Supplementary Information

Nutritional Regulation of the Sae Two-Component System by CodY in

Staphylococcus aureus

Kevin D. Mlynek, William E. Sause, Derek E. Moormeier, Marat R. Sadykov, Kurt R. Hill,

Kenneth W. Bayles, Victor J. Torres, and Shaun R. Brinsmade*

Figure S1: CodY controls SaeR targets indirectly via *agr* and Rot in UAMS-1. Mean transcript abundances of (A) *saeP* and (B) *nuc* are shown for a suite of *agrA* mutants during exponential growth in TSB using qRT-PCR. Transcripts were normalized to *rpoC* transcript. Statistical significance for each condition was accessed using one-way ANOVA with Tukey's multiple comparison post test (**p < 0.01, ***p < 0.001). Error bars represent the standard error of the mean from at least two independent experiments. Error bars are plotted for all data; occasionally the error bars are too small to see.

Figure S2: CodY is unable to bind a DNA fragment lacking a definable binding motif. (A) A 236-bp DNA fragment amplified from an internal portion of the *rpoC* gene (not differentially regulated by CodY) was incubated with increasing concentrations of CodY. (B) The *saeP235p*⁺ fragment was used as a positive control on the same gel. The concentration (nM of monomer) used in each reaction is indicated above each lane. Gel images are representative of multiple experiments.

Figure S3: Scrambling the CodY binding site in the SaeP upstream region significantly reduces interaction with CodY protein, but not the interaction with SaeR~P. The wild-type $saeP235p^+$ fragment or a fragment with a scrambled CodY-binding site ($saeP235p_{scrambled}$) was incubated with increasing concentrations of CodY (A) or SaeR~P (B). The concentration (nM of monomer) used in each reaction is indicated above each lane.

Figure S4: SaeR requires phosphorylation to bind the *saeP235p*⁺ **fragment.** The wild-type *saeP235p*⁺ fragment was incubated with increasing concentrations of SaeR~P. SaeR requires phosphorylation by SaeS to interact with DNA (1); control binding reactions containing only SaeR or SaeSC were set up in parallel to confirm interaction only with SaeR~P. The concentration (nM of monomer) used in each reaction is indicated above each lane.

Strain Genotype

Figure S5: Stochastic expression of SaeR targets is alleviated when *codY* **is knocked out.** UAMS-1 cells harboring *gfp* reporter fusions were grown to exponential phase, fixed, and examined using fluorescent microscopy. GFP fluorescence, indicating promoter activity, is false-colored green. DAPI staining is used to visualize all cells and is false-colored blue. White arrows indicate regions magnified in inset images (10x). Images are representative of at least two independent experiments.

Figure S6: The frequency of GFP⁺ cells expressing the *nuc-gfp* **fusion increases in the absence of CodY mediated repression.** Flow cytometry analysis of UAMS-1 cells carrying a *nuc-gfp* reporter fusion fixed in 4% PFA during exponential growth. Event counts were normalized after analyzing at least 30,000 cells. Percent of GFP⁺ cells was determined using events that exceeded the maximal fluorescence of reporterless cells. Histograms displayed are representative of two independent experiments.

<i>S. aureus</i> strains	Relevant genotype or description	Reference or source ^a			
RN4220	restriction deficient, highly transformable	(2)			
PM783	∆ <i>rot</i> ::Tn <i>917</i>	R. Procter			
SRB337	USA200 MSSA UAMS-1	(3)			
SRB372	SRB337 ∆ <i>codY::ermC</i>	(4)			
SRB872	SRB337 ∆ <i>rot</i> .:Tn <i>917</i>				
SRB899	SRB337 <i>\[]\langle codY::ermC \[]\rangle rot</i> ::Tn917				
SRB548	SRB337 ∆ <i>agrA</i>				
SRB549	SRB337 \[\Delta agrA \[Delta codY::ermC \]				
SRB898	SRB337 <i>\(\Delta agrA \(\Delta rot::Tn917\)</i>				
SRB899	SRB337 ∆ <i>codY::ermC</i> ∆ <i>rot</i> ::Tn917				
SRB687	USA300 LAC CA-MRSA Em ^S	A. Horswill			
SRB746	SRB687 ∆ <i>codY::ermC</i>	(4)			
SRB858	SRB687 ∆ <i>rot</i> ::Tn <i>917</i>				
SRB865	SRB687 \[\Delta codY::ermC \[\Delta rot::Tn917 \]				
SRB1008	SRB337/pKM11 <i>bla cat saeP235p⁺-gfp</i>				
SRB1009	SRB372/pKM11				
SRB1042	SRB872/pKM11				
SRB1043	SRB899/pKM11				
SRB1056	SRB337/pMRS-nuc bla cat nuc-gfp				
SRB1057	SRB372/pMRS-nuc				
SRB1159	SRB872/pMRS-nuc				
SRB1160	SRB899/pMRS-nuc				
SRB1162	SRB337/pKM14 <i>bla cat saeP235p_{scrambled}-gfp</i>				
SRB1163	SRB372/pKM14				
SRB1164	SRB872/pKM14				
SRB1165	SRB899/pKM14				
<i>E. coli</i> strains					
BL21 Star (λDE3)	F^{-} ompT hsdS _B (r _B , m _B) gal dcm rne131 (λ DE3)	Novagen			
NEB-5α	fhuA2 Δ(argF-lacZ)U169 phoA glnV44 Φ80 Δ(lacZ)M15 gyrA96 recA1 relA1 endA1 thi-1 hsdR17	New England Biolabs			
^a Unless noted otherwise strains were constructed during the course of this study.					

Table S1. Bacterial strains used in this study.

Primer	Sequence (5' to 3') ^{b,c}	Purpose				
oKM026	CGGC <u>GCATGC</u> AAGTGTTTTATAGTGATA AC	Construction of pKM11 (<i>saeP235p⁺-gfp</i>)				
oSRB484	GGGCATGCTAACTCCTCATTTCTTCAAT TTGAT	Construction of pKM11 (<i>saeP235p⁺-gfp</i>)				
oKM062	<i>GGCTACTTAAGTCCCTGCGTAAGGA</i> GA AAATAATTGTCTGATTTAAATAAATAGG	Construction of pKM15 (saeP235p _{scrambled} -afp)				
oKM063	<i>TCCTTACGCAGGGACTTAAGTAGCC</i> ATT AGTTAAGCGATATTTAAACGAAG	Construction of pKM15 (<i>saeP235p_{scrambled}-gfp</i>)				
oKM025	6-FAM/GGGCATGCTAACTCCTCATTTCT	5'FAM labeled oSRB484 for EMSA				
oKM031	6-FAM/CGGC <u>GCATG</u> CAAGTGTTTTATAG	5'FAM labeled oKM026 for EMSA				
oKM027	6-FAM/CTTTCACGACGTACTTTAGA	5'FAM labeled oSRB240 for EMSA				
oKM048	5-MAXN/ <u>GGG</u> CATGCTAACTCCTCATTTC TTCAATTT	5'MAX labeled oKM025 for DFACE				
oDS001	CGAAAGAACAATACGCAAAGAGG	qRT-PCR of <i>nuc</i>				
oDS002	TGCATTTGCTGAGCTACTTAGA	qRT-PCR of <i>nuc</i>				
oDS018	CGGTGAAACTGTTGAAGGTAAAG	qRT-PCR of saeP				
oDS019	CGTAGTCAACCATTGCGATTTC	qRT-PCR of <i>saeP</i>				
oSRB239	GGATTGGCTTCACCTGAA AA	qRT-PCR of <i>rpoC</i>				
oSRB240	CTTTCACGACGTACTTTAGA	qRT-PCR of <i>rpoC</i>				
oKM1	GCATTGAGCTCAAAGGAGAAAAATTCAT GAGC	Construction of SaCodY-His ₆ in pBAD30				
oSRB410	ATGATGATGGCCCTGAAAATACAGGTTT TCCTTACTTTTTTCTAATTCATCT	Construction of SaCodY-His ₆ in pBAD30				
oSRB411	AGCTTGCATGCTTAATGATGATGATGAT GATGGCCCTGAAAATACAGGTTTTC	Construction of SaCodY-His ₆ in pBAD30				
^a All primers used in this study were designed using UAMS-1 as the reference genome.						

Table S2: Primers used in this studv^a.

^b Underline denotes the presence of a restriction site for cloning into pMRSI.

^c Italics denotes complementary sequences for use in overlapping PCR.

Plasmid	Relevant Genotype	Reference or source ^a		
	sGFP-sDsRed double reporter shuttle vector (Ap ^R ,			
pMRSI	Cm ^H)	(4)		
	pMRSI with 382 bp upstream of <i>nuc</i> fused to sGFP			
pMRSI-nuc	(<i>nuc-gfp</i>) (Ap ^H , Cm ^H)	(4)		
	pMRSI with 235 bp upstream of <i>saeP</i> fused to sGFP			
pKM11	(<i>saeP</i> 235 <i>-gfp</i>) (Ap ^H , Cm ^H)			
	pKM11 with scrambled CodY binding motif			
pKM14	(<i>saeP</i> 235 _{scrambled} - <i>gfp</i>) (Ap [⊢] , Cm [⊢])			
pSRB81	Overproduction plasmid for <i>Sa</i> CodY-His ₆ protein (Ap ^R)			
pET284	Overproduction plasmid for <i>Sa</i> SaeR-His ₆ protein (Ap ^R)	(1)		
pMCS619	Overproduction plasmid for <i>Sa</i> SaeSc-His ₆ protein (Ap ^R)	(1)		
	Produces TVMV protease for controlled intracellular			
pRK1037	processing of fusion proteins (Km ^R)	Science Reagents, Inc.		
	Plasmid with ParaBAD for arabinose-inducible expression			
pBAD30	(Ap ^R)	(5)		
^a Unless otherwise noted all plasmids were engineered during this study				

Table S3:	Plasmids	used in	this	study
-----------	----------	---------	------	-------

References

- 1. Sun F, Li C, Jeong D, Sohn C, He C, Bae T. 2010. In the *Staphylococcus aureus* two-component system *sae*, the response regulator SaeR binds to a direct repeat sequence and DNA binding requires phosphorylation by the sensor kinase SaeS. J Bacteriol **192:**2111-2127.
- 2. Schenk S, Laddaga RA. 1992. Improved method for electroporation of *Staphylococcus aureus*. FEMS Microbiol Lett **73**:133-138.
- 3. **Gillaspy AF, Hickmon SG, Skinner RA, Thomas JR, Nelson CL, Smeltzer MS.** 1995. Role of the accessory gene regulator (*agr*) in pathogenesis of staphylococcal osteomyelitis. Infect Immun **63:**3373-3380.
- 4. Waters NR, Samuels DJ, Behera RK, Livny J, Rhee KY, Sadykov MR, Brinsmade SR. 2016. A Spectrum of CodY Activities Drives Metabolic Reorganization and Virulence Gene Expression in *Staphylococcus aureus*. Mol Microbiol **101:**495-514.
- 5. **Guzman L-M, Belin D, Carson MJ, Beckwith J.** 1995. Tight regulation, modulation, and high-level expression by vectors containing arabinose P_{BAD} promoter. J Bacteriol **177:**4121-4130.