SUPPLEMENTAL MATERIAL

Selective utilization of benzimidazolyl-norcobamides as cofactors by the tetrachloroethene reductive dehalogenase of *Sulfurospirillum multivorans*

Sebastian Keller¹, Cindy Kunze¹, Martin Bommer², Christian Paetz³, Riya C. Menezes⁴, Aleš Svatoš⁴, Holger Dobbek², and Torsten Schubert¹

¹Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany ²Structural Biology / Biochemistry, Department of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, D-10115 Berlin, Germany ³Research Group Biosynthesis / NMR and ⁴Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, **Germany**

Fig. S1: Data from UHPLC-ESI-HRMS analysis of purified NCbas. Singly and doubly protonated ions were detected, which were assigned to the respective NCbas. Numbering of the peaks is referring to figure 1C.

Tab. S1: Calculated monoisotopic masses of the NCbas in comparison to the measured values. Labeling of the peaks is in accordance to figure 1C.

NMR data (extended)

Structure analysis of the 6-OHBza-*N***--ribofuranosyl moiety of 6-OHBzanorcobamide.** All norcobamide (NCba) structures were analyzed by NMR spectroscopy with focus on the various benzimidazoles incorporated during the cultivation experiments. In the following, the structure analysis of the 6-OHBza- N_{α} ribofuranosyl moiety of 6-OHBza-NCba is described as a typical example (Fig. S2-9). In an analogous manner the structures and chemical shifts of the 5-OMeBza-NCba (Fig. S10-15), the 5-MeBza-NCba (Fig. S16-21), and the 6-MeBza-NCba (Fig. S22-27) have been worked out.

The ¹H NMR spectrum showed six signals in the low field range, three of them attributable to an aromatic AMX spin system. However, a deviation of the chemical shifts compared to the literature (Crofts *et al.*, 2014) was observed and thus the structure was elucidated *de novo*. Starting point was a 1H-¹³C HSQC cross signal at δ ^H 6.17, *m*/ δ c 86.6 (Fig. S7), which was assigned to position 1' of the α -ribofuranose moiety. By means of ¹H-¹H DQFCOSY, selective ¹H-¹H TOCSY (offset on H-1') and ¹H-¹³C HSQC all remaining positions of the α -ribofuranose were assigned (Fig. S5) The 1 H- 13 C HMBC (Fig. S8) correlation of H-1' with C-2 (δ c 141.8) was proving the connection of the α -ribofuranosyl with the benzimidazolyl part. In order to elucidate the position of the hydroxyl group at the benzimidazole, a ¹H-¹H ROESY experiment was conducted (Fig. S9). Correlation of H-1' with the broad singlet of H-7 (δ H 6.80) was observed, and ¹H-¹³C HSQC revealed the corresponding C-7 at δ c 96.8. Furthermore, H-4' (δ H 4.02, *m*) showed a ROE-correlation to H-2 (δ H 7.03), indicating that the α ribofuranosyl and benzimidazolyl systems have a perpendicular orientation towards each other. Because no ¹H-¹H DQFCOSY correlation of H-7 was observed, the

position of the hydroxyl group in the benzimidazolyl moiety had to be in position 6. The remaining protonated positions of the benzimidazole were assigned from ¹H-¹³C HMBC and ¹H-¹H DQFCOSY correlations, respectively. ¹H-¹³C HMBC correlations from H-7 revealed the chemical shifts of position 5 (δ + 6.73, *d*, δ J_{HH}=8.9 Hz / δ c 113.2) and position 9 (δ c 132.2). H-4 (δ _H 6.49, *d*, 3 J_{HH}=8.9 Hz) was determined from a ¹H-¹H DQFCOSY correlation with H-5. The corresponding 13 C chemical shift C-4 (δ c 117.4) was determined by ¹H-¹³C HSQC. The ¹³C chemical shifts of position 8 (δ c 132.5) and 6 (δ c 153.7) were determined from the ¹H-¹³C HMBC correlation with H-4. Finally, the $1H-13C$ HMBC correlation of H-2 with C-8 and C-9, the evidence for the linkage of the imidazolyl moiety with the phenyl moiety of benzimidazole, completed the structure elucidation of the 6-OHBza-NCba.

References:

Crofts TS, Hazra AB, Tran JL, Sokolovskaya OM, Osadchiy V, Ad O, Pelton J, Bauer S, Taga ME. 2014. Regiospecific formation of cobamide isomers is directed by CobT. Biochemistry. 53:7805-7815.

Fig. S2: Chemical shifts (δ_H red, δc blue) of the 6-OHBza-*N*-α-ribofuranosyl-fragment and the ¹H-¹H ROESY key correlations for determination of the position of the hydroxyl group.

Fig. S3: ¹H-NMR spectrum of the 6-OHBza-NCba.

Fig. S4: ¹H-SELTOCSY spectrum of the α -ribofuranosyl moiety (red) of the 6-OHBza-NCba compared to the ¹H-NMR spectrum (black) of the 6-OHBza-NCba.

Fig. S5: $1H-1H$ DQFCOSY spectral detail of the α -ribofuranosyl unit of 6-OHBza-NCba with SELTOCSY spectra as projections.

Fig. S6: Full ¹H-¹H-DQFCOSY spectrum of the 6-OHBza-NCba.

Fig. S7: 1H-¹³C HSQC spectrum of 6-OHBza-NCba.

Fig. S8: 1H-13C HMBC spectrum of the 6-OHBza-NCba.

Fig. S9: 1H-1H ROESY spectrum of the 6-OHBza-NCba.

Fig. S10: Chemical shifts (δ_H red, δ_C blue) of the 5-OMeBza-*N*- α -ribofuranosylfragment.

Fig. S11: ¹H-NMR spectrum of the 5-OMeBza-NCba.

Fig. S12: 1H-1H-DQFCOSY spectrum of the 5-OMeBza-NCba.

Fig. S13: 1H-13C HSQC spectrum of 5-OMeBza-NCba.

Fig. S14: 1H-13C HMBC spectrum of the 5-OMeBza-NCba.

Fig. S15: 1H-1H ROESY spectrum of the 5-OMeBza-NCba.

Fig. S16: Chemical shifts (δ_H red, δ_C blue) of the 5-MeBza- N - α -ribofuranosyl-fragment.

Fig. S17: ¹H-NMR spectrum of the 5-MeBza-NCba.

Fig. S18: 1H-1H-DQFCOSY spectrum of the 5-MeBza-NCba.

Fig. S19: 1H-13C HSQC spectrum of 5-MeBza-NCba.

Fig. S20: 1H-13C HMBC spectrum of the 5-MeBza-NCba.

Fig. S21: ¹H-¹H ROESY spectrum of the 5-MeBza-NCba.

Fig. S22: Chemical shifts (δ_H red, δ_C blue) of the 6-MeBza-*N*- α -ribofuranosyl-fragment.

Fig. S23: ¹H-NMR spectrum of the 6-MeBza-NCba.

Fig. S24: 1H-1H-DQFCOSY spectrum of the 6-MeBza-NCba.

Fig. S25: 1H-13C HSQC spectrum of 6-MeBza-NCba.

Fig. S26: 1H-13C HMBC spectrum of the 6-MeBza-NCba.

Fig. S27: ¹H-¹H ROESY spectrum of the 6-MeBza-NCba.

Fig. S28: Transcript level of the *pceA* gene in PCE-grown *S. multivorans* cultivated in the presence of DMB detected by reverse transcriptase PCR. The housekeeping gene *16SrRNA* was used as a control. (+) = with reverse transcription / (-) = without reverse transcription. Total RNA of *S. multivorans* (10⁹ cells) was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany) and applied to DNA digestion with DNase I (Roche, Mannheim, Germany) at 37°C for 1 h. RNA concentration was determined with a Qubit® 1.0 Fluorometers (Invitrogen, Darmstadt, Germany) and the Qubit® RNA BR Assay Kit (Thermo Fisher Scientific, Braunschweig, Germany). The reverse transcriptase (RT) reaction was performed with 1 μg total RNA using the OneStep RT-PCR Kit (Qiagen, Hilden, Germany) at 50°C for 1 h. The subsequent PCR was run as follows: initial activation (15 min, 95°C) and 20 cycles of polymerization (1 min 94°C; 30 sec 50°C; 1 min 72°C). The following primers were used: 5'-ACACATTAAAAAAT AAATAACTGTACTTGGGG-3' and 5'-TGAGTAAACGCTGTTCGTACTTCAGC-3' for *pceA* (fragment size: 339 bp) and 5'-GAGACACGGTCCAGACTCCTAC-3' and 5'-CTCGACTTGATTTCCAGCCTAC-3' for *16SrRNA* (fragment size: 255 bp).

Fig. S29: HPLC-elution profiles of NCbas extracted from PceA purified from *S. multivorans* GD21 cultivated in the presence of either 5-MeBza, 5-OHBza, or 5- OMeBza. The first chromatogram shows a norpseudovitamin B¹² standard. The designations of the signals refer to the NCbas identified in the respective cell types (see Fig. 1C). The specific activities of the purified PceA enzymes were as follows: + 5-MeBza, 687 nkat/mg; + 5-OHBza, 1056 nkat/mg; + 5-OMeBza, 1504 nkat/mg.

Tab. S2: Data collection and refinement statistics.

