SUPPLEMENTAL MATERIAL

Selective utilization of benzimidazolyl-norcobamides as cofactors by the tetrachloroethene reductive dehalogenase of *Sulfurospirillum multivorans*

Sebastian Keller¹, Cindy Kunze¹, Martin Bommer², Christian Paetz³, Riya C. Menezes⁴, Aleš Svatoš⁴, Holger Dobbek², and Torsten Schubert¹

¹Department of Applied and Ecological Microbiology, Institute of Microbiology, Friedrich Schiller University, Philosophenweg 12, D-07743 Jena, Germany ²Structural Biology / Biochemistry, Department of Biology, Humboldt-Universität zu Berlin, Philippstrasse 13, D-10115 Berlin, Germany ³Research Group Biosynthesis / NMR and ⁴Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany

Fig. S1: Data from UHPLC-ESI-HRMS analysis of purified NCbas. Singly and doubly protonated ions were detected, which were assigned to the respective NCbas. Numbering of the peaks is referring to figure 1C.

Tab. S1: Calculated monoisotopic masses of the NCbas in comparison to themeasured values. Labeling of the peaks is in accordance to figure 1C.

	Compound	Accurate mass (<i>m/z</i>)	Calculated mass (<i>m/z</i>)	ح (ppm)	Elemental composition
Peak 1 [M+H] ⁺ [M+2H] ²⁺	MeBza-NCba	1327.5444 664.2763	1327.5434 664.2753	0.752 1.477	C61H85O14N14C0P C61H86O14N14C0P
Peak 2 [M+H] ⁺ [M+2H] ²⁺	MeBza-NCba	1327.5446 664.2762	1327.5434 664.2753	0.888 1.266	C61H85O14N14C0P C61H86O14N14C0P
Peak 3 [M+H] ⁺ [M+2H] ²⁺	Bza-NCba	1313.5230 657.2647	1313.5277 657.2675	-3.602 -4.205	C60H83O14N14C0P C60H84O14N14C0P
Peak 4 [M+H] ⁺ [M+2H] ²⁺	OHBza-NCba	1329.5218 665.2640	1329.5227 665.2650	-0.606 -1.460	C60H83O15N14C0P C60H84O15N14C0P
Peak 5 [M+H] ⁺ [M+2H] ²⁺	OMeBza-NCba	1343.5379 672.2722	1343.5383 672.2728	-0.429 -0.857	C ₆₁ H ₈₅ O ₁₅ N ₁₄ CoP C ₆₁ H ₈₆ O ₁₅ N ₁₄ CoP
# [M+H]+	norpseudo-B ₁₂	1330.5283	1330.5291	-0.607	C ₅₈ H ₈₂ O ₁₄ N ₁₇ CoP

NMR data (extended)

Structure analysis of the 6-OHBza-*N*- α -ribofuranosyl moiety of 6-OHBzanorcobamide. All norcobamide (NCba) structures were analyzed by NMR spectroscopy with focus on the various benzimidazoles incorporated during the cultivation experiments. In the following, the structure analysis of the 6-OHBza-*N*- α ribofuranosyl moiety of 6-OHBza-NCba is described as a typical example (Fig. S2-9). In an analogous manner the structures and chemical shifts of the 5-OMeBza-NCba (Fig. S10-15), the 5-MeBza-NCba (Fig. S16-21), and the 6-MeBza-NCba (Fig. S22-27) have been worked out.

The ¹H NMR spectrum showed six signals in the low field range, three of them attributable to an aromatic AMX spin system. However, a deviation of the chemical shifts compared to the literature (Crofts *et al.*, 2014) was observed and thus the structure was elucidated *de novo*. Starting point was a ¹H-¹³C HSQC cross signal at $\delta_{\rm H}$ 6.17, *m*/ $\delta_{\rm C}$ 86.6 (Fig. S7), which was assigned to position 1' of the α -ribofuranose moiety. By means of ¹H-¹H DQFCOSY, selective ¹H-¹H TOCSY (offset on H-1') and ¹H-¹³C HSQC all remaining positions of the α -ribofuranose were assigned (Fig. S5) The ¹H-¹³C HMBC (Fig. S8) correlation of H-1' with C-2 ($\delta_{\rm C}$ 141.8) was proving the connection of the α -ribofuranosyl with the benzimidazolyl part. In order to elucidate the position of the hydroxyl group at the benzimidazole, a ¹H-¹H ROESY experiment was conducted (Fig. S9). Correlation of H-1' with the broad singlet of H-7 ($\delta_{\rm H}$ 6.80) was observed, and ¹H-¹³C HSQC revealed the corresponding C-7 at $\delta_{\rm C}$ 96.8. Furthermore, H-4' ($\delta_{\rm H}$ 4.02, *m*) showed a ROE-correlation to H-2 ($\delta_{\rm H}$ 7.03), indicating that the α -ribofuranosyl and benzimidazolyl systems have a perpendicular orientation towards each other. Because no ¹H-¹H DQFCOSY correlation of H-7 was observed, the

4

position of the hydroxyl group in the benzimidazolyl moiety had to be in position 6. The remaining protonated positions of the benzimidazole were assigned from ¹H-¹³C HMBC and ¹H-¹H DQFCOSY correlations, respectively. ¹H-¹³C HMBC correlations from H-7 revealed the chemical shifts of position 5 (δ H 6.73, *d*, ³J_{HH}=8.9 Hz / δ c 113.2) and position 9 (δ c 132.2). H-4 (δ H 6.49, *d*, ³J_{HH}=8.9 Hz) was determined from a ¹H-¹H DQFCOSY correlation with H-5. The corresponding ¹³C chemical shift C-4 (δ c 117.4) was determined by ¹H-¹³C HSQC. The ¹³C chemical shifts of position 8 (δ c 132.5) and 6 (δ c 153.7) were determined from the ¹H-¹³C HMBC correlation with H-4. Finally, the ¹H-¹³C HMBC correlation of H-2 with C-8 and C-9, the evidence for the linkage of the imidazolyl moiety with the phenyl moiety of benzimidazole, completed the structure elucidation of the 6-OHBza-NCba.

References:

Crofts TS, Hazra AB, Tran JL, Sokolovskaya OM, Osadchiy V, Ad O, Pelton J, Bauer S, Taga ME. 2014. Regiospecific formation of cobamide isomers is directed by CobT. Biochemistry. 53:7805-7815.

Fig. S2: Chemical shifts (δ_H red, δ_C blue) of the 6-OHBza-*N*- α -ribofuranosyl-fragment and the ¹H-¹H ROESY key correlations for determination of the position of the hydroxyl group.

Fig. S3: ¹H-NMR spectrum of the 6-OHBza-NCba.

Fig. S4: ¹H-SELTOCSY spectrum of the α -ribofuranosyl moiety (red) of the 6-OHBza-NCba compared to the ¹H-NMR spectrum (black) of the 6-OHBza-NCba.

Fig. S5: ¹H-¹H DQFCOSY spectral detail of the α -ribofuranosyl unit of 6-OHBza-NCba with SELTOCSY spectra as projections.

Fig. S6: Full ¹H-¹H-DQFCOSY spectrum of the 6-OHBza-NCba.

Fig. S7: ¹H-¹³C HSQC spectrum of 6-OHBza-NCba.

Fig. S8: ¹H-¹³C HMBC spectrum of the 6-OHBza-NCba.

Fig. S9: ¹H-¹H ROESY spectrum of the 6-OHBza-NCba.

Fig. S10: Chemical shifts (δ_H red, δ_C blue) of the 5-OMeBza-*N*- α -ribofuranosyl-fragment.

Fig. S11: ¹H-NMR spectrum of the 5-OMeBza-NCba.

Fig. S12: ¹H-¹H-DQFCOSY spectrum of the 5-OMeBza-NCba.

Fig. S13: ¹H-¹³C HSQC spectrum of 5-OMeBza-NCba.

Fig. S14: ¹H-¹³C HMBC spectrum of the 5-OMeBza-NCba.

Fig. S15: ¹H-¹H ROESY spectrum of the 5-OMeBza-NCba.

Fig. S16: Chemical shifts (δ_H red, δ_C blue) of the 5-MeBza-*N*- α -ribofuranosyl-fragment.

Fig. S17: ¹H-NMR spectrum of the 5-MeBza-NCba.

Fig. S18: ¹H-¹H-DQFCOSY spectrum of the 5-MeBza-NCba.

Fig. S19: ¹H-¹³C HSQC spectrum of 5-MeBza-NCba.

Fig. S20: ¹H-¹³C HMBC spectrum of the 5-MeBza-NCba.

Fig. S21: ¹H-¹H ROESY spectrum of the 5-MeBza-NCba.

Fig. S22: Chemical shifts (δ_H red, δ_C blue) of the 6-MeBza-*N*- α -ribofuranosyl-fragment.

Fig. S23: ¹H-NMR spectrum of the 6-MeBza-NCba.

Fig. S24: ¹H-¹H-DQFCOSY spectrum of the 6-MeBza-NCba.

Fig. S25: ¹H-¹³C HSQC spectrum of 6-MeBza-NCba.

Fig. S26: ¹H-¹³C HMBC spectrum of the 6-MeBza-NCba.

Fig. S27: ¹H-¹H ROESY spectrum of the 6-MeBza-NCba.

Fig. S28: Transcript level of the *pceA* gene in PCE-grown *S. multivorans* cultivated in the presence of DMB detected by reverse transcriptase PCR. The housekeeping gene *16SrRNA* was used as a control. (+) = with reverse transcription / (-) = without reverse transcription. Total RNA of *S. multivorans* (10⁹ cells) was extracted with the RNeasy Mini Kit (Qiagen, Hilden, Germany) and applied to DNA digestion with DNase I (Roche, Mannheim, Germany) at 37°C for 1 h. RNA concentration was determined with a Qubit® 1.0 Fluorometers (Invitrogen, Darmstadt, Germany) and the Qubit® RNA BR Assay Kit (Thermo Fisher Scientific, Braunschweig, Germany). The reverse transcriptase (RT) reaction was performed with 1 µg total RNA using the OneStep RT-PCR Kit (Qiagen, Hilden, Germany) at 50°C for 1 h. The subsequent PCR was run as follows: initial activation (15 min, 95°C) and 20 cycles of polymerization (1 min 94°C; 30 sec 50°C; 1 min 72°C). The following primers were used: 5'-ACACATTAAAAAAT AAATAACTGTACTTGGGG-3' and 5'-TGAGTAAACGCTGTTCGTACTTCAGC-3' for *pceA* (fragment size: 339 bp) and 5'-GAGACACGGTCCAGACTCCTAC-3' and 5'-CTCGACTTGATTTCCAGCCTAC-3' for *16SrRNA* (fragment size: 255 bp).

Fig. S29: HPLC-elution profiles of NCbas extracted from PceA purified from *S. multivorans* GD21 cultivated in the presence of either 5-MeBza, 5-OHBza, or 5-OMeBza. The first chromatogram shows a norpseudovitamin B₁₂ standard. The designations of the signals refer to the NCbas identified in the respective cell types (see Fig. 1C). The specific activities of the purified PceA enzymes were as follows: + 5-MeBza, 687 nkat/mg; + 5-OHBza, 1056 nkat/mg; + 5-OMeBza, 1504 nkat/mg.

Tab. S2: Data collection and refinement statistics.

	PceA harboring	PceA harboring
	6-OHBza-norcobamide	5-OMeBza-norcobamide
Data Collection	PETRA III P11	HZB-MX 14.1
Wavelength (Å)	0.9184	0.9184
Resolution range (Å)	36.1 - 1.59 (1.65 - 1.59)	39.8 - 1.60 (1.66 - 1.60)
Space group	P 41	P 41
Unit cell (Å, °)	73.6 73.6 184.7 90 90 90	73.6 73.6 185.3 90 90 90
Unique reflections	129361 (12146)	129127 (12767)
Multiplicity	13.2 (12.6)	13.8 (13.6)
Completeness (%)	99 (93)	100 (99)
l/sigma(l)	14.9 (1.9)	19.0 (1.7)
Wilson B-factor (Ų)	19.0	20.2
R-merge	0.114 (0.931)	0.098 (1.57)
R-pim	0.033 (0.270)	0.027 (0.436)
CC1/2	1.00 (0.80)	1.00 (0.62)
Refinement		
R-work	0.152 (0.257)	0.151 (0.260)
R-free	0.177 (0.285)	0.172 (0.289)
Number of non-H		
atoms	7945	7820
macromolecules	6838	6843
ligands	243	251
solvent	864	726
Protein residues	862	865
RMS(bonds, Å)	0.007	0.007
RMS(angles, °)	0.93	0.93
Ramachandran		
favored (%)	98	98
Ramachandran outliers		
(%)	0	0
Rotamer outliers (%)	0	0
Clashscore	2.7	2.4
Average B-factor (Å ²)	26.5	26.2
macromolecules	25.5	25.4
ligands	21.7	21.7
solvent	36.0	35.1