |                                              |          |        |              |                                  |      |
|                                 |                               | 2.93<br>2.93<br>1.95<br>1.00<br>1.00<br>1.00 | <b>H</b> | F-66.0 | .02 <u>–</u> | 2.93 <b>-≖</b><br>2.94 <b>-≖</b> |      |
|                                 |                               | 3352                                         | 2.83-    | 0.5    | 1.0          | 2.5                              |      |
|                                 |                               |                                              | 10 37    |        |              |                                  |      |
| 10.5 10.0                       | 9.5 9.0 8.5 8.0               | 7.5 7.0 6.5 6.0 5.5 5.0 4.5<br>f1 (ppm)      | 4.0 3.5  | 3.0 2. | 5 2.0 1.5    | 1.0 0.5                          | 0.0  |
|                                 |                               |                                              |          |        |              |                                  |      |


| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-191-B.2.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 78.7                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-08-20T03:15:42 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1939.3             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |

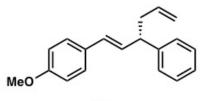


131.2 130.6 129.8 128.5 128.5 128.1 128.1 127.3

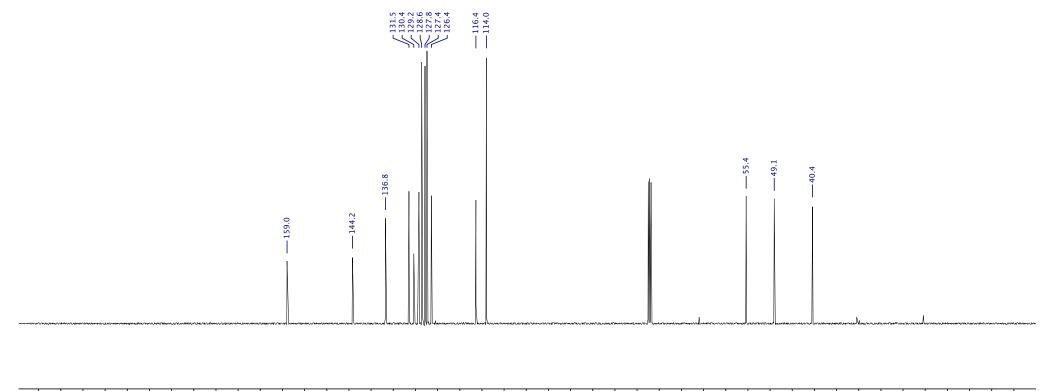
- 144.7

- 158.9




| Parameter<br>Title<br>Origin<br>Solvent<br>Temperature<br>Pulse Sequence<br>Number of Scans<br>Receiver Gain | Value<br>NAO-01-208-B.1.fid<br>Bruker BioSpin GmbH<br>CDCI3<br>294.9<br>zg30<br>16<br>30.3 | $ \begin{bmatrix} B & (m) \\ 7.26 \\ A & (m) \\ 7.34 \end{bmatrix} \begin{bmatrix} C & (d) \\ 6.87 \\ \hline D & (d) \\ 6.44 \end{bmatrix} $ | G (s)<br>3.83<br>H (m)<br>3.67<br>F (m)<br>3.93 |             | D (s)<br>0.89 | S206<br>K (s)<br>0.01 |
|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|-------------|---------------|-----------------------|
| Relaxation Delay<br>Pulse Width                                                                              | 1.0000<br>11.7000                                                                          |                                                                                                                                              | OTBS                                            |             |               |                       |
| Acquisition Time<br>Acquisition Date                                                                         | 4.0894<br>2016-08-20T05:03:47                                                              | ~ ~                                                                                                                                          |                                                 |             |               |                       |
| Spectrometer Frequen                                                                                         |                                                                                            |                                                                                                                                              |                                                 |             |               |                       |
| Spectral Width                                                                                               | 8012.8                                                                                     |                                                                                                                                              |                                                 |             |               |                       |
| Lowest Frequency                                                                                             | -1535.6                                                                                    | MeO <sup>-</sup>                                                                                                                             | ~                                               |             |               |                       |
| Nucleus                                                                                                      | 1H                                                                                         | 7j                                                                                                                                           |                                                 |             |               |                       |
| Acquired Size                                                                                                | 32768                                                                                      |                                                                                                                                              |                                                 |             |               |                       |
| Spectral Size                                                                                                | 65536                                                                                      |                                                                                                                                              |                                                 |             |               |                       |
|                                                                                                              |                                                                                            | F 601<br>F 601<br>F 601<br>F 001                                                                                                             | 2.04 년<br>2.95 년<br>1.02 년                      |             | ₩.6.8         | 2.81                  |
| 10.5 10.0                                                                                                    |                                                                                            | · · · · · · · · · · · · · · · · · · ·                                                                                                        |                                                 |             |               |                       |
| 10.5 10.0                                                                                                    | 9.5 9.0 8.5 8.0                                                                            | 7.5 7.0 6.5 6.0 5.5 5<br>f1 (ppm)                                                                                                            | .0 4.5 4.0 3.5 3.0                              | 2.5 2.0 1.5 | 1.0 0.5       | 0.0                   |

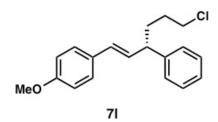
| Parameter            | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      | S207                                                                                                                                                                                             |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Title                | NAO-01-208-B.2.fid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |      |                                                                                                                                                                                                  |
| Origin               | Bruker BioSpin GmbH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                  |
| Solvent              | CDCI3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                                                                                                                                  |
| Temperature          | 295.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                                                                                                                                  |
| Pulse Sequence       | zgpg30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                                                                                  |
| Number of Scans      | 128                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                  |
| Receiver Gain        | 78.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |                                                                                                                                                                                                  |
| Relaxation Delay     | 2.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                                                                                  |
| Pulse Width          | 10.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OTBS |                                                                                                                                                                                                  |
|                      | 1.3631                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |      |                                                                                                                                                                                                  |
| Acquisition Time     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                  |
| Acquisition Date     | 2016-08-20T05:11:44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |                                                                                                                                                                                                  |
| Spectrometer Frequen |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                  |
| Spectral Width       | 24038.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MeO  |                                                                                                                                                                                                  |
| Lowest Frequency     | -1939.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |      |                                                                                                                                                                                                  |
| Nucleus              | 13C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7j   |                                                                                                                                                                                                  |
| Acquired Size        | 32768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                                                                                                                                  |
| Spectral Size        | 65536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |                                                                                                                                                                                                  |
| 128.9 128.8 12       | 57 78 827<br>57 887<br>57 887<br>57 887<br>57 887<br>57 887<br>57 887<br>57 987<br>57 997<br>57 997<br>50 |      | <sup>2</sup> <sup>2</sup> <sup>3</sup> <sup>2</sup> <sup>4</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup><br><sup>1</sup> |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                  |
|                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |      |                                                                                                                                                                                                  |

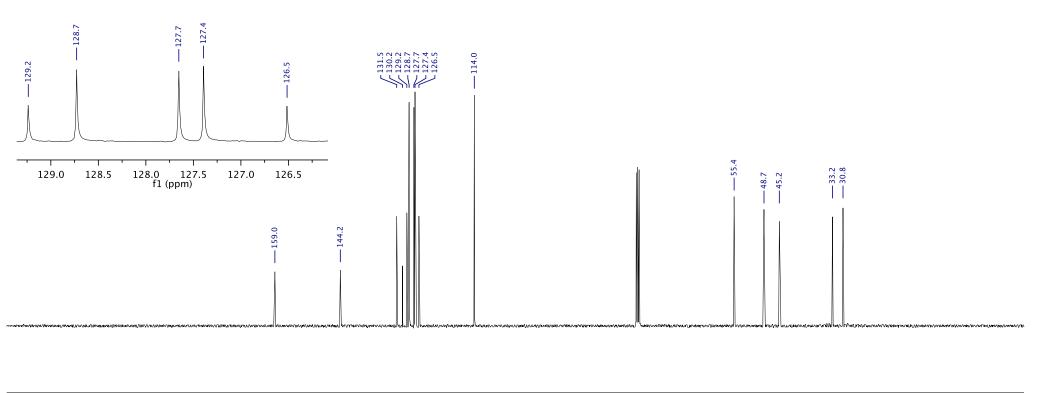

110 100 f1 (ppm) Т Т Т 80 ا 50 . 90 . 60 

| <b>Parameter</b><br>tle | Value<br>NAO-01-212-B.2.fid | D (dd)                                                                                                                                                                                                                                                                                                                           | G (ddt)                     | I (m)                     |               | S208 |
|-------------------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|---------------------------|---------------|------|
| igin                    | Bruker BioSpin GmbH         | 6.18                                                                                                                                                                                                                                                                                                                             | 4.95                        | 3.46                      |               |      |
| lvent                   | CDCI3                       | A (m) B (d) C (d) E (dd                                                                                                                                                                                                                                                                                                          | t) F (ddt)                  |                           | 1 (m)         |      |
| mperature               | 294.9                       | 7.22 6.78 6.30 5.73                                                                                                                                                                                                                                                                                                              | 3 5.01                      | H (s)<br>3.74             | J (m)<br>2.54 |      |
| lse Sequence            | zg30                        |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| umber of Scans          | 16                          |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| ceiver Gain             | 30.3                        |                                                                                                                                                                                                                                                                                                                                  |                             | 1                         |               |      |
| laxation Delay          | 1.0000                      |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| lse Width               | 11.7000                     |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| quisition Time          | 4.0894                      |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| quisition Date          | 2016-08-20T02:09:03         |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| ectrometer Frequency    |                             | ĺ                                                                                                                                                                                                                                                                                                                                | $\gamma \sim \gamma \gamma$ |                           |               |      |
| ectral Width            | 8012.8                      |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| west Frequency          | -1584.4                     | MeO ~~~~                                                                                                                                                                                                                                                                                                                         | ~                           |                           |               |      |
| ıcleus                  | 1H                          |                                                                                                                                                                                                                                                                                                                                  | 7k                          |                           |               |      |
| quired Size             | 32768                       |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
| ectral Size             | 65536                       |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             |                                                                                                                                                                                                                                                                                                                                  |                             |                           |               |      |
|                         |                             | ע אין אין א                                                                                                                                                                                                                                                                                                                      |                             | М Ц                       | μ             |      |
|                         |                             | 7.20<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>五<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03<br>2.03 | 1.03<br>社                   | 2.87 —<br>1.15 — <b>I</b> | 1.93 - 표      |      |

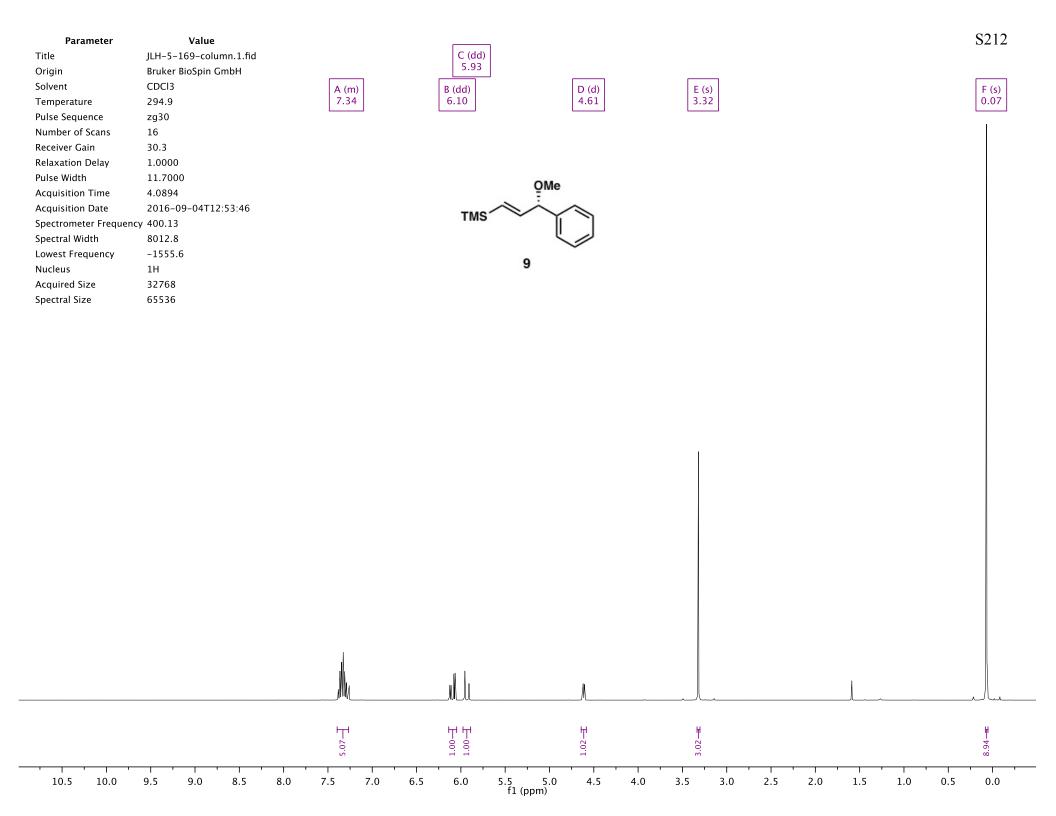
| Parameter              | Value               |
|------------------------|---------------------|
| Title                  | NAO-01-212-B.3.fid  |
| Origin                 | Bruker BioSpin GmbH |
| Solvent                | CDCI3               |
| Temperature            | 294.9               |
| Pulse Sequence         | zgpg30              |
| Number of Scans        | 128                 |
| Receiver Gain          | 72.0                |
| Relaxation Delay       | 2.0000              |
| Pulse Width            | 10.0000             |
| Acquisition Time       | 1.3631              |
| Acquisition Date       | 2016-08-20T02:17:00 |
| Spectrometer Frequency | 100.62              |
| Spectral Width         | 24038.5             |
| Lowest Frequency       | -1943.9             |
| Nucleus                | 13C                 |
| Acquired Size          | 32768               |
| Spectral Size          | 65536               |




7k

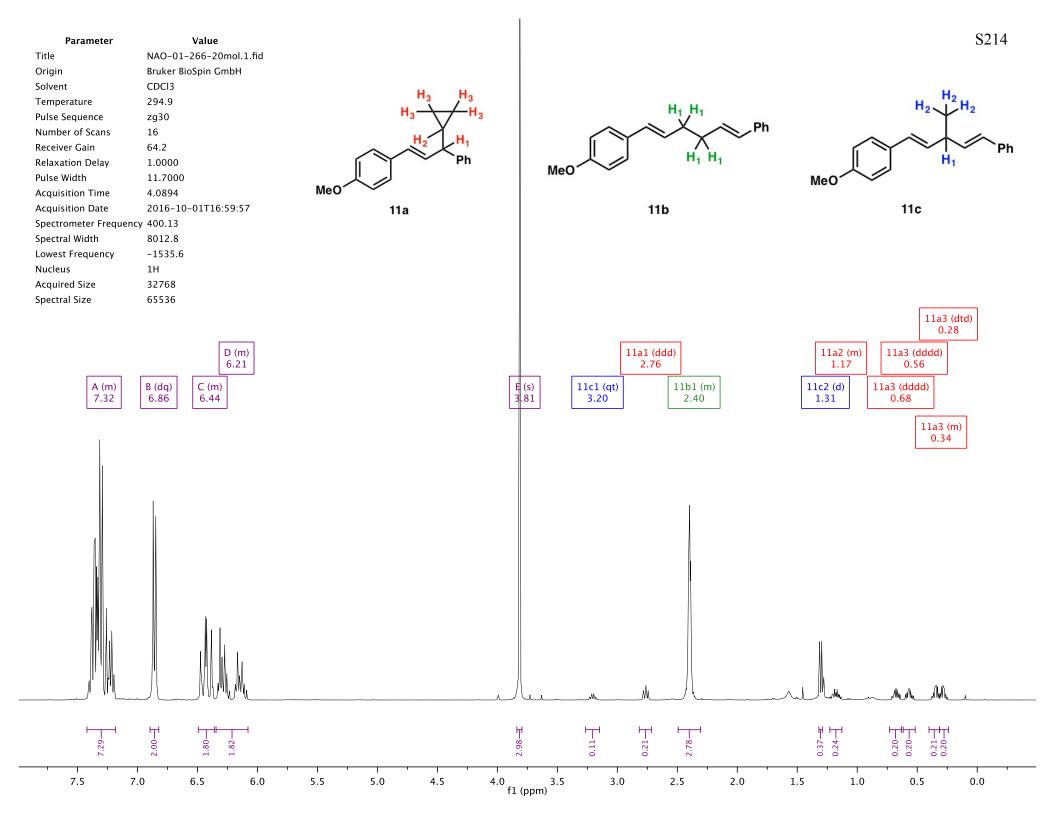


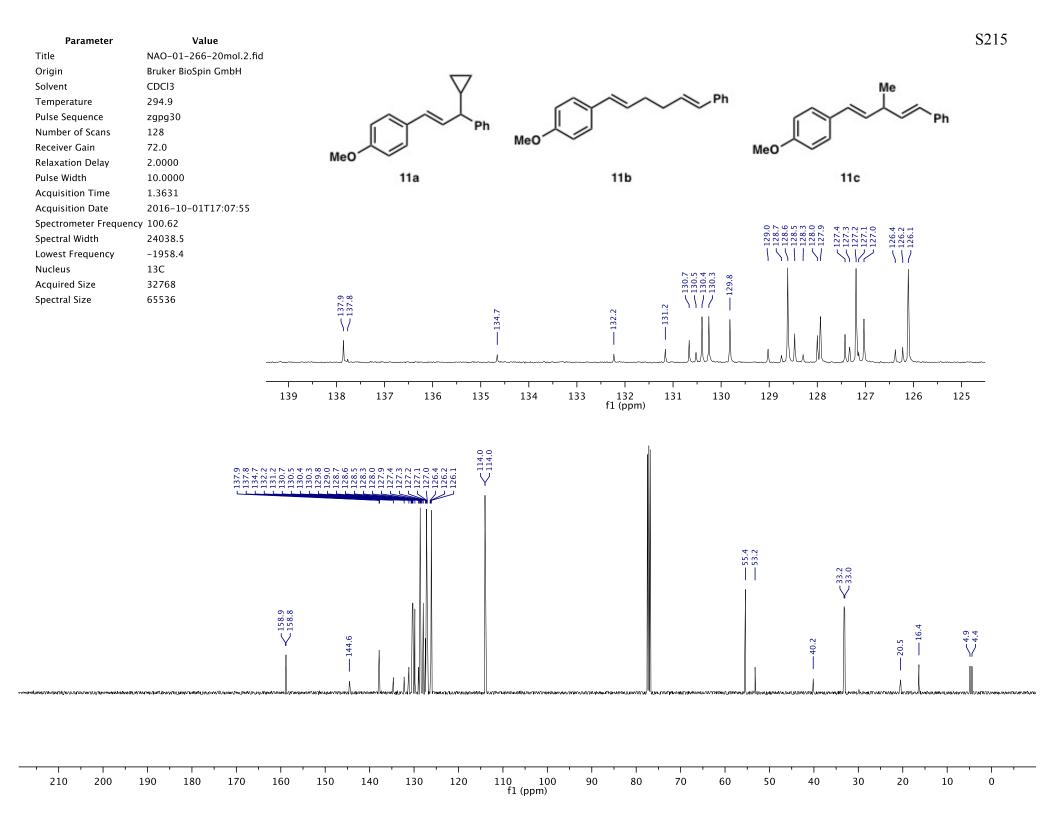

110 100 f1 (ppm) Т 

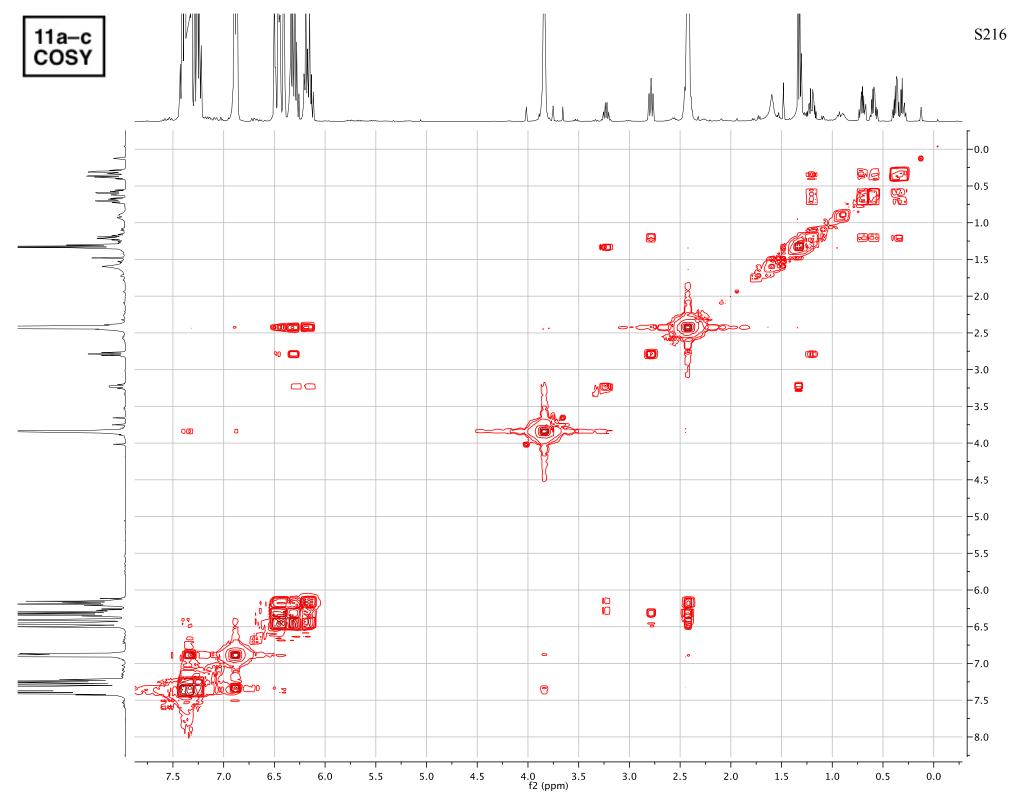

| Parameter<br>Title<br>Origin<br>Solvent<br>Temperature<br>Pulse Sequence<br>Number of Scans                                                                                                           | Value<br>KEP-2-271A.1.fid<br>Bruker BioSpin GmbH<br>CDCl3<br>294.9<br>zg30<br>16                                     | D (dd)<br>6.20<br>A (m)<br>7.31<br>B (d)<br>6.85<br>C (d)<br>6.38 | F (t)<br>3.56<br>E (s) G (m)<br>3.81 3.43                  | S210    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------|---------|
| Receiver Gain<br>Relaxation Delay<br>Pulse Width<br>Acquisition Time<br>Acquisition Date<br>Spectrometer Frequence<br>Spectral Width<br>Lowest Frequency<br>Nucleus<br>Acquired Size<br>Spectral Size | 30.3<br>1.0000<br>11.7000<br>4.0894<br>2016-09-10T13:42:10<br>29 400.13<br>8012.8<br>-1555.6<br>1H<br>32768<br>65536 | MeO<br>71                                                         | _CI                                                        |         |
|                                                                                                                                                                                                       |                                                                                                                      |                                                                   |                                                            |         |
|                                                                                                                                                                                                       |                                                                                                                      |                                                                   |                                                            | Million |
| 10.5 10.0                                                                                                                                                                                             | 9.5 9.0 8.5 8.0                                                                                                      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$             | 다 부부<br>61 88 50<br>51 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |

| Parameter              | Value               |  |  |  |  |  |  |
|------------------------|---------------------|--|--|--|--|--|--|
| Title                  | KEP-2-271A.2.fid    |  |  |  |  |  |  |
| Origin                 | Bruker BioSpin GmbH |  |  |  |  |  |  |
| Solvent                | CDCI3               |  |  |  |  |  |  |
| Temperature            | 294.9               |  |  |  |  |  |  |
| Pulse Sequence         | zgpg30              |  |  |  |  |  |  |
| Number of Scans        | 128                 |  |  |  |  |  |  |
| Receiver Gain          | 64.2                |  |  |  |  |  |  |
| Relaxation Delay       | 2.0000              |  |  |  |  |  |  |
| Pulse Width            | 10.0000             |  |  |  |  |  |  |
| Acquisition Time       | 1.3631              |  |  |  |  |  |  |
| Acquisition Date       | 2016-09-10T13:50:00 |  |  |  |  |  |  |
| Spectrometer Frequency | 100.62              |  |  |  |  |  |  |
| Spectral Width         | 24038.5             |  |  |  |  |  |  |
| Lowest Frequency       | -1942.1             |  |  |  |  |  |  |
| Nucleus                | 13C                 |  |  |  |  |  |  |
| Acquired Size          | 32768               |  |  |  |  |  |  |
| Spectral Size          | 65536               |  |  |  |  |  |  |

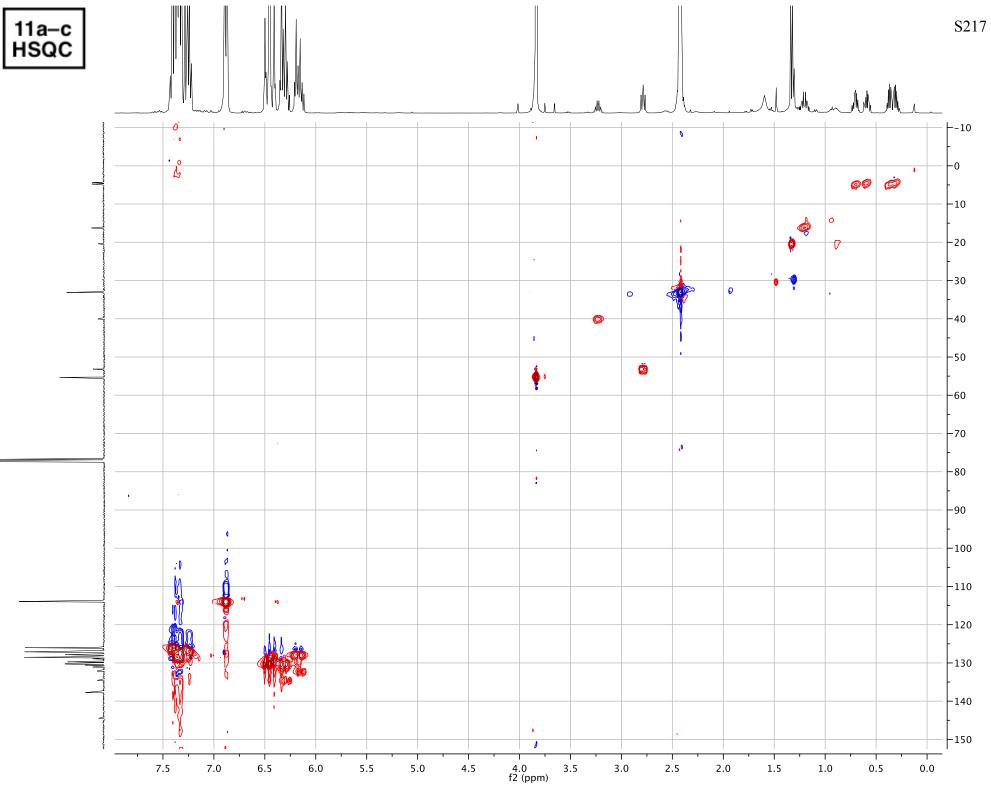




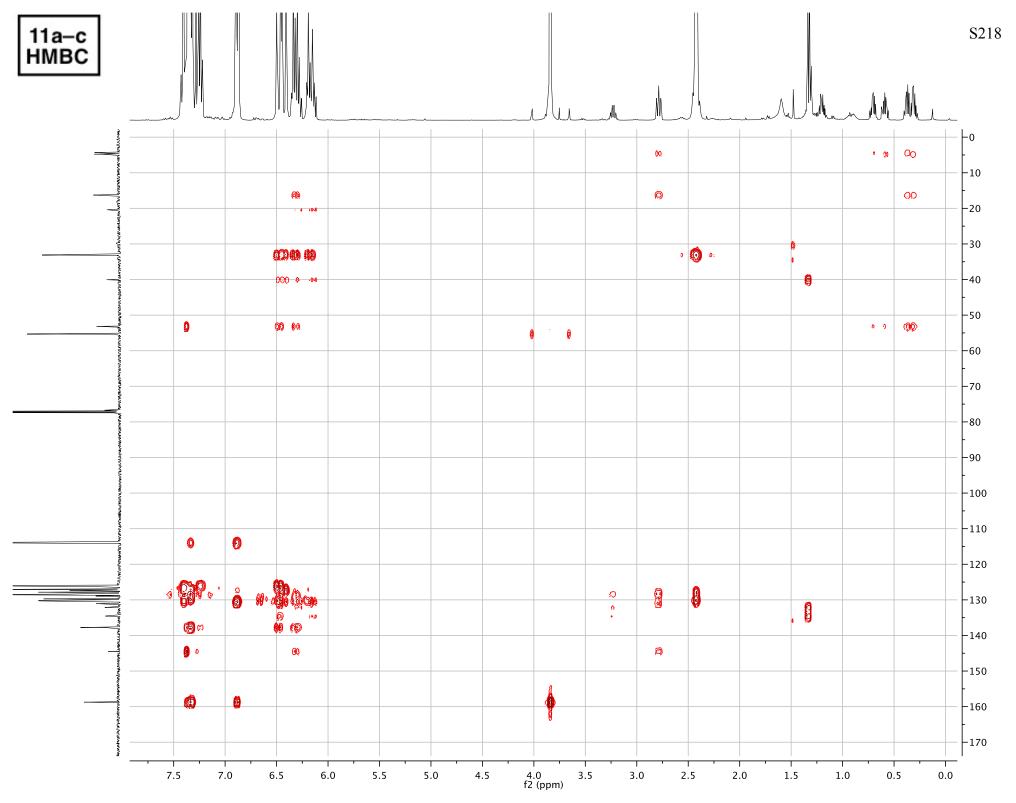


|     |     | · · · | 1   | ' 1 | '   | , l | · · · · | , , , | 1   | '            | '           |    |    | - I I | 1  | '  | , 1 | · 1 |    |    | 1 |  |
|-----|-----|-------|-----|-----|-----|-----|---------|-------|-----|--------------|-------------|----|----|-------|----|----|-----|-----|----|----|---|--|
| 210 | 200 | 190   | 180 | 170 | 160 | 150 | 140     | 130   | 120 | 110<br>f1 (j | 100<br>ppm) | 90 | 80 | 70    | 60 | 50 | 40  | 30  | 20 | 10 | 0 |  |




| Parameter            | Value                  |             | S213 |
|----------------------|------------------------|-------------|------|
| Title                | JLH-5-169-column.2.fid |             |      |
| Origin               | Bruker BioSpin GmbH    |             |      |
| Solvent              | CDCI3                  |             |      |
| Temperature          | 295.0                  |             |      |
| Pulse Sequence       | zgpg30                 |             |      |
| Number of Scans      | 128                    |             |      |
| Receiver Gain        | 72.0                   |             |      |
| Relaxation Delay     | 2.0000                 |             |      |
| Pulse Width          | 10.0000                | QMe         |      |
| Acquisition Time     | 1.3631                 | <u>o</u> me |      |
| Acquisition Date     | 2016-09-04T13:01:36    | TMS         |      |
| Spectrometer Frequer |                        |             |      |
| Spectral Width       | 24038.5                |             |      |
| Lowest Frequency     | -2067.1                | 9           |      |
| Nucleus              | 13C                    | J           |      |
| Acquired Size        | 32768                  |             |      |
| Spectral Size        | 65536                  |             |      |
|                      |                        |             |      |
|                      |                        |             |      |


110 100 f1 (ppm) Т Т Т Т 80 . 60 








f1 (ppm)



f1 (ppm)



f1 (ppm)