Supplementary Information

AgRP neurons regulate bone mass

Jae Geun Kim^{1,3}, Ben-Hua Sun², Marcelo O. Dietrich^{1,4}, Marco Koch^{1,5}, Gang-Qing Yao², Sabrina Diano¹, Karl Insogna^{2*} and Tamas L. Horvath^{1*}

¹Program in Integrative Cell Signaling and Neurobiology of Metabolism, Section of Comparative Medicine, ²Department of Internal Medicine, Yale University School of Medicine, New Haven CT 06520, ³Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 406-772, Republic of Korea, ⁴Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre RS 90035, Brazil, ⁵Institute of Anatomy, University of Leipzig, 04103 Leipzig, Germany.

^{*}These laboratories contributed equally to this work.

Correspondence: tamas.horvath@yale.edu

Contents: Supplementary Figures 1-3 Supplementary Method

Supplementary Figure 1 (Related to Figure 1). Generation of mice overexpressing *Ucp2* in AgRP neurons. (a) Schematic diagram of the *Agrp cre* allele and the *Ucp2* $f^{lox/flox}$ transgene. (b) *Agrp-cre* mice were mated with *Ucp2* $f^{lox/flox}$ mice. Transgenic mice express EGFP protein in the hypothalamic arcuate nucleus following cre-mediated recombination but not in hippocampus. (c) Immunolocalization of Cre protein in the femur of three-month-old *Agrp-cre* mice. Sections were incubated with antibody against *Cre* and counterstained with Hoechst (Blue). Immunoreactive signal of Cre (Red) was not observed in the femur of *Agrp Cre* mice. Tb, Trabecular bone. Scale bar = 100 µm.

Supplementary Figure 2 (Related to Figures 1 and 4). *Ucp1* mRNA expression in brown adipose tissue (BAT) of *Ucp2^{-/-}* mice and *Agrp-Ucp2^{Tg}* mice. *Ucp2^{-/-}* mice reveals an elevation of *Ucp1* mRNA levels in BAT (n=5 for $Ucp2^{+/+}$, n=6 for $Ucp2^{-/-}$). *Agrp-Ucp2^{Tg}* mice reveals a reduced *Ucp1* mRNA levels in BAT (n=6 for CT, n=9 for *Agrp-Ucp2^{Tg}*, p<0.05). * p<0.05. Data are presented as means \pm s.e.m. P values for unpaired comparisons were analyzed by Student's *t* test.

Supplementary Figure 3 (Related to Figures 1, 2 and 3). Impaired leptin signaling in AgRP neurons resulted in increased body weight and fat mass but did not have altered bone phenotypes. Two-month-old male $Agrp^{Lepr-/-}$ mice exhibited increased (a) body weight (n=11 for $Agrp^{Lepr+/+}$, n=11 for $Agrp^{Lepr-/-}$, p<0.001) and (b) fat mass (n=11 for $Agrp^{Lepr+/+}$, n=11 for $Agrp^{Lepr-/-}$, p<0.001) but a decreased (c) lean mass (n=11 for $Agrp^{Lepr+/+}$, n=11 for $Agrp^{Lepr-/-}$, p<0.001). (d) DXA analysis demonstrated that BMD was not altered in $Agrp^{Lepr-/-}$ mice (n=10 for $Agrp^{Lepr+/+}$, n=10 for $Agrp^{Lepr-/-}$, p=0.0974). (e, f) Micro-CT analysis showed no differences in trabecular and cortical BV/TV between $Agrp^{Lepr+/+}$ and $Agrp^{Lepr-/-}$ mice (e: n=5 for $Agrp^{Lepr+/+}$, n=5 for $Agrp^{Lepr-/-}$, p=0.3372; f: n=5 for $Agrp^{Lepr+/+}$, n=5 for $Agrp^{Lepr-/-}$, p=0.3787). *** p<0.001. Data are presented as means \pm s.e.m. P values for unpaired comparisons were analyzed by Student's t test.

Supplementary Method

Immunohistochemical analysis of Cre expression.

Femora were dissected from three-month-old *Agrp Cre* mice. After cleaning, they were fixed overnight in 0.1 M phosphate buffer (PB) containing 4% paraformaldehyde. Decalcification was later performed by immersing bone specimens in 15% wt/vol ethylenediaminetetraacetic acid (EDTA; Sigma) at 25°C for 3 wk. Decalcifying solution was replaced every 3 days. After being embedded in paraffin, bone specimens were cut longitudinally into 7 µm sections, which were later incubated at 37°C for 30 min in antigen retrieval solution (0.01 mg/ml proteinase K, 50 mM Tris HCl, pH 8.0, and 5 mM EDTA). To inhibit background endogenous peroxidase activity, sections were incubated for 1h with 10% H₂O₂. Nonspecific binding was blocked for 2 h by 4% bovine serum albumin, 10% normal goat serum, and 0.7% Tween-20 in PB buffer. Thereafter, sections were incubated at 4°C overnight with 1:1000 mouse primary antibody against *Cre* (MAB3120, Millipore, Billerica, MA). After being washed with PB buffer, the sections were incubated HRP-complex (ABC, Vector Laboratories) for 2 h and then reacted with Tyramide Signal Amplification system (NEN Life Science, Boston, MA). After processing, the sections were counterstained with Hoechst and photographed using fluorescence microscopy.