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1 Theoretical Background

1.1 Choosing a stochastic modeling approach

There are different stochastic approaches for the modeling of biological circuits. The discrete
chemical master equation (CME) is considered a very detailed and rather exact representation,
since it describes the discrete changes in copy numbers of reaction species caused by single
reactions [1]. This usually comes at the expense of analytic tractability. Exact solutions are
only available for systems with limited size and/or complexity [2, 3], which is why several
approximate methods exist, for example Fokker-Planck equations or Langevin equations [4, 5,
6]. Furthermore, simulation methods like the Gillespie algorithm help to gain insight into the
dynamics of the model without the need for a mathematical analysis of the master equation
[7]. Further ways of model simplification are often used especially in the biological context,
like the elimination of certain reaction species or of intermediate reaction steps. For example,
very fast reactions (e.g. the assembly of the transcription or translation machinery, protein
oligomerizations) are commonly lumped into single, possibly nonlinear reaction rates, which
depend on the system state (pseudo-steady-state assumption) [8]. The rates can for instance
have the structure of Hill-type kinetics. Moreover, in several publications, DNA and mRNA
dynamics are not considered explicitly, and protein bursts are modeled as sudden increases
in copy numbers, whose magnitudes are geometrically distributed [9, 10].
In this study, we want to analyze the propagation of noise and the emergence of bursts
in detail, but with a model of reasonable complexity. We will focus on translational bursts
caused by the interplay of fast mRNA degradation and even more frequent translation events,
which were observed experimentally in several important regulatory systems, for example in
the bistable lac operon of E. coli [11, 12, 13]. Therefore, we choose to describe reactions
on the mRNA and protein level using the chemical master equation, while the DNA level is
neglected. We regard linear as well as nonlinear reaction propensities that are based on the
pseudo-steady-state assumption. The analysis of the CME is supported by the linear noise
approximation (LNA). The theoretical background of the CME, LNA, and Gillespie algorithm
are explained in the following sections.

1.2 Chemical master equation

The CME is a re-formulation of the Chapman-Kolmogorov equation for Markov processes,
describing the temporal change of a system’s state in a probabilistic manner. Here, we regard
a system with constant volume V comprising N different reaction species. The system is
assumed to be homogeneously mixed, so that its state can be characterized by a vector
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x = (x1, ..., xN )>, where xi is the current molecule copy number of the i-th reaction species.
Let X(τ) denote the corresponding stochastic process with time variable τ . Since the state
space is discrete, the CME can be written as

ṗx(τ) =
∑
x′

(
π(x,x′) px′(τ)− π(x′,x) px(τ)

)
, (1)

where px(τ) is the probability that X(τ) = x, π(x2,x1) is the transition probability per
infinitesimal unit time from state x1 to x2 and the summation runs over all possible states.
Put simply, the CME says that the probability of any state x is increased by reactions that
transfer the system from other states to x, and diminished by reactions away from x. For a
detailed derivation of the CME, see for example [1].
What remains to be defined is the explicit formulation of π(., .). This function only covers
transitions caused by single reactions, since the infinitesimal time unit is sufficiently short
so that the probability of having two or more reactions in this time interval is negligible.
If R reactions are considered and the stoichiometric matrix is denoted by A with columns
a1, ...,aR, then the CME can be re-written as

ṗx(τ) =

R∑
j=1

(
wj(x− aj) · px−aj (τ) − wj(x) · px(τ)

)
, (2)

where wj(x) is the probability per infinitesimal time unit for the j-th reaction to occur (the
so-called propensity), when the system is in state x. The propensities are related to the
classical deterministic reaction rates as follows: Let Ci, i ∈ {1, ..., N} be the i-th reaction
component and let the j-th reaction be given by

N∑
i=1

αi,j ·Ci
kj−→

N∑
i=1

βi,j ·Ci, (3)

where kj is the (deterministic) reaction rate constant and αi,j , βi,j are the stoichiometric
coefficients of the educts and products in the j-th reaction. Then aj = (βi,j − αi,j)i=1,...,N

and

wj(x) =
kj

V
∑N
i=1 αi,j−1

N∏
i=1

xi!

(xi − αi,j)!
. (4)

The expression
kj

V
∑N
i=1

αi,j−1
is the reaction rate in terms of copy numbers instead of concentra-

tions. It scales with the volume of the system V (except for the case of first order reactions),
which is plausible since the reactions occur via random encounters between molecules.
The reaction rate kj is sometimes assumed to depend on x. This is usually the case when a
series of very fast reactions is not formulated explicitly, but lumped into one single rate.

1.3 The classical linear noise approximation

By means of the linear noise approximation (LNA), an approximate multivariate analysis of
fluctuations around a deterministic stable steady state can be obtained, when a direct analysis
of the probability distribution is intractable [1]. Here, we follow in large part the procedure
and nomenclature proposed in [5].
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In short, X(τ) is replaced by c∗ ·V +ε(τ), where c∗ is a stable fixed point of the corresponding
deterministic formulation

ċ =

(
1

V
·A ·w(c ·V )

) ∣∣∣
V→∞

, (5)

w(x) = (w1(x), ..., wR(x))> (vector of propensities), and ε denotes the stochastic devia-

tion from the deterministic solution. This is inserted into the expressions d E[X(τ)]
dτ and

d E[X(τ)X(τ)>]
dτ and the higher-order terms O(|ε|2) are omitted, resulting in a linearization

of reaction propensities around x∗ := c∗ ·V . The variance Σ of ε is then calculated for the

linearized system in steady state
(
d px(τ)
d τ = 0

)
, which serves as approximation of the local

variance of X.
Before giving the resulting mathematical formula for Σ, some further definitions need to be
introduced first: Based on the stoichiometric matrix A = (ai,j) i=1,...,N,

j=1,...,R
and the vector w(x)

of the current propensities, the matrix K = (ki,j) i=1,...,N,
j=1,...,R

is defined as

K(c) :=
∂Aw(c ·V )

V · ∂c
, (6)

which is the Jacobian of the right hand side of the deterministic formulation (5). Furthermore,
the diffusion matrix D = (di,l) i=1,...,N,

l=1,...,N
is given by

di,l(x) :=
R∑
j=1

ai,j al,j wj(x). (7)

If D is a diagonal matrix and N = 2, it can be shown that the covariance matrix Σ of
fluctuations around the stable deterministic steady state x∗ is approximated by

Σ =− 1

2

d∗1,1
k∗1,1 + k∗2,2

((
1 0
0 0

)
+

1

k∗1,1 k
∗
2,2 − k∗1,2 k∗2,1

(
(k∗2,2)2 −k∗2,1 k∗2,2
−k∗2,1 k∗2,2 (k∗2,1)2

))

− 1

2

d∗2,2
k∗1,1 + k∗2,2

((
0 0
0 1

)
+

1

k∗1,1 k
∗
2,2 − k∗1,2 k∗2,1

(
(k∗1,2)2 −k∗1,2 k∗1,1
−k∗1,2 k∗1,1 (k∗1,1)2

))
, (8)

where d∗i,j and k∗i,j denote the corresponding entries of K(x
∗

V ) and D(x∗).

1.4 Gillespie algorithm

The Gillespie algorithm is a Monte-Carlo method that numerically simulates exact trajectories
of the CME. It can be divided into four steps:

• Initialization:
Initialize the vector x and calculate the propensities wj(x) of all reactions. Set τ = 0.

• Monte-Carlo step:
Randomly choose a time step ∆τ (time until the next reaction event) and a number
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J ∈ {1, ..., R} (number of the reaction to occur next). Do this by drawing two indepen-
dent, uniformly distributed random variables U1 ∼ U([0, 1]) and U2 ∼ U([0, 1]) and by
calculating

∆τ =
1∑N

j=1wj(x)
· ln

(
1

U1

)
(9)

and by choosing J which meets the condition

J−1∑
j=1

wj(x) < U2 ·
R∑
j=1

wj(x) ≤
J∑
j=1

wj(x) (10)

• Update:
Set τ ← τ + ∆τ and x← x + aJ .

• Iteration:
Go back to the Monte-Carlo step unless the stop criterion is fulfilled.

A rigorous discussion of the algorithm can for example be found in [7].

2 Method development

2.1 Preliminary calculations: Means and variances of the master equation

Let X(τ) and Y (τ) be two continuous-time stochastic processes with joint probability distri-
bution pX,Y (τ) and let h : R2 → R be an arbitrary function. For the sake of simplicity, we
omit (τ) in our notation. The derivative of E[h(X,Y )] w.r.t. τ is given by

Ė[h(X,Y )] =
∑
y

∑
x

h(x, y) ṗx,y. (11)

Based on this equation, the time derivatives of the means, variances and of the covariance
can be formulated using

˙Var(X) = Ė[X2]− 2E[X] Ė[X] (12)

and
˙Cov(X,Y ) = Ė[X Y ]− E[X] Ė[Y ]− E[Y ] Ė[X]. (13)

In our case, insertion of the master equation (2) from the main text yields

Ė[M ] =
∞∑
s=0

∞∑
m=0

(
m F (s) pm−1,s − m F (s) pm,s + m (m+ 1) pm,s − m2 pm,s

[m G(m) pm,s−1 − m G(m) pm,s + m (s+ 1) pm,s+1 − m s pm,s] · ν
)

=
∞∑
s=0

∞∑
m=0

(
F (s) − m

)
pm,s

= E[F (S)]− E[M ] (14)
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and, in an analogue manner,

˙Var(M) = E[F (S)] + E[M ] − 2 Var(M) + 2 Cov(M,F (S)) (15)

Ė[S] =
(
E[G(M)]− E[S]

)
· ν (16)

˙Var(S) =
(
E[G(M)] + E[S] − 2 Var(S) + 2 Cov(S,G(M))

)
· ν (17)

˙Cov(M,S) = Cov(S, F (S)) + ν ·Cov(M,G(M)) − (1 + ν) ·Cov(M,S) (18)

For calculating steady state distributions, all time derivatives are set to 0 and the obtained
system of equations is solved, which leads to the implicit relations:

E[M ] = E[F (S)] (19)

Var(M) = E[M ] + Cov(M,F (S)) (20)

E[S] = E[G(M)] (21)

Var(S) = E[S] + Cov(S,G(M)) (22)

Cov(M,S) =
Cov(S, F (S)) + ν ·Cov(M,G(M))

1 + ν
. (23)

2.2 Classical rate laws and the hybrid deterministic model

2.2.1 Derivation of the hybrid deterministic model

The hybrid model is derived starting from Eqs (14) and (16), which can be written as

ċm(τ) =
1

V
E[F (S(τ))]− cm(τ) =

1

V

∞∑
r=0

F (r) · pSr (τ)− cm(τ) (24)

ċs(τ) =
( 1

V
E[G(M(τ))]− cs(τ)

)
· ν =

( 1

V

∞∑
n=0

G(n) · pMn (τ)− cs(τ)
)
· ν, (25)

where cm(τ) := E[M(τ)]
V and cs(τ) := E[S(τ)]

V are the expected average mRNA and protein
concentrations at time τ . Furthermore, the marginal probability mass functions are denoted
as pSr (τ) :=

∑∞
m=0 pm,r(τ) and pMn (τ) :=

∑∞
s=0 pn,s(τ). Their mean values are cs(τ) ·V and

cm(τ) ·V , respectively.

If F and G are linear, information on pS and pM is not required since the marginal distribu-
tions can be eliminated, leading to the classical rate laws that – in this case – exactly describe
the dynamics of the average mRNA and protein concentrations:

1

V

∞∑
r=0

F (r) · pSr (τ) = F

(
1

V

∞∑
r=0

r · pSr (τ)

)
= F(cs(τ)), (26)

1

V

∞∑
n=0

G(n) · pMn (τ) = G

(
1

V

∞∑
n=0

n · pMn (τ)

)
= G(cm(τ)). (27)
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However, if F and/or G are nonlinear, the equations are not valid (note that in general,
E[G(M)] 6= G(E[M ]) and E[F (S)] 6= F (E[S])). Moreover, the joint and marginal probability
distributions might be multimodal. In order to obtain local information, we interpret multi-
modal distributions as superpositions of two or more unimodal ones each of which represents
one cellular state. Since there is no means to determine the unimodal probability mass func-
tions analytically, we require suitable approximations pS,loc

r (τ) and pM,loc
n (τ).

Let us first define an approximation of the local mRNA distribution pM,loc(τ). For the sake
of simplicity, we omit the label “loc” for local (unimodal) distributions, means, and variances
in the following. Z-transforming1 the CME of the mRNA distribution in steady state

0 =
d pMn
d τ

=
∞∑
s=0

(
F (s) pn−1,s − F (s) pn,s + (n+ 1) pn+1,s − n pn,s

)
(28)

yields

0 =

∞∑
s=0

[
F (s)

∞∑
n=0

1− z
z

z−n pn,s

]
− z (z − 1)

∂

∂z

( ∞∑
n=0

z−n pMn

)
,

⇔ 0 =
∞∑
s=0

[
F (s)

∞∑
n=0

z−n pn,s

]
+ z2 ∂

∂z

( ∞∑
n=0

z−n pMn

)
(29)

and backtransformation gives the recursion formula

(n+ 1) pMn+1 =

∞∑
s=0

F (s) pn,s = E[F (S)|M = n] pMn , (30)

which can be explicitly formulated as

pM0 =

( ∞∑
n=0

∏n−1
l=0 E[F (S)|M = l]

n!

)−1

pMn =

∏n−1
l=0 E[F (S)|M = l]

n!
pM0 . (31)

These formula show that if F is almost constant in the range of local protein fluctuations, i.e.
if F ≡̃a, then E[F (S)|M = l] ≈ a ∀ l ∈ N0 and pMn ≈ an

n! e
−a, or, in generalized form,

pMn ≈
E[M ]n

n!
e−E[M ], (32)

i.e. the mRNA level is approximately Poisson distributed. For nonconstant F or for systems
that are not in steady state, a computationally tractable closed-form expression of pMn (τ) is
usually not available. We therefore use the Poisson distribution (Eq (32)) as approximation
in all cases. The differential equation of the protein dynamics, Eq (25), is hence replaced by:

ċs =
( 1

V

∞∑
n=0

G(n) · (cm V )n

n!
e−cm V − cs

)
· ν = (Ḡ(cm) − cs) · ν. (33)

Obviously, this approach leads to a local averaging of the function G, cf. Figure A.

1Z-transform of a function h : N0 → R, n 7→ h(n) has the form ĥ(z) = Z(h)(z) =
∑∞
n=0 z

−n h(n).
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Figure A: Continuous translation rate according to the classical and hybrid deterministic model.
While the translation rate G of the classical model (red line) is an interpolation of the discrete function values
(black diamonds), the translation rate Ḡ of the hybrid deterministic model (green line) is a local average
(weighted sum according to a Poisson distributed mRNA copy number with mean m). The exemplary fixed
points (intersection points with F−1, dashed purple line) of the classical (red filled circles) and hybrid (green
filled circles) models diverge significantly. In addition, the local derivatives of G and Ḡ (dashed colored lines)
at the respective fixed points are different, which has a great impact on the calculation of the Fano factors
using the LNA. Functions and parameters are the same as in Fig 2 of the main text.

It would now make sense to choose a unimodal approximation of pS,loc as well, leading to
a local averaging of the function F around E[S]. However, if the protein copy number is
assumed to be locally Poisson distributed, E[F (S)] might be approximately equal to F (E[S]),
since the average protein level is usually high. As the variance of the real local distribution
may vary considerably depending on the circuit and as it cannot be easily assessed a priori,
we just replace Eq (24) by the classical macroscopic reaction rate formulation

ċm =F(cs)− cm. (34)

This also leads to reasonable compuational complexity of the deterministic model.

2.2.2 Stability of the deterministic models

Let (c∗m, c
∗
s) be a fixed point of the (classical or hybrid) deterministic model. The Jacobian J

of the right hand-side of the ODE system, evaluated at (c∗m, c
∗
s), reads

J =

(
−1 f
g · ν −ν

)
(35)

with f := dF(cs)
d cs
|cs=c∗s , g := dG(cm)

d cm
|cm=c∗m in case of the classical deterministic model and

g := d Ḡ(cm)
d cm

|cm=c∗m in case of the hybrid deterministic model.

8
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For (c∗m, c
∗
s) to be stable, the trace of J needs to be negative and the determinant needs to be

positive. The first condition is always fulfilled, while the second condition holds if f · g < 1.
In this case, the expression (trace(J))2 − 4 · det(J) is always positive, so that (c∗m, c

∗
s) turns

out to be a stable node.

2.3 Application of the classical and hybrid linear noise approximation to
the full reaction system

In the following, the linear noise approximation is applied to the full reaction system. The
following formula are valid for both the classical and the hybrid LNA; the only difference lies
in the values of the deterministic stable steady states m∗ and s∗ and in those of the local
derivatives f and g.
The vectors and matrices defined in Section 1.3 read:

A =

(
1 −1 0 0
0 0 1 −1

)
(36)

w(m∗, s∗) =
(
m∗ m∗ ν · s∗ ν · s∗

)>
(37)

K(c∗m, c
∗
s) =

(
−1 f
ν · g −ν

)
(38)

D(m∗, s∗) =

(
2m∗ 0

0 2 ν · s∗
)

(39)

The approximated variance-covariance matrix Σ of (M,S) has the form

Σ = m∗
1

1 + ν

((
1 0
0 0

)
+

ν

1− f g

(
1 g
g g2

))

+ s∗
ν

1 + ν

((
0 0
0 1

)
+

1

ν(1− f g)

(
f2 f
f 1

))
. (40)

A reformulation of Σ1,1 and Σ2,2 yields the following approximate expressions for Var(M) and
Var(S):

Var(M) ≈ m∗
[
1 +

f

g−1 − f

(
ν

1 + ν
+

1

1 + ν
· r f

g

)]
(41)

Var(S) ≈ s∗
[
1 +

1

g−1 − f

(
f

1 + ν
+

ν

1 + ν
· g
r

)]
(42)

in a domain around (m∗, s∗), where the right hand sides correspond to the variances of the
linearized system.
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2.4 Application of the linear noise approximation to the reduced system

The CME of the reduced reaction system (Eq (13) in the main text) is given by

d ps
dτ

=

s∑
b=0

F (s− b) Geoα(F (s−b))(b) ps−b − F (s) ps

+
[
(s+ 1) ps+1 − s ps

]
· ν (43)

and its mean obeys (with F (s) = 0 if s < 0):

dE[S]

dτ
=
∞∑
s=0

∞∑
b=0

s F (s− b) Geoα(F (s−b))(b) ps−b − s F (s) ps +
(
s (s+ 1) ps+1 − s2 ps

)
· ν

=
∞∑
s=0

∞∑
b=0

b F (s) Geoα(F (s))(b) ps −
∞∑
s=0

s ps · ν =
∞∑
s=0

F (s)α(F (s)) ps − E[S] · ν

=
( ∞∑
s=0

Ḡ(F (s)) ps − E[S]
)
· ν =

(
E[Ḡ(F (s))] − E[S]

)
· ν. (44)

Again, we consider local mean values and approximate:

∞∑
s=0

Ḡ(F (s)) ps =
∞∑
n=0

G(n)
∞∑
s=0

F (s)n

n!
e−F (s) ps ≈

∞∑
n=0

G(n)
F (E[S])n

n!
e−F (E[S]) = Ḡ(F (E[S])),

(which holds exactly if F is constant), so that the deterministic formulation

dcs
dτ

=
(
Ḡ(F (cs))− cs

)
· ν (45)

is obtained. Its fixed points c∗s correspond to those of the full hybrid deterministic model.
Linearization is thus performed around the same values.
Next, the vectors and matrices that are required for LNA are collected. Since bursts of any
size can occur with a certain probability, the stochastic matrix A has infinite dimensions.

A =
(
−1 0 1 2 3 . . .

)
(46)

w(s∗) =
(
ν · s∗ Geo rν(0) ·F (s∗) Geo rν(1) ·F (s∗) Geo rν(2) ·F (s∗) . . .

)>
(47)

K(c∗s) = g · f · ν − ν (48)

D(s∗) = ν · s∗ +
∞∑
b=0

b2 Geo rν(b) ·F (s∗)

= ν · s∗ + r ν (1 + 2 r ν) ·F (s∗)

= 2 · s∗ ν · (1 + r ν) (49)

Here, g := d Ḡ(cm)
d cm

|cm=F(c∗s) and r := s∗

F (s∗) . With Σ = − D∗

2K∗ , the approximate local variance
reads

Var(S) = s∗ · 1 + r ν

1 − f g
= s∗

[
1 +

1

g−1 − f

(
f +

r ν

g

)]
. (50)
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2.5 Definitions of burst measures

2.5.1 Burst size

The burst size α(m) is defined as the mean number of proteins produced during a burst, when
the average level around which the mRNA copy number fluctuates immediately before a burst
is equal to m. Again, we assume that mRNA fluctuations follow a Poisson distribution, cf.
Eq (32). As shown before, this holds exactly in a system with a locally constant transcription
propensity F , which is in steady state. The burst is triggered by the formation of an additional
mRNA molecule and ends with its degradation. During that time, the distribution of the
remaining mRNA molecules is assumed to be unaffected. Hence, the average propensity with
which proteins are translated from the mRNA molecule that causes the burst is equal to∑∞

n=0
G(n+1)
n+1 ν mn

n! e
−m = Ḡ(m)

m ν.
When b denotes the number of proteins translated from that specific mRNA molecule (burst
proteins), the CME of the reaction

∅
Ḡ(m)
m

ν
−−−−→ Burst proteins (51)

is given by:

ṗb =
Ḡ(m)

m
ν pb−1 −

Ḡ(m)

m
ν pb,

pb(0) = δb({0}). (52)

δ.({.}) denotes the Dirac measure. Let B be the stochastic variable of b. During the burst,
its mean value follows the equation

E[B(τ)] =
Ḡ(m)

m
ν τ. (53)

The lifetime τm of a mRNA molecule is exponentially distributed with parameter 1 (inverse
of the mRNA degradation rate in the scaled system). Hence, the burst size is given by

α(m) := E [E[B(τm)]] =

∫ ∞
0

Ḡ(m)

m
ν τm e

−τm d τm =
Ḡ(m)

m
ν. (54)

2.5.2 Burst frequency

The burst frequency ω(s) is the mean number of bursts (i.e., of transcribed mRNA molecules)
during the lifetime of a protein, where s is the mean copy number of proteins during that
interval. Protein lifetime is exponentially distributed with mean 1/ν. Like in the formulation
of the hybrid deterministic model, the average transcriptional propensity is approximated
by the point evaluation F (s). The burst frequency can now be determined by a calculation
analogous to the burst size:

ω(s) =

∫ ∞
0

F (s) τs ν e
−τs ν d τs =

F (s)

ν
. (55)

11
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2.6 Model reduction and estimation of modes

2.6.1 Model reduction

Let ν � 1, so that mRNA molecules are degraded very quickly compared to the protein. In
this case, all translation events belonging to one burst occur in a temporally highly condensed
manner (if the reference time-scale is determined by protein degradation). Our goal is a model
reduction that solely regards the protein level:

reaction 1: ∅ F (s) ·P (b)−−−−−−→ b ·Protein, b = 0, 1, 2, ...

reaction 2: Protein
ν−→ ∅ (56)

Here, P (b) is the probability of a burst of size b, which needs to be specified in the following:

If G is linear, the burst size α does not depend on the current mRNA level. We recall the
reaction in which the burst proteins are generated:

∅ α−→ Burst proteins, (57)

cf. Eq (51). The burst ends with the degradation of the responsible mRNA molecule (propen-
sity equal to 1). A burst of size b is hence generated when b protein formation events occur
before the mRNA molecule is degraded. As a consequence,

P (b) =

(
α

1 + α

)b 1

1 + α
=: Geoα(b), (58)

i.e. the burst size is geometrically distributed for linear G.

If G is nonlinear, the current average mRNA copy number determines the burst size α(m).
In order to eliminate the mRNA level, assumptions about m need to be made. As an ap-
proximation, we assume that between bursts, m = F (s), where s is the current protein copy
number. This assumption is valid either if the overall mRNA dynamics are so fast that the
mRNA distribution adapts quickly to the current protein copy number (pseudo steady state),
or if F is constant in the range of protein fluctuations (different expression states are again
considered separately), so that the mRNA distribution is independent of the protein level.
Furthermore, we assume that the mRNA distribution does not change significantly during a
burst. Then, the translation of burst proteins occurs with propensity α(F (s)), and the burst
size is again geometrically distributed:

P (b) =

(
α(F (s))

1 + α(F (s))

)b 1

1 + α(F (s))
= Geoα(F (s))(b). (59)

Now, we can formulate the CME of the reduced model:

d ps(τ)

dτ
=

s∑
b=0

F (s− b) ·Geoα(F (s−b))(b) · ps−b − F (s) ps

+ (s+ 1) ν ps+1 − s ν ps. (60)

12
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2.6.2 Solving the CME of the reduced model

Let us first assume that the mean burst size α(F (s)) is constant with value α ∈ R≥0, which
is the case in systems without feedback (F constant) or for linear translation rates G. The
steady-state condition of the CME can be formulated as

∞∑
b=0

F (s− b) ·Geoα(b) · ps−b − F (s) ps = −ν ((s+ 1) ps+1 − s ps)

⇔ ((Geoα − δ.({0})) ∗ F p) (s) = −ν ((s+ 1) ps+1 − s ps) , (61)

where F (s) = 0 ∀ s < 0, δ.(.) is again the Dirac measure, and ∗ denotes a discrete convolution.

The steady state distribution of the reduced model can now be calculated using Z-transform
(cf. Section 2.2.1). By applying some general rules, we obtain for the LHS of the equation:

Z ((Geoα − δ.({0})) ∗ F p) (z) = (Z(Geoα)(z)−Z(δ.({0}))(z)) · Z(F p)(z) =

= (Z(Geoα)(z)− 1) ·
(
F̂ ∗ p̂

)
(z) =

( ∞∑
s=0

1

1 + α

(
α

1 + α

)s
z−s − 1

)
·
(
F̂ ∗ p̂

)
(z) =

=

(
1

1 + α

∞∑
s=0

(
α

z(1 + α)

)s
− 1

)
·
(
F̂ ∗ p̂

)
(z) =

(
1

1 + α
· 1

1− α
z (1+α)

− 1

)
·
(
F̂ ∗ p̂

)
(z) =

= − α (z − 1)

α (z − 1) + z
·
(
F̂ ∗ p̂

)
(z). (62)

Moreover, Z-transform of the RHS (divided by −ν) gives

∞∑
s=0

z−s ((s+ 1) ps+1 − s ps) = z (z − 1)
1

z

∞∑
s=0

z−s s ps = −z (z − 1) ∂z p̂(z). (63)

All in all, the Z-transform of the whole steady state equation reads

z (z − 1) ∂z p̂(z) = − α (z − 1)

α (z − 1) + z
· 1
ν

(
F̂ ∗ p̂

)
(z) (64)

or, after some simplification:

− z (z − 1) ∂z p̂(z) −
z2

α
∂z p̂(z) =

1

ν

(
F̂ ∗ p̂

)
(z). (65)

It is straightforward to show that − z2

α ∂z p̂(z) = 1
α Z((s + 1) ps+1). Therefore, backtransfor-

mation yields

(s+ 1) ps+1 − s ps +
1

α
(s + 1) ps+1 =

F (s)

ν
ps, (66)

from which follows the simplified recursive steady state condition

(s+ 1) ps+1 =
α

1 + α

(
F (s)

s ν
+ 1

)
s ps, s > 0,

p1 =
α

1 + α

F (0)

ν
p0. (67)

13
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Now, the explicit steady-state-distribution can be retrieved:

ps =
F (0)

s ν
p0

(
α

1 + α

)s s−1∏
i=1

(
F (i)

i ν
+ 1

)
. (68)

For bursts that depend on the protein level, this explicit calculation is not possible. We
assume that in this case, the approximate relations

(s+ 1) ps+1 =
α(F (s))

1 + α(F (s))

(
F (s)

s ν
+ 1

)
s ps, s > 0

p1 =
α(F (0))

1 + α(F (0))

F (0)

ν
p0 (69)

and

ps =
F (0)

s ν
p0

α(F (0))

1 + α(F (0))

s−1∏
i=1

[
α(F (i))

1 + α(F (i))
·
(
F (i)

i ν
+ 1

)]
. (70)

hold, that have been motivated from Eqs (67) and (68). By inserting these approximate
expressions into the CME of the reduced system (60), it can be shown that they approximately
fulfill the steady state condition if α(F (s)) ≈ α(F (s+ 1)) ∀s.

2.6.3 Estimation of modes

A local maximum (mode) of the probability distribution occurs at a positive protein copy
number s > 0 if ps+1 ≤ ps and ps−1 ≤ ps. Using Eq (69), we conclude that s then fulfills the
condition

s = dσe where σ ∈ R, σ + α(F (σ)) + 1 =
α(F (σ))F (σ)

ν
. (71)

Here, d.e is the ceiling function.
A further mode is located at s = 0 if p1 < p0, i.e. if

α(F (0)) + 1 >
α(F (0))F (0)

ν
. (72)

14



Hortsch and Kremling Appendix: Noise in multistable genetic circuits

2.7 Overview of graphical methods
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Figure B: Graphical evaluation methods.
(A): Deterministic phase plot. (B): Propensity plot.
(C): Plot for the determination of modes.

In Figure B, three graphical methods are
shown with which noise can be characterized.
In the protein-mRNA phase plot (A), the
mRNA nullcline (purple line) and the protein
nullcline (blue line) are plotted. The outer in-
tersection points (grey circles) mark the stable
deterministic steady states. From the plot, one
can read the local derivatives f and g (dashed
lines) as well as the protein-to-mRNA ratio r
at each stable fixed point. This way, one can
qualitatively predict how a modulation of the
shapes of F and G influences the local Fano
factors. Obviously, choosing a nonlinear G al-
lows more flexible adjustment of noise (other-
wise, g and r would be identical and constant).
Note that ν does not have an influence on
the graphs in the first plot, in contrast to the
propensity plot shown in (B). It is similar to
the phase plot, but with different scaling. The
local average burst size α∗ is equal to the ws-
to-wm-ratio at the outer intersection points.
A variation of ν stretches or compresses the
plotted functions equally. This has only an ef-
fect on ws, while the mRNA dynamics stay the
same. Since ws = Ḡ(wm) · ν, the effect of ν on
ws is linear. Again, nonlinearity of G is a nec-
essary condition for generating different burst
sizes in the two expression states.
The third plot is applicable if ν � 1. Here,
the locations of the local mean values (grey
circles) can be compared with the locations of
the modes (pink diamonds). The larger the
local burst size α(F (s)) is, the larger are the
deviations between modes and the correspond-
ing local mean values.
Here, the functions and parameters from Fig
2 of the main text have been used. In (B),
a shift from ν = 0.025 to ν = 0.05 is illus-
trated. In (C), ν = 0.05 was chosen so that the
shift between local means and modes becomes
better visible. For better readability, one may
vary the scaling of the axes (e.g. log-log-scale).
However, the plots shown here allow a more
intuitive understanding of the connection be-
tween circuit properties and noise.
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3 Quality of the novel approaches

3.1 Comparison of Fano factors obtained from classical LNA, hybrid LNA
and simulations

η*(S)

ν = 0.01 ν = 0.1

s*

ν = 0.01 ν = 0.1

4.2 ± 0.2 23.2 ± 1.5

3.3 16.3

4.2 24.5
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265.3
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Figure C: Comparing the classical and hybrid LNA. The s-m-plots on the left visualize the difference in
the fixed points of the classical and hybrid deterministic model. In the table on the right, the estimated fixed
points and protein Fano factors of both approaches (red: classical LNA, green: hybrid LNA) are compared to
values extracted from simulations (blue; estimates ± SEMs of 102 repeats are shown). Different combination
of functions have been tested. (A): Constant F , saturated G. (B): Linear, increasing F , saturated G. (C):
Saturated F and G. (D): Sigmoid F and G. Here, the estimates for both steady states are given (upper values:
active state; lower values: inactive state). Functions and parameters are listed in the text.
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In addition to the comparison done in Fig 2 of the main text, we have evaluated further
combinations of F and G in order to test the quality of the LNA approaches. In Figure C,
the phase plots of the systems are shown. The functions and parameters are as follows:

A. constant F , concave G: F (s) = 0.2, G(m) = 281 m
m+0.51

B. linear F , concave G: F (s) = 0.1 + 0.0025 · s, G(m) = 281 m
m+0.51

C. concave F and G: F (s) = 0.02 + s
s+140 , G(m) = 281 m

m+0.51

D. sigmoid F and G: F (s) = 0.022 + 1.46 s4

s4+584 , G(m) = 281 m4

m4+0.734

The parameter ν has been varied (ν = 0.01 and ν = 0.1). This does not affect the phase
plots, so that the fixed points of the deterministic models remain the same. The tables on
the right list the estimates of s∗ and η∗(S) obtained with the classical and hybrid LNA.
Moreover, the corresponding values that have been extracted from simulations are shown. In
order to generate these values, protein time courses have been simulated with final reaction
time tmax = 105 for ν = 0.01 and tmax = 104 for ν = 0.1. Then, their means and variances
have been evaluated for systems (A) to (C). In case of the bistable system (D), phases have
been identified visually in every time course in which the system was clearly in one of the two
expression states, so that the states could be evaluated separately. For ν = 0.1, the system
switches quickly to the high expression state, so that the estimates for the low expression
states are of limited significance and have large standard errors.
System (A) serves as a control for the hybrid deterministic model, since F is constant and
therefore, the model is expected to exactly predict the location of the mean value. This is
indeed the case, while the steady state of the classical approach deviates significantly. Despite
the nonlinearity of G, the hLNA also predicts the Fano factor very well.
In System (B), F is given by a linear, positively increasing function. The quality of the hybrid
approach is expected to be reduced as the mRNA distribution is not exactly Poisson anymore.
However, the deviation is moderate (data not shown) and thus the quality of the hybrid LNA
is still very good. Again, all estimates obtained from the classical LNA are clearly worse.
In (C), F describes a saturation curve. Interestingly, the simulated local mean values are
different for ν = 0.01 and for ν = 0.1. This can be explained as follows: In a way similar
to the averaging of the translation rate G in the range of mRNA fluctuations that has been
performed in the hybrid deterministic approach, an averaging of F could be done in the range
of protein fluctuations. For larger ν, protein fluctuations increase, so that the averaging effect
is expected to be stronger. By smoothing the graph of F (purple line) in the phase plot
to various degrees, one can imagine that the fixed point of the hybrid deterministic model
would move towards the simulated ones. Therefore, an extension of our hybrid approach
that calculates an effective transcription rate F̄ is expected to yield even better predictions.
However, as we have mentioned before, the range of protein fluctuations cannot be estimated a
priori (a Poisson distribution is usually too narrow and does not lead to significant differences
in F and F̄ ). Nevertheless, with our hybrid approach, all estimates are in a realistic range
and clearly outperform the classical approach.
In (D), a hypothetical, bistable system with sigmoid F and G is shown. Note that Ḡ is not a
sigmoid function anymore. F is almost constant in a domain around the fixed points. Again,
the hybrid approach yields better noise estimates for both expression states, compared to the
classical one.
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3.2 Multistability vs. multimodality
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Figure D: Differences in qualitative stability properties of classical and hybrid deterministic mod-
els. In (A) and (B), two different systems are considered with sigmoid F and saturated G. The upper part
shows the phase plots of the deterministic models. Red filled circles mark the locations of the fixed points
according to the classical rate laws, while green filled circles mark those of the hybrid deterministic model. Due
to the difference in G and Ḡ, the number of steady states is different. The lower plots show histograms of the
protein distribution obtained from simulations. (A): The system is bimodal. According to the hybrid model,

it is bistable, while the classical model predicts monostability. F (s) = 0.022 + 1.46 s4

s4+454 , G(m) = 250 m
m+0.51

.
(B): The protein distribution is unimodal, in accordance with the monostability of the hybrid model. However,

the classical approach predicts bistability. F (s) = 0.1 + 1.46 s4

s4+584 , G(m) = 281 m
m+2.57

.

Due to the possibly large difference between G and Ḡ, it is fair to assume that the classical and
the hybrid deterministic approaches might predict distinct stability behaviors for the same
system. Two examples are shown in Figure D, where one of the approaches is monostable,
while the other one is bistable. Interestingly, the number of fixed points in the hybrid model
coincides with the number of modes in the simulated protein distribution, and their locations
are similar as well. Here, the distribution has been obtained from time courses of multiple
simulations that have been initialized at different mRNA and protein copy numbers and
stopped at different times in order to capture all stable expression states.
However, in Fig 4B of the main text, a system has been shown that is monostable according
to the hybrid deterministic model, but whose distribution is bimodal. In this case, bimodality
emerges due to large protein bursts that cause a significant right-skewness of the distribution.
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The distribution accumulates at low protein copy numbers, forming a second peak. This
peak is not connected with any deterministic stable state. Changes in multimodality through
large bursts have been discussed more extensively in [14]. Apart from this phenomenon that
cannot be captured by deterministic models, we expect that the hybrid model is able to
predict multimodality more reliably than the classical model.

3.3 Quality of model reduction and of the determination of modes
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Figure E: Quality of model reduction and mode prediction. Four different reaction systems that are
specified in the text are evaluated. Top: s-m-phase-plots. Middle part: Plots for the prediction of modes.
Bottom: Histograms of the full and reduced models. To generate the distributions, protein time courses of
each (full or reduced) system have been simulated with final reaction time tmax = 105. Protein Fano factors of
the time courses with their SEMs are given (obtained from at least 30 repeats). Histograms of full and reduced
systems are nearly congruent if Ḡ is linear as in system (A), while the distribution of the reduced system is
broader if Ḡ is strongly concave as in (D). Nonlinearity of F does not hamper the quality of model reduction
(cf. (B) and (C)). The prediction of modes worked well in all cases.

In order to further assess the quality of our model reduction technique, simulations of full and
reduced reaction systems have been performed. Here, ν = 0.01 � 1. The following circuits
have been tested:

19



Hortsch and Kremling Appendix: Noise in multistable genetic circuits

A. concave F , linear G: F (s) = 0.02 + 0.192 s
s+140 , G(m) = 1000 ·m

B. linear F , concave G: F (s) = 0.02 + 0.0008 · s, G(m) = 1153 m
m+0.1

C. concave F and G: F (s) = 0.02 + 0.192 s
s+140 , G(m) = 1153 m

m+0.1

D. concave F and G: F (s) = 0.2 + 1.92 s
s+140 , G(m) = 170.3 m

m+0.1

In all systems, s∗ ≈ 100. In (A) to (C), m∗ ≈ 0.1, while in (D), m∗ ≈ 1. Figure E
shows analytical plots for mode prediction and compares the protein distributions obtained
by simulations of the full and reduced models.
In (A), the linearity of G makes the stochastic burst size independent of the mRNA level so
that no information is lost in the course of model reduction. As a consequence, the full and
reduced model yield almost identical protein distributions. Slight differences only emerge due
to the temporal condensation of translation events. The modes are well predicted although
F is nonlinear and its derivative is large.
In (B), the reduced model yields a slightly broader protein distribution than the full model.
In Section 2.4, we have deduced the protein Fano factor of the reduced model using LNA.
Obviously, it differs from the formula that is obtained for the full model if g 6= r. In particular,
if G and, as a consequence, Ḡ is concave as in system (B) (cf. Section 4.2), so that g < r,
the reduced model is indeed expected to have a broader distribution. Here, the effect is
moderate since Ḡ is almost linear in the range of mRNA fluctuations, although G is highly
nonlinear. The prediction of the mode works very well although f is large and the skewness
of the distribution is great.
System (C) combines the concave transcription rate of (A) with the concave translation rate
of (B). Again, the distribution of the reduced model is a bit broader than that of the full
model, but the mode prediction is reliable. Nonlinearity of F does obviously not hamper the
quality of model reduction.
In (D), the average mRNA level has been increased, while s∗ was kept constant. This reduces
the burst size, so that the mode of the protein distribution is close to its average. However,
the nonlinearity of Ḡ is more pronounced than in (B) or (C). As expected, the distribution
of the reduced model is significantly broader than that of the full model. Nevertheless, mode
prediction works reliably.

4 Biological interpretations and applications

4.1 Extraction of burst characteristics from time course data

In the following, we will show how the burst size and frequency can be read from time course
data. This helps in interpreting those measures.

4.1.1 Regulatory systems without feedback and with linear propensities

In [15], a regulatory system without feedback and with linear propensities is considered.
According to that paper, the burst characteristics can be read from an idealized protein time
course, where sharp increases in the protein copy number with amplitudes corresponding to
α∗ are followed by periods of exponential decay. The time interval between the bursts is
approximately given by the inverse of the transcriptional propensity, F (s∗)−1 = 1

ω∗ · ν .
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Simulations of protein trajectories show that the extraction of the burst size is not that
trivial, since the amplitude of the peaks is randomly distributed and bursts might overlap.
Furthermore, a fraction of the protein molecules is instantaneously degraded during a burst,
so that the actual number of produced proteins is larger than the peak height suggests. For
inferring α∗ from time course data, the following considerations are helpful, which are valid
for all linear functions G(m) = g ·m:
Let [τ0, τm] be the lifespan of an arbitrary mRNA molecule and let m(τ) = 1 for τ0 ≤ τ ≤ τm
(no overlap of bursts). W.l.o.g., let τ0 = 0. Moreover, let s(0) =: s0. Then, for τ ∈ [τ0, τm],
the CME of the protein dynamics read

ps(0) = δs({s0}),

ṗs(τ) = g · ν · (ps−1 − ps) + ν ((s+ 1) ps+1 − s ps) . (73)

The ODE of the expected value E[S(τ) | 0 ≤ τ ≤ τm, S(0) = s0 ] can be formulated and
explicitly solved. Evaluated at τ = τm, it reads:

E[S(τ) | τ = τm, S(0) = s0 ] = g − (g − s0) · e−τm · ν . (74)

The lifetime of the mRNA molecule τm is exponentially distributed with expected value 1.
At the moment of mRNA degradation, the protein copy number is thus on average given by:

γ∗e (s0) := E [E[S(τm) | τm ] |S(0) = s0 ] =

∫ ∞
0

E[S(τm) | τm, S(0) = s0 ] · e−τm dτm

=
g · ν + s0

1 + ν
=

α∗ + s0

1 + ν
. (75)

Eliminating the stochasticity of S(0) gives

γ∗e := E[E[ γ∗e (S(0)) |S(0) ]] =
α∗ + γ∗i

1 + ν
(76)

with γ∗i := E[S(0)]. Therefore,

α∗ = γ∗e · (1 + ν) − γ∗i . (77)

In this context, we also define the average peak height β∗, which is the average increase of
the protein level during a burst:

β∗ =
α∗

1 + ν
. (78)

If ν is very small, the burst size α∗ is thus almost equal to the average peak height β∗.
Furthermore, when the protein level has dropped to zero before the next burst is initiated,
β∗ = γ∗e = α∗

1+ν (this often occurs2 if ω∗ � 1
ln(α∗)).

2The given boundary is derived from an idealized protein time course: When – starting from zero protein
molecules – a burst of size α∗ occurs at time τ = 0, the mean protein amount subsequently decays according
to α∗ · exp(−τ · ν). After the time interval 1

ω∗ · ν , just before the next burst occurs, it has reached the level
α∗ · exp(− 1

ω∗ ), which is smaller than 1 if ω∗ < 1
ln(α∗)

.
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Based on Eq (75), we suggest the following
Procedure for extracting α∗ and ω∗ from time course data:

• From the mRNA trajectory, the length of the intervals between consecutive mRNA
production events are read, and the empirical mean is calculated. This gives an estimate
of 1

ω∗ · ν .

• From the mRNA trajectory, overlapping bursts (where more than 1 mRNA molecule is
transiently present) can be identified. Those bursts are ignored for the estimation of α∗.
For all other bursts, the protein copy numbers at the moment of mRNA formation and
degradation are read. These are empirical estimates for s0 and for γ∗e (s0). According
to the above Eq (75), an estimate for α∗ can be obtained from each non-overlapping
burst. By averaging those values, the final estimate for α∗ is received (Eq (77)).

• In order to obtain α∗ and ω∗, ν should be known. If this is not the case, it can be
inferred from degradation dynamics: When no mRNA is present, the average protein
decay follows s(τ) = s(0) · e−τ · ν .

• As a control, the average protein level s∗ can be extracted from the time course and
this value can be compared to the product α∗ ·ω∗.

In Table A, estimates for α∗ and for ω∗ obtained with this procedure are listed under the
assumption that ν is known. Details on the statistical evaluation are given in Section 4.1.4.
Systems (A.1) and (A.2) are linear systems without feedback. While the estimates of ω∗

are accurate, α∗ is always slightly underestimated. This is because overlapping bursts are
eliminated, so that mRNAs with above-average lifespans that tend to produce a lot of protein
are more likely to be ignored. Comparing the two systems, the average mRNA level m∗ of
system (A.2) is lower (ω∗ � 1

ν ), so that overlaps are less frequent. As a consequence, the
estimate for α∗ is better.

4.1.2 Regulatory systems with feedback and with linear propensities

Figure F shows exemplary mRNA and protein trajectories of a system without (A) and with
positive, linear feedback (B). At first glance, protein bursts in panel (B) seem to be larger and
less frequent than those in panel (A). This is suprising, as the calculated local characteristics
α∗ and ω∗ are identical in the two systems. Moreover, they correspond to the average ones:

E[α(M)] = E
[
ν · g ·M
M

]
= α∗ and E[ω(S)] = E

[
a+f ·S

ν

]
= a+f · s∗

ν = ω∗.

The main difference is that while the burst size α(m) = g · ν is independent of m in both cases,

the burst frequency varies with s in the system with feedback: ω(s) = F (s∗)
ν + F ′(s∗)

ν (s−s∗) =

ω∗ + f
ν (s − s∗). This means that the bursts are not homogeneous over time, but tend to

accumulate and overlap if s > s∗, while their frequency is reduced when s < s∗ (the opposite
holds for negative feedback). From the mRNA time course, one can tell that bursts are indeed
temporally clustered so that from time to time, high mRNA copy numbers are transiently
reached. Thus, the seemingly higher protein peaks do not result from larger burst sizes, but
from overlapping bursts.
Our procedure to extract estimates for α∗ and ω∗ eliminates those overlaps, which leads to
a reduced number of evaluable data and to an increased tendency to underestimate α∗. The
values listed in Table A show that the estimates are still satisfying for this example, but their
standard deviation increases significantly, especially for ω∗ (cf. system (B)).
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Figure F: Simulated time courses of systems with linear propensities. For both systems, m∗ = 0.1,
s∗ = 10, α∗ = 100, ω∗ = 0.1, and ν = 1. The functions F and G are given in Section 4.1.4 (cf. systems (A.1)
and (B)). The upper row shows exemplary mRNA trajectories, the bottom row shows the corresponding protein
trajectories. (A): System without feedback. Bursts are homogenously distributed over time. (B): System with
positive, linear feedback. The temporal clustering of mRNA transcription events promotes super-bursts.

4.1.3 Regulatory systems with nonlinear propensities

If G is nonlinear, Eq (77) actually needs to be adapted to:

α∗ · G(1)

r
= G(1) · ν = γ∗e · (1 + ν) − γ∗i . (79)

However, for m∗ � 1, r =
∑∞

n=0
G(n+1)
n+1

(m∗)n

n! e−m
∗ ≈ G(1) (which is not the case if r is

calculated with the classical deterministic model). Therefore, our evaluation method is still
applicable if the average mRNA level is very low as in system (C.2) in Table A. In systems
(C.1) and (D), the mRNA level is higher and therefore, the estimated burst sizes are less
reliable. Estimation of ω∗ is not impaired by nonlinearity of G.

In contrast, when G is linear but F is nonlinear, the estimation of α∗ is reliable, while the
estimate for ω∗ may be inaccurate since in general, E[F (S)] 6= F (E[S]) 6= F (s∗) = ω∗ · ν. In
some cases (e.g., for strictly concave or convex F ), Jensen’s inequality can help to qualitatively
predict in which direction the estimate is biased (cf. Table A, systems (E) and (F)). In
addition, it is recommended to calculate α∗ from extracted values for s∗ and ω∗ as a control.
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4.1.4 Statistical evaluation of estimates

Table A lists the estimates of various circuits. In the first set of systems, m∗ = 0.1 and
s∗ = 10. The functions F and G are given by:

(A.1) No feedback: F (s) = 0.1, G(m) = 100 ·m

(B) Positive linear feedback: F (s) = 0.02 + 0.008 · s, G(m) = 100 ·m

(C.1) No feedback, convex G: F (s) = 0.1, G(m) = 0.909 · m2

0.01

(D) No feedback, concave G: F (s) = 0.1, G(m) = 398 · m
m+2.9

(E) Negative feedback, convex F : F (s) = 2
s+10 , G(m) = 100 ·m

(F) Positive feedback, concave F : F (s) = 0.05 + 3 · s
s+590 , G(m) = 100 ·m

Furthermore, two systems with m∗ = 0.01 and s∗ = 10 are given by:

(A.2) No feedback: F (s) = 0.01, G(m) = 1000 ·m

(C.2) No feedback, convex G: F (s) = 0.01, G(m) = 9.9 · m2

0.01

In order to study large and rare as well as small and frequent bursts, two values of ν have been
tested (1 and 0.01). For every circuit, 103 mRNA and protein trajectories have been generated
with the Gillespie algorithm, starting from m = 0 and s = 10 until the final reaction time
τ = 2 · 103 was reached. From each time course, estimates of α∗ and ω∗ have been extracted,
using our procedure. The values given in the table show the empirical means and SEMs of
the estimates.

Table A: Statistical evaluation of estimates of α∗ and ω∗ extracted from simulated mRNA and
protein time course data.

ν = 1 ν = 0.01

type α∗ [ · 102] ω∗ [ · 10−1] α∗ [−] ω∗ [ · 101]

analytical 1.00 1.00 1.00 1.00

(A.1) no feedback 0.95± 0.04 1.00± 0.07 0.92± 0.10 1.00± 0.07

(B) pos. linear fb 0.84± 0.07 0.99± 0.43 0.88± 0.10 0.99± 0.40

(C.1) no fb, convex G 0.87± 0.04 1.00± 0.07 0.83± 0.10 1.00± 0.07

(D) no fb, concave G 0.97± 0.04 1.00± 0.07 0.94± 0.10 1.00± 0.07

(E) neg. fb, convex F 0.99± 0.04 1.40± 0.06 0.93± 0.10 1.02± 0.07

(F) pos. fb, concave F 0.87± 0.05 0.90± 0.13 0.90± 0.10 1.01± 0.18

analytical 10.00 0.10 10.0 0.10

(A.2) no feedback 9.93± 1.32 0.10± 0.02 9.86± 2.38 0.10± 0.02

(C.2) no fb, convex G 9.85± 1.37 0.10± 0.02 9.92± 2.42 0.11± 0.02

The table lists estimates of burst sizes and frequencies, extracted from simulations according to the
procedure described in Section 4.1.1. The table summarizes the estimates as means ± SEMs of 103 repeats.
Furthermore, the analytical values are given.
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4.2 Noise in systems with saturated translation propensity

In order to evaluate the noise pattern in a bistable circuit that has a concave translation
propensity G (or more precisely, a discrete translational propensity G which can be inter-
polated by a concave function) with G(0) = 0, we analyze the dependence of Ḡ′(m) and of
Ḡ′(m) ·m
Ḡ(m)

on m. With this information, we can compare the values of g and g
r at the two fixed

points (m∗1, s
∗
1) < (m∗2, s

∗
2) and thus their Fano factors η(s∗1) and η(s∗2).

First, the monotonicity of Ḡ′(m) is considered. Since G is concave,

G(n+ 1) ≥ 1

2
G(n) +

1

2
G(n+ 2) ∀n ∈ N\{0}. (80)

holds. As a consequence,

Ḡ′′(m) =
∞∑
n=0

(G(n+ 2) − 2G(n+ 1) + G(n))
mn

n!
e−m ≤ 0 ∀m ∈ R≥0. (81)

Therefore, g∗1 > g∗2. (In an analogous manner, one can show that Ḡ is strictly concave, convex,
or strictly convex, if G is.)

Determining the monotonicity of Ḡ′(m) ·m
Ḡ(m)

is not that trivial, it depends on the choice of G.

As in the main text, we set

G(m) = u
m

Km +m
. (82)

Then, we obtain:

Ḡ′(m) ·m
Ḡ(m)

=

∑∞
n=0(G(n+ 1) − G(n)) m

n

n! e
−m∑∞

n=0
G(n+1)
n+1

mn

n! e
−m

=

∑∞
n=0

Km
(Km+n+1)(Km+n)

mn

n! e
−m∑∞

n=0
1

Km+n+1
mn

n! e
−m

=

∑∞
n=0 h(n) ·h(n+ 1) m

n

n! e
−m∑∞

n=0 h(n+ 1) m
n

n! e
−m ·Km (83)

with h(n) := 1
Km+n . Our goal is to show that the derivative of this expression with respect

to m is negative. Let further N :=
∑∞

n=0 h(n + 1) m
n

n! e
−m be the denominator of the above

expression. Then:

1

Km

d

dm

(
Ḡ′(m) ·m
Ḡ(m)

)

=

(∑∞
n=0 (h(n+ 1)h(n+ 2) − h(n)h(n+ 1)) m

n

n! e
−m) (∑∞

n=0 h(n+ 1) m
n

n! e
−m)

N2

−
(∑∞

n=0 (h(n+ 2) − h(n+ 1)) m
n

n! e
−m) (∑∞

n=0 h(n)h(n+ 1) m
n

n! e
−m)

N2
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=

(∑∞
n=0 h(n+ 1)h(n+ 2) m

n

n! e
−m) (∑∞

n=0 h(n+ 1) m
n

n! e
−m)

N2

−
(∑∞

n=0 h(n+ 2) m
n

n! e
−m) (∑∞

n=0 h(n)h(n+ 1) m
n

n! e
−m)

N2

=

(∑∞
n=0

∑n
k=0 h(k + 1)h(k + 2)h(n− k + 1) mn

k!(n−k)! e
−2m

)
N2

−

(∑∞
n=0

∑n
k=0 h(k + 2)h(n− k)h(n− k + 1) mn

k!(n−k)! e
−2m

)
N2

=
1

N2

∞∑
n=0

n∑
k=0

h(k + 2)h(n− k + 1) [h(k + 1) − h(n− k)]︸ ︷︷ ︸
= 1
Km+k+1

− 1
Km+n−k

=h(k+1)h(n−k) (n−2k−1)

(
n

k

)
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

n∑
k=0

h(k + 1)h(k + 2)h(n− k)h(n− k + 1)︸ ︷︷ ︸
:=H(k)

(n− k)

(
n

k

)
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

n∑
k=0

H(k) (k + 1)

(
n

k

)
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

n−1∑
j=−1

H(j) (j + 1)

(
n

j + 1

)
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

n∑
k=0

H(k) (k + 1)

(
n

k

)
2−n

(2m)n

n!
e−2m

= − 1

N2

∞∑
n=0

H(n) (n+ 1) 2−n
(2m)n

n!
e−2m

+
1

N2

∞∑
n=0

n−1∑
k=0

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

<
1

N2

∞∑
n=0

bn
2
c−1∑

k=0

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

+
1

N2

∞∑
n=0

n−1∑
k=dn

2
e

H(k) (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

=
1

N2

∞∑
n=0

bn
2
c−1∑

k=0

H(k) · (k + 1)

((
n

k + 1

)
−
(
n

k

))
2−n

(2m)n

n!
e−2m

− 1

N2

∞∑
n=0

bn
2
c−1∑
j=0

H(j) · (n− j)
((

n

j + 1

)
−
(
n

j

))
2−n

(2m)n

n!
e−2m. (84)

During this calculation, we twice substituted j = n − k − 1 and used the symmetry of the

binomial coefficient. Note that H(k) = H(j). For k = 0, ..., bn2 c − 1,
((

n
k+1

)
−
(
n
k

))
> 0.

Furthermore, k + 1 > n− k. Therefore, the above expression is negative.
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4.3 Analyzing the robustness of stable states in bistable systems via first
passage times

In Fig 5 of the main text, protein trajectories of three bistable systems (systems (A) to (C))
have been simulated. It has been shown that the robustness of the two protein expression
states (ON and OFF) can be influenced by the shape of the propensity functions and by shifts
in time scales. In order to give a more quantitative view on robustness, we determine first
passage times (FPT) of switches from the OFF to the ON state as well as from the ON to the
OFF state computationally. For each system and switching direction, 103 trajectories have
been generated using the Gillespie algorithm, starting from either the OFF (s∗ = 20) or the
ON (s∗ = 200) state. The first passage times τFPT are the time points when the trajectory
first hits the other state. For different final reaction times τf , the percentage of cells for which
τf > τFPT holds is determined (these are the cells that have switched during [0, τf ]). The
mean FPT (MFPT) of a switch is obtained by averaging the FPTs. In case a cellular state is
too robust, it might be infeasible to determine the MFPT due to computational limits (infinite
MFPTs are possible). Table B and Figure G summarize the results for the bistable systems
from Fig 5 of the main text. One can see that in systems (A) and (B), where translation rates
are linear, the inactive state is always more robust than the active state. In order to achieve
the opposite, the parameters in F could be adjusted. However, the range of adjustment is
limited as bistability needs to be preserved. Much greater flexibility is achieved by allowing
nonlinear translation rates (system (C)) that create state-dependent burst sizes.

Table B: Percentage of cells that have left their original state within [0, τf ] and MFPTs

Switch Cells having switched during [0, τf ] MFPT MFPT · ν
[%] [ · 103] [ · 102]

(A) τf [ · 103] 2.6 5.1 10.2 20.6
OFF → ON 0.00 0.00 0.01 0.01 n.a. n.a.
ON → OFF 0.29 0.50 0.78 0.95 6.97± 6.06 3.49± 3.03

(B) τf [ · 10] 1.9 3.9 7.8 15.6
OFF → ON 0.02 0.05 0.11 0.23 0.56± 0.58 2.24± 2.34
ON → OFF 0.28 0.51 0.77 0.94 0.06± 0.05 0.22± 0.20

(C) τf [ · 10] 3.6 7.2 14.4 28.8
OFF → ON 0.19 0.52 0.81 0.97 0.09± 0.04 0.19± 0.15
ON → OFF 0.00 0.00 0.00 0.00 n.a. n.a.

Systems (A) to (C) correspond to those from Fig 5 in the main text. OFF-to-ON switches and ON-to-OFF
switches are considered separately. The percentage of cells that have undergone a transition from the initial
state (OFF or ON) to the other state during [0, τf ] is given in the middle part, depending on τf . The faster
this percentage reaches high levels, the less robust is the state. The average and standard deviation of 103

independent FPTs is given in the second last column. Some states were too robust to determine the values
computationally. MFPTs after normalization with respect to protein lifetime are given in the last column.

One should note that in our case, FPTs are useful for comparing the robustness of different
stable states within the same regulatory system. When different systems are compared, one
needs to define the time scale the comparison should be based on (e.g. the original process
time, or time normalized with respect to mRNA or protein degradation rates). Due to that,
we have listed the MFPTs (systems normalized with respect to mRNA lifetime) as well as
the MFPTs multiplied by ν (systems normalized with respect to protein lifetime) in Table B.
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Figure G: Visualization of Table B. The graphs illustrate the percentage of cells that have at least once
switched from their original to the other stable state within [0, τf ] on a time scale determined by mRNA
degradation. In system (C), the high expression state is more robust, in contrast to systems (A) and (B).

5 Choice of parameter values

For defining an appropriate range of parameter values, we have mainly used data on prokary-
otes collected in the book “Cell Biology by the Numbers” [16].
mRNA and protein degradation rates strongly depend on the physical stability of the molecules
themselves, on the physiological state of the cell, and on the presence or absence of active
degradation mechanisms. Usually, the mRNA half-life is shorter than that of protein, which
is why we usually chose values of ν < 1. In that range, the value was varied by some orders of
magnitude in order to evaluate its impact on the quality of our approaches. The average copy
number of specific mRNA and protein molecules in a cell varies significantly. We have used the
fact that in E. coli, the majority of genes have less than one mRNA molecule per cell present
at any point in time, while only very few genes have 100 or more. The protein-to-mRNA
ratio r was chosen to be in the order of 10 to 1000.
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