SCIENTIFIC REPORTS

ELECTRONIC SUPPLEMENTARY INFORMATION

Spatial-temporal profiling of prodiginines and serratamolides produced by endophytic *Serratia marcescens* harbored in *Maytenus serrata*

Dennis Eckelmann, Michael Spiteller, Souvik Kusari*

TABLE OF CONTENTS

I. SUPPLEMENTARY FIGURES

Fig. S1. HRMS² of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S2. HRMS² of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, $C_{19}H_{24}N_3O$).

Fig. S3. HRMS² of prodigiosin (compound **3** [M+H]⁺: *m/z* 324, C₂₀H₂₆N₃O).

Fig. S4. HRMS² of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S5. HRMS² of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, C₂₂H₃₀N₃O).

Fig. S6. HRMS² of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S7. HRMS² of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S8. HRMS³ of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296 via 281).

Fig. S9. HRMS³ of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310 via 295).

Fig. S10. HRMS³ of prodigiosin (compound **3** $[M+H]^+$: m/z 324 via 309).

Fig. S11. HRMS³ of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338 via 323).

Fig. S12. HRMS³ of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352 via 337).

Fig. S13. HRMS³ of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366 via 351).

Fig. S14. HRMS³ of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380 via 365).

Fig. S15. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S16. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S17. Proposed mass spectral fragmentation pathway of prodigiosin (compound **3** $[M+H]^+$: m/z 324, $C_{20}H_{26}N_3O$).

Fig. S18. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S19. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, C₂₂H₃₀N₃O).

Fig. S20. Proposed mass spectral fragmentation pathway of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S21. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S22. HPLC-HRMS analysis of prodiginines (1-7). TIC, extracted ion chromatograms of prodiginines, and area in comparison to the main metabolite prodigiosin.

Fig. S23. HPLC-HRMS analysis of serratamolides (**8-14**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1.

Fig. S24. HPLC-HRMS analysis of serratamolides (**15-19**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S25. HPLC-HRMS analysis of serratamolides (**20-25**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S26. HPLC-HRMS analysis of serratamolides (**26-30**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S27. HPLC-HRMS analysis of serratamolides (**31-33**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S28. HRMS² of serratamolide C_8+C_{10} (compound **8** [M+H]⁺: m/z 487, $C_{24}H_{43}N_2O_8$).

Fig. S29. Proposed mass spectral fragmentation pathway of serratamolide C_8+C_{10} (compound 8 [M+H]⁺: m/z 487, $C_{24}H_{43}N_2O_8$).

Fig. S30. HRMS² of serratamolide C₉+C₁₀ (compound **9** [M+H]⁺: *m*/*z* 501, C₂₅H₄₅N₂O₈).

Fig. S31. Proposed mass spectral fragmentation pathway of serratamolide C_9+C_{10} (compound 9 [M+H]⁺: m/z 501, $C_{25}H_{45}N_2O_8$).

Fig. S32. HRMS² of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10 [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S33. Proposed mass spectral fragmentation pathway of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S34. HRMS² of serratamolide C₁₀+C₁₁ (compound **11** [M+H]⁺: *m/z* 529, C₂₇H₄₉N₂O₈).

Fig. S35. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{11}$ (compound 11 [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S36. HRMS² of serratamolide C₁₀+C₁₂ (compound **12** [M+H]⁺: *m/z* 543, C₂₈H₅₁N₂O₈).

Fig. S37. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{12}$ (compound 12 [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

Fig. S38. HRMS² of serratamolide C₁₁+C₁₂ (compound **13** [M+H]⁺: *m/z* 557, C₂₉H₅₃N₂O₈).

Fig. S39. Proposed mass spectral fragmentation pathway of serratamolide $C_{11}+C_{12}$ (compound 13 [M+H]⁺: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S40. HRMS² of serratamolide C₁₂+C₁₂ (compound **14** [M+H]⁺: *m/z* 571, C₃₀H₅₅N₂O₈).

Fig. S41. Proposed mass spectral fragmentation pathway of serratamolide $C_{12}+C_{12}$ (compound 14 [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

Fig. S42. HRMS² of serratamolide C₈+C_{12:1} (compound **15** [M+H]⁺: *m/z* 513, C₂₆H₄₅N₂O₈).

Fig. S43. Proposed mass spectral fragmentation pathway of serratamolide $C_8+C_{12:1}$ (compound **15** [M+H]⁺: m/z 513, $C_{26}H_{45}N_2O_8$).

Fig. S44. HRMS² of serratamolide $C_{10}+C_{11:1}$ (compound **16** [M+H]⁺: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S45. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{11:1}$ (compound **16** [M+H]⁺: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S46. HRMS² of serratamolide C₁₀+C_{12:1} (compound **17** [M+H]⁺: *m/z* 541, C₂₈H₄₉N₂O₈).

Fig. S47. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{12:1}$ (compound 17 [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S48. HRMS² of serratamolide $C_{11}+C_{12:1}$ (compound **18** [M+H]⁺: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S49. Proposed mass spectral fragmentation pathway of serratamolide $C_{11}+C_{12:1}$ (compound **18** [M+H]⁺: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S50. HRMS² of serratamolide C₁₂+C_{12:1} (compound **19** [M+H]⁺: *m/z* 569, C₃₀H₅₃N₂O₈).

Fig. S51. Proposed mass spectral fragmentation pathway of serratamolide $C_{12}+C_{12:1}$ (compound **19** [M+H]⁺: m/z 569, $C_{30}H_{53}N_2O_8$).

Fig. S52. HRMS² of ring-opened serratamolide $C_{10}+C_{10}$ (compound 20 [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S53. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{10}$ (compound **20** [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S54. HRMS² of ring-opened serratamolide $C_{10}+C_{11}$ (compound 21 [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S55. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{11}$ (compound **21** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S56. HRMS² of ring-opened serratamolide $C_{10}+C_{12}$ (compound 22 [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S57. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{12}$ (compound **22** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S58. HRMS² of ring-opened serratamolide $C_{10}+C_{12:1}$ (compound 23 [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S59. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{12:1}$ (compound **23** $[M+H]^+$: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S60. HRMS² of ring-opened serratamolide C_9+C_{10} (compound 24 [M+H]⁺: m/z 519, $C_{25}H_{47}N_2O_9$).

Fig. S61. Proposed mass spectral fragmentation pathway of ring-opened serratamolide C_9+C_{10} (compound **24** [M+H]⁺: m/z 519, $C_{25}H_{47}N_2O_9$).

Fig. S62. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ (compound 25 [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S63. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{13}$ (compound **25** [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S64. HRMS² of ring-opened serratamolide $C_{12}+C_{12}$ (compound 26 [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S65. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{12}+C_{12}$ (compound **26** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S66. HRMS² of ring-opened serratamolide $C_{12}+C_{13}$ (compound 27 [M+H]⁺: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S67. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{12}+C_{13}$ (compound **27** [M+H]⁺: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S68. HRMS² of ring-opened serratamolide $C_{10}+C_{13:1}$ (compound 28 [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).

Fig. S69. HRMS² of ring-opened serratamolide $C_{12}+C_{12:1}$ (compound **29** [M+H]⁺: *m*/*z* 587, $C_{30}H_{55}N_2O_9$).

Fig. S70. HRMS² of ring-opened serratamolide $C_{13}+C_{12:1}$ (compound 30 [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).

Fig. S71. HRMS² of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound 31 $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

Fig. S72. HRMS³ of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound 31 $[M+H]^+$: m/z 276 via 258).

Fig. S73. Proposed mass spectral fragmentation pathway of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound $31[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

Fig. S74. HRMS² of serratamic acid derivative (hydroxydodecanoyl-serine, compound **32** $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

Fig. S75. HRMS³ of serratamic acid derivative (hydroxydodecanoyl-serine, compound 32 $[M+H]^+$: m/z 304 via 286).

Fig. S76. Proposed mass spectral fragmentation pathway of serratamic acid derivative (hydroxydodecanoyl-serine, compound 32 $[M+H]^+$: m/z 304, $C_{15}H_{30}NO_5$).

Fig. S77. HRMS² of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).

Fig. S78. HRMS³ of of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302 via 284).

Fig. S79. Proposed mass spectral fragmentation pathway of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302, $C_{15}H_{28}NO_5$).

Fig. S80. ¹H-NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10**, CDCl₃, 600 MHz).

Fig. S81. ¹³C-NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10**, CDCl₃, 150 MHz).

Fig. S82. COSY NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10, CDCl₃).

Fig. S83. HSQC NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10, CDCl₃).

Fig. S84. HMBC NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10, CDCl₃).

Fig. S85. ¹H-NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD, 700 MHz).

Fig. S86. ¹³C-NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD, 175 MHz).

Fig. S87. COSY NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S88. HSQC NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S89. HMBC NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S90. ¹H-NMR spectrum of prodigiosin (compound 3, CDCl₃, 600 MHz).

Fig. S91. COSY NMR spectrum of prodigiosin (compound 3, CDCl₃, 600 MHz).

Fig. S92. HRMS spectra of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S93. HRMS spectra of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S94. HRMS spectra of prodigiosin (compound **3** $[M+H]^+$: m/z 324, $C_{20}H_{26}N_3O$).

Fig. S95. HRMS spectra of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S96. HRMS spectra of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, $C_{22}H_{30}N_3O$).

Fig. S97. HRMS spectra of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, $C_{23}H_{32}N_3O$).

Fig. S98. HRMS spectra of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, $C_{24}H_{34}N_{3}O$).

Fig. S99. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **1** [M+H]⁺: *m/z* 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S100. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **2** [M+H]⁺: *m/z* 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S101. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S102. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **4** $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S103. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S104. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **7** $[M+H]^+$: m/z 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S105. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound $\mathbf{1}$ [M+H]⁺: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S106. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S107. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S108. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S109. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S110. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **7** $[M+H]^+$: m/z 383, $C_{24}H_{31}D_3N_3O$).

Fig. S111. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S112. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311, $C_{18}^{-13}CH_{24}N_{3}O$).

Fig. S113. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{-13}CH_{26}N_{3}O$).

Fig. S114. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S115. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 5 [M+H]⁺: m/z 353, C₂₁¹³CH₃₀N₃O).

Fig. S116. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 $[M+H]^+$: m/z 381, $C_{23}^{-13}CH_{34}N_3O$).

Fig. S117. HRMS² of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **1** [M+H]⁺: *m/z* 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S118. HRMS² of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **2** [M+H]⁺: *m/z* 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S119. HRMS² of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, $C_{20}H_{26}N_2^{15}NO$).

Fig. S120. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **4** $[M+H]^+$: *m/z* 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S121. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S122. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **7** [M+H]⁺: *m/z* 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S123. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: *m/z* 297 via 272, C₁₈H₂₂N₂¹⁵NO).

Fig. S124. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: *m/z* 311 via 296, C₁₉H₂₄N₂¹⁵NO).

Fig. S125. HRMS³ of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325 via 310, C₂₀H₂₆N₂¹⁵NO).

Fig. S126. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **4** [M+H]⁺: *m/z* 339 via 324, C₂₁H₂₈N₂¹⁵NO).

Fig. S127. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **5** [M+H]⁺: *m/z* 353 via 338, C₂₂H₃₀N₂¹⁵NO).

Fig. S128. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from 15 NH₄Cl (compound **7** [M+H]⁺: *m/z* 381 via 366, C₂₄H₃₄N₂¹⁵NO).

Fig. S129. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: *m/z* 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S130. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S131. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S132. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound 4 $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S133. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, $C_{22}H_{30}N_2^{15}NO$).

Fig. S134. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound 7 $[M+H]^+$: m/z 381 via 366, C₂₄H₃₄N₂¹⁵NO).

Fig. S135. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S136. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S137. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S138. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S139. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S140. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S141. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **1** $[M+H]^+$: m/z 299 via 281, C₁₈H₁₉D₃N₃O).

Fig. S142. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313 via 295, C₁₉H₂₁D₃N₃O).

Fig. S143. HRMS³ of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327 via 309, C₂₀H₂₃D₃N₃O).

Fig. S144. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341 via 323, C₂₁H₂₅D₃N₃O).

Fig. S145. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 5 $[M+H]^+$: m/z 355 via 337, C₂₂H₂₇D₃N₃O).

Fig. S146. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **7** $[M+H]^+$: m/z 383 via 366, C₂₄H₃₁D₃N₃O).

Fig. S147. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S148. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S149. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S150. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S151. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S152. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S153. HRMS² of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 1 [M+H]⁺: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S154. HRMS² of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311, $C_{18}^{-13}CH_{24}N_3O$).

Fig. S155. HRMS² of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_3O$).

Fig. S156. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 [M+H]⁺: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S157. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 5 [M+H]⁺: m/z 353, C₂₁¹³CH₃₀N₃O).

Fig. S158. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 [M+H]⁺: m/z 381, C₂₃¹³CH₃₄N₃O).

Fig. S159. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 1 [M+H]⁺: m/z 297 via 282, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S160. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311 via 296, C₁₈¹³CH₂₄N₃O).

Fig. S161. HRMS³ of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325 via 310, $C_{19}^{-13}CH_{26}N_3O$).

Fig. S162. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 [M+H]⁺: m/z 339 via 324, C₂₀¹³CH₂₈N₃O).

Fig. S163. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 5 [M+H]⁺: m/z 353 via 338, C₂₁¹³CH₃₀N₃O).

Fig. S164. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 [M+H]⁺: m/z 381 via 366, C₂₃¹³CH₃₄N₃O).

Fig. S165. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{13}CH_{22}N_3O$).

Fig. S166. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 $[M+H]^+$: m/z 311, $C_{18}^{-13}CH_{24}N_3O$).

Fig. S167. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated [1- 13 C]-L-proline (compound **3** [M+H]⁺: m/z 325, C₁₉ 13 CH₂₆N₃O).

Fig. S168. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{13}CH_{28}N_3O$).

Fig. S169. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{-13}CH_{30}N_3O$).

Fig. S170. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound **7** $[M+H]^+$: m/z 381, $C_{23}^{13}CH_{34}N_3O$).

Fig. S171. HRMS² of prodigiosin with 5 incorporated $[1,2^{-13}C_2]$ -acetate units (compound 3 $[M+H]^+$: m/z 334, $C_{10}^{13}C_{10}H_{26}N_3O$).

Fig. S172. HRMS² of prodigiosin with 6 incorporated $[1,2^{-13}C_2]$ -acetate units (compound 3 $[M+H]^+$: m/z 336, $C_8^{13}C_{12}H_{26}N_3O$).

Fig. S173. HRMS² of prodigiosin with 7 incorporated $[1,2^{-13}C_2]$ -acetate units (compound 3 $[M+H]^+$: m/z 338, $C_6^{-13}C_{14}H_{26}N_3O$).

Fig. S174. Confrontation assay of endophytic *Pichia* spp. against *S. aureus* (DSM 799) and *E. coli* (DSM 682).

Fig. S175. Confrontation assay of endophytic A. caesiellus against S. aureus (DSM 799) and E. coli (DSM 682).

Fig. S176. Confrontation assay of endophytic *P. virgatula* against *S. aureus* (DSM 799) and *E. coli* (DSM 682).

Fig. S177. Scanning electron microscopic images of endophytic S. marcescens MSRBB2.

Fig. S178. Scanning electron microscopic images of endophytic *P. virgatula*.

Fig. S179. Scanning electron microscopic images (1) of endophytic A. caesiellus.

Fig. S180. Scanning electron microscopic images (2) of endophytic A. caesiellus.

Fig. S181. Scanning electron microscopic images (1) of endophytic Pichia spp.

Fig. S182. Scanning electron microscopic images (2) of endophytic Pichia spp.

Fig. S183. Scanning electron microscopic images (1) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S184. Scanning electron microscopic images (2) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S185. Scanning electron microscopic images (3) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S186. Scanning electron microscopic images (1) of co-cultivation of endophytic *A. caesiellus* and *S. marcescens* MSRBB2.

Fig. S187. Scanning electron microscopic images (2) of co-cultivation of endophytic *A. caesiellus* and *S. marcescens* MSRBB2.

Fig. S189. Scanning electron microscopic images (3) of co-cultivation of endophytic *A. caesiellus* and *S. marcescens* MSRBB2.

Fig. S190. Scanning electron microscopic images (1) of co-cultivation of endophytic *Pichia* spp. and *S. marcescens* MSRBB2.

Fig. S191. Scanning electron microscopic images (2) of co-cultivation of endophytic *Pichia* spp. and *S. marcescens* MSRBB2.

Fig. S192. Scanning electron microscopic images of Aspergillus fumigatus (DSM 21023).

Fig. S193. Scanning electron microscopic images of co-cultivation of endophytic *S. marcescens* MSRBB2 and *Aspergillus fumigatus* (DSM 21023).

Fig. S194. Scanning electron microscopic images of Pichia membranifaciens (DSM 70366).

Fig. S195. Scanning electron microscopic images of co-cultivation of endophytic *S. marcescens* MSRBB2 and *Pichia membranifaciens* (DSM 70366).

Fig. S196. Scanning electron microscopic images of Pestalotiopsis versicolor (DSM 62887).

Fig. S197. Scanning electron microscopic images of co-cultivation of endophytic *S. marcescens* MSRBB2 and *Pestalotiopsis versicolor* (DSM 62887).

Fig. S198. Dose and time dependent disc line assay of different prodigiosin concentrations against *A. caesiellus*

Fig. S199. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *A. caesiellus*

Fig. S200. Dose and time dependent disc line assay of different prodigiosin concentrations against *Pichia* spp.

Fig. S201. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *Pichia* spp.

Fig. S202. Dose and time dependent disc line assay of different prodigiosin concentrations against *P. virgatula*

Fig. S203. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *P. virgatula*

Fig. S204. *S. marcescens* MSRBB2 on chitinase detection agar incubated at 30 $^{\circ}$ C and monitored for 14 days. Chitinase detection media¹ (A) showing degradation of chitin by chitinase enzymes resulting in pH change and color change of Bromocresol purple dye. Chitinase detection media with supplemented glucose (20 g/L, B) showing no chitinase enzyme expression. Glucose is inhibiting chitinase expression.

Fig. S205. Digital microscope images with different magnifications of the colonization of endophytic *A. caesiellus* by *S. marcescens* MSRBB2. Hyphae of the fungus is overgrown with *S. marcescens* MSRBB2 colonies.

Fig. S206. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S207. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S208. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 5 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S209. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S210. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S211. Images of solo cultivation of endophytic S. marcescens MSRBB2 (Control).

Fig. S212. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of prodiginines **1-5** ($[M+H]^+ \pm 2$ ppm).

Fig. S213. HPLC-HRMS comparison of prodigiosin (Extracted ion chromatograms, $[M+H]^+ \pm 2$ ppm) production by endophytic *S. marcescens* MSRBB2 of mono-cultivation and co-cultivations with fungal endophytes *A. caesiellus* and *Pichia* spp. (five Petri dishes) after 7 days incubation (30°C).

Fig. S214. HPLC-HRMS of extracts of bacterial endophyte *S. marcescens* MSRBB2 incubated at 30°C and 37°C for 24h, optical images of incubated nutrient agar Petri dishes, and extracted ion chromatograms of serrawettin w1 ($[M+H]^+ \pm 2$ ppm) (A) Enlarged microscopic images (B).

Fig. S215. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S216. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 5 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S217. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S218. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S219. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of serratamolides $([M+K]^+ \pm 2 \text{ ppm}).$

Fig. S220. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of serratamolides $([M+K]^+ \pm 2 \text{ ppm}).$

Fig. S221. Possible decomposition of serratamolides by hydrolysis resulting in open-ring serratamolides and/ or "monomers".

Fig. S222. Digital microscope images of leaf puncture bioassay of *M. canariensis*, *M. heterophylla*, and *M. senegalensis* against prodigiosin (B) and serrawettin W1 (C) after 6 days (Scale bar = 500μ m; Blank (A).

Fig. S223. Isolation of endophytic *S. marcescens* MSRBB2 from *M. serrata* stem. Primary isolation plate (A) along with magnification (C) and spread axenic isolate (B).

Fig. S224. Microscopic images of endophytic fungi *Pichia* spp. (A), *A. caesiellus* (B), and *P. virgatula* (C) isolated from *M. serrata*.

II. SUPPLEMENTARY TABLES

Table S1. Peak height ratios from high resolution mass spectrometry of serratamolides labeled with $[1,2^{-13}C_2]$ -sodium acetate (n.d. = not detected; * = observed peak height in % of M+4).

III. REFERENCES

I. SUPPLEMENTARY FIGURES

Fig. S1. HRMS² of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, $C_{18}H_{22}N_3O$).

Fig. S2. HRMS² of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S3. HRMS² of prodigiosin (compound **3** [M+H]⁺: *m/z* 324, C₂₀H₂₆N₃O).

Fig. S4. HRMS² of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, $C_{21}H_{28}N_3O$).

Fig. S5. HRMS² of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, $C_{22}H_{30}N_3O$).

Fig. S6. HRMS² of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S7. HRMS² of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, $C_{24}H_{34}N_3O$).

Fig. S8. HRMS³ of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296 via 281).

Fig. S10. HRMS³ of prodigiosin (compound **3** $[M+H]^+$: m/z 324 via 309).

Fig. S11. HRMS³ of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338 via 323).

Fig. S12. HRMS³ of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352 via 337).

Fig. S13. HRMS³ of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366 via 351).

Fig. S14. HRMS³ of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380 via 365).

Fig. S15. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S16. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S17. Proposed mass spectral fragmentation pathway of prodigiosin (compound **3** $[M+H]^+$: m/z 324, $C_{20}H_{26}N_3O$).

Fig. S18. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S19. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, C₂₂H₃₀N₃O).

Fig. S20. Proposed mass spectral fragmentation pathway of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S21. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S22. HPLC-HRMS analysis of prodiginines (1-7). TIC, extracted ion chromatograms of prodiginines, and area in comparison to the main metabolite prodigiosin.

Fig. S23. HPLC-HRMS analysis of serratamolides (**8-14**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1.

Fig. S24. HPLC-HRMS analysis of serratamolides (**15-19**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S25. HPLC-HRMS analysis of serratamolides (**20-25**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S26. HPLC-HRMS analysis of serratamolides (**26-30**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S27. HPLC-HRMS analysis of serratamolides (**31-33**). TIC, extracted ion chromatograms of serratamolides, and area in comparison to the main metabolite serrawettin W1*.

Fig. S28. HRMS² of serratamolide C_8+C_{10} (compound **8** [M+H]⁺: m/z 487, $C_{24}H_{43}N_2O_8$).

Fig. S29. Proposed mass spectral fragmentation pathway of serratamolide C_8+C_{10} (compound 8 [M+H]⁺: m/z 487, $C_{24}H_{43}N_2O_8$).

Fig. S30. HRMS² of serratamolide C_9+C_{10} (compound **9** [M+H]⁺: m/z 501, $C_{25}H_{45}N_2O_8$).

Fig. S31. Proposed mass spectral fragmentation pathway of serratamolide C_9+C_{10} (compound **9** $[M+H]^+$: m/z 501, $C_{25}H_{45}N_2O_8$).

Fig. S32. HRMS² of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10 [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S33. Proposed mass spectral fragmentation pathway of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10** [M+H]⁺: m/z 515, $C_{26}H_{47}N_2O_8$).

Fig. S34. HRMS² of serratamolide $C_{10}+C_{11}$ (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S35. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{11}$ (compound **11** [M+H]⁺: m/z 529, $C_{27}H_{49}N_2O_8$).

Fig. S36. HRMS² of serratamolide $C_{10}+C_{12}$ (compound **12** $[M+H]^+$: *m*/*z* 543, $C_{28}H_{51}N_2O_8$).

Fig. S37. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{12}$ (compound 12 [M+H]⁺: m/z 543, $C_{28}H_{51}N_2O_8$).

Fig. S38. HRMS² of serratamolide $C_{11}+C_{12}$ (compound **13** $[M+H]^+$: *m*/*z* 557, $C_{29}H_{53}N_2O_8$).

Fig. S39. Proposed mass spectral fragmentation pathway of serratamolide $C_{11}+C_{12}$ (compound **13** [M+H]⁺: m/z 557, $C_{29}H_{53}N_2O_8$).

Fig. S40. HRMS² of serratamolide $C_{12}+C_{12}$ (compound **14** [M+H]⁺: m/z 571, $C_{30}H_{55}N_2O_8$).

Fig. S41. Proposed mass spectral fragmentation pathway of serratamolide $C_{12}+C_{12}$ (compound 14 [M+H]⁺: m/z 571, C_{30} H₅₅N₂O₈).

Fig. S42. HRMS² of serratamolide $C_8+C_{12:1}$ (compound **15** $[M+H]^+$: m/z 513, $C_{26}H_{45}N_2O_8$).

Fig. S43. Proposed mass spectral fragmentation pathway of serratamolide $C_8+C_{12:1}$ (compound **15** [M+H]⁺: m/z 513, $C_{26}H_{45}N_2O_8$).

Fig. S44. HRMS² of serratamolide $C_{10}+C_{11:1}$ (compound **16** [M+H]⁺: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S45. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{11:1}$ (compound 16 [M+H]⁺: m/z 527, $C_{27}H_{47}N_2O_8$).

Fig. S46. HRMS² of serratamolide $C_{10}+C_{12:1}$ (compound 17 [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S47. Proposed mass spectral fragmentation pathway of serratamolide $C_{10}+C_{12:1}$ (compound **17** [M+H]⁺: m/z 541, $C_{28}H_{49}N_2O_8$).

Fig. S48. HRMS² of serratamolide $C_{11}+C_{12:1}$ (compound **18** $[M+H]^+$: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S49. Proposed mass spectral fragmentation pathway of serratamolide $C_{11}+C_{12:1}$ (compound **18** [M+H]⁺: m/z 555, $C_{29}H_{51}N_2O_8$).

Fig. S51. Proposed mass spectral fragmentation pathway of serratamolide $C_{12}+C_{12:1}$ (compound **19** [M+H]⁺: m/z 569, C_{30} H₅₃N₂O₈).

Fig. S52. HRMS² of ring-opened serratamolide $C_{10}+C_{10}$ (compound 20 [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S53. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{10}$ (compound **20** [M+H]⁺: m/z 533, $C_{26}H_{49}N_2O_9$).

Fig. S54. HRMS² of ring-opened serratamolide $C_{10}+C_{11}$ (compound 21 [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S55. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{11}$ (compound **21** [M+H]⁺: m/z 547, $C_{27}H_{51}N_2O_9$).

Fig. S56. HRMS² of ring-opened serratamolide $C_{10}+C_{12}$ (compound 22 [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S57. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{12}$ (compound **22** [M+H]⁺: m/z 561, $C_{28}H_{53}N_2O_9$).

Fig. S58. HRMS² of ring-opened serratamolide $C_{10}+C_{12:1}$ (compound **23** [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S59. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{12:1}$ (compound **23** [M+H]⁺: m/z 559, $C_{28}H_{51}N_2O_9$).

Fig. S60. HRMS² of ring-opened serratamolide C_9+C_{10} (compound 24 [M+H]⁺: m/z 519, $C_{25}H_{47}N_2O_9$).

Fig. S61. Proposed mass spectral fragmentation pathway of ring-opened serratamolide C_9+C_{10} (compound **24** [M+H]⁺: m/z 519, $C_{25}H_{47}N_2O_9$).

Fig. S62. HRMS² of ring-opened serratamolide $C_{10}+C_{13}$ (compound 25 [M+H]⁺: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S63. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{10}+C_{13}$ (compound **25** $[M+H]^+$: m/z 575, $C_{29}H_{55}N_2O_9$).

Fig. S64. HRMS² of ring-opened serratamolide $C_{12}+C_{12}$ (compound 26 [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S65. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{12}+C_{12}$ (compound **26** [M+H]⁺: m/z 589, $C_{30}H_{57}N_2O_9$).

Fig. S66. HRMS² of ring-opened serratamolide $C_{12}+C_{13}$ (compound 27 [M+H]⁺: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S67. Proposed mass spectral fragmentation pathway of ring-opened serratamolide $C_{12}+C_{13}$ (compound **27** $[M+H]^+$: m/z 603, $C_{31}H_{59}N_2O_9$).

Fig. S68. HRMS² of ring-opened serratamolide $C_{10}+C_{13:1}$ (compound **28** [M+H]⁺: m/z 573, $C_{29}H_{53}N_2O_9$).

Fig. S69. HRMS² of ring-opened serratamolide $C_{12}+C_{12:1}$ (compound **29** [M+H]⁺: m/z 587, $C_{30}H_{55}N_2O_9$).

Fig. S70. HRMS² of ring-opened serratamolide $C_{13}+C_{12:1}$ (compound **30** [M+H]⁺: m/z 601, $C_{31}H_{57}N_2O_9$).

Fig. S71. HRMS² of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound 31 $[M+H]^+$: m/z 276, C₁₃H₂₆NO₅).

Fig. S72. HRMS³ of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound 31 $[M+H]^+$: m/z 276 via 258).

Fig. S73. Proposed mass spectral fragmentation pathway of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**[M+H]⁺: m/z 276, C₁₃H₂₆NO₅).

Fig. S74. HRMS² of serratamic acid derivative (hydroxydodecanoyl-serine, compound 32 $[M+H]^+$: m/z 304, C₁₅H₃₀NO₅).

Fig. S75. HRMS³ of serratamic acid derivative (hydroxydodecanoyl-serine, compound 32 $[M+H]^+$: m/z 304 via 286).

Fig. S76. Proposed mass spectral fragmentation pathway of serratamic acid derivative (hydroxydodecanoyl-serine, compound **32** $[M+H]^+$: m/z 304, $C_{15}H_{30}NO_5$).

Fig. S77. HRMS² of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302, C₁₅H₂₈NO₅).

Fig. S78. HRMS³ of of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302 via 284).

Fig. S79. Proposed mass spectral fragmentation pathway of serratamic acid derivative with double bond (hydroxydodecenoyl-serine, compound **33** $[M+H]^+$: m/z 302, $C_{15}H_{28}NO_5$).

Fig. S80. ¹H-NMR spectrum of serrawettin W1 / serratamolide C₁₀+C₁₀ (compound **10**, CDCl₃, 600 MHz).

Fig. S81. ¹³C-NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10**, CDCl₃, 150 MHz).

JUL الـال - 0.0 ø - 0.5 - 1.0 - 1.5 ä - 2.0 - 2.5 80 - 3.0 - 3.5 f1 (ppm) å - 4.0 - 4.5 - 5.0 0 0 - 5.5 - 6.0 - 6.5 - 7.0 - 7.5 6.0 2.5 2.0 1.5 7.5 6.5 4.5 3.0 7.0 5.5 5.0 4.0 3.5 f2 (ppm) 1.0 0.5 0.0

Fig. S82. COSY NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10, CDCl₃).

Fig. S83. HSQC NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound 10, CDCl₃).

Fig. S84. HMBC NMR spectrum of serrawettin W1 / serratamolide $C_{10}+C_{10}$ (compound **10**, CDCl₃).

Fig. S85. ¹H-NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD, 700 MHz).

Fig. S86. ¹³C-NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD, 175 MHz).

Fig. S87. COSY NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S88. HSQC NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S89. HMBC NMR spectrum of serratamic acid (N-(D-3-hydroxydecanoyl)-L-serine, compound **31**, MeOD).

Fig. S90. ¹H-NMR spectrum of prodigiosin (compound 3, CDCl₃, 600 MHz).

Fig. S91. COSY NMR spectrum of prodigiosin (compound 3, CDCl₃, 600 MHz).

Fig. S92. HRMS spectra of 2-methyl-3-propyl prodiginine (compound 1 $[M+H]^+$: m/z 296, C₁₈H₂₂N₃O).

Fig. S93. HRMS spectra of 2-methyl-3-butyl prodiginine (compound 2 $[M+H]^+$: m/z 310, C₁₉H₂₄N₃O).

Fig. S95. HRMS spectra of 2-methyl-3-hexyl prodiginine (compound 4 $[M+H]^+$: m/z 338, C₂₁H₂₈N₃O).

Fig. S96. HRMS spectra of 2-methyl-3-heptyl prodiginine (compound 5 $[M+H]^+$: m/z 352, C₂₂H₃₀N₃O).

Fig. S97. HRMS spectra of 2-methyl-3-octyl prodiginine (compound 6 $[M+H]^+$: m/z 366, C₂₃H₃₂N₃O).

Fig. S98. HRMS spectra of 2-methyl-3-nonyl prodiginine (compound 7 $[M+H]^+$: m/z 380, C₂₄H₃₄N₃O).

Fig. S99. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: m/z 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S100. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S101. HRMS spectra of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S102. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **4** $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S103. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S104. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **7** $[M+H]^+$: m/z 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S105. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S107. HRMS spectra of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S108. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S109. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S110. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S111. HRMS spectra of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 1 $[M+H]^+$: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S112. HRMS spectra of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311, $C_{18}^{-13}CH_{24}N_3O$).

Fig. S113. HRMS spectra of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_{3}O$).

Fig. S114. HRMS spectra of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 [M+H]⁺: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S115. HRMS spectra of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{13}CH_{30}N_3O$).

Fig. S116. HRMS spectra of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 [M+H]⁺: m/z 381, C₂₃¹³CH₃₄N₃O).

Fig. S117. HRMS² of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: *m/z* 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S118. HRMS² of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S119. HRMS² of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, $C_{20}H_{26}N_2^{15}NO$).

Fig. S120. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **4** $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S121. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, C₂₂H₃₀N₂¹⁵NO).

Fig. S122. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **7** $[M+H]^+$: m/z 381, C₂₄H₃₄N₂¹⁵NO).

Fig. S123. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: *m/z* 297 via 272, C₁₈H₂₂N₂¹⁵NO).

Fig. S124. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: *m/z* 311 via 296, C₁₉H₂₄N₂¹⁵NO).

Fig. S125. HRMS³ of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325 via 310, C₂₀H₂₆N₂¹⁵NO).

Fig. S126. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **4** $[M+H]^+$: *m/z* 339 via 324, C₂₁H₂₈N₂¹⁵NO).

Fig. S127. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: *m/z* 353 via 338, C₂₂H₃₀N₂¹⁵NO).

Fig. S128. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **7** $[M+H]^+$: *m/z* 381 via 366, C₂₄H₃₄N₂¹⁵NO).

Fig. S129. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **1** $[M+H]^+$: *m/z* 297, C₁₈H₂₂N₂¹⁵NO).

Fig. S130. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **2** $[M+H]^+$: m/z 311, C₁₉H₂₄N₂¹⁵NO).

Fig. S131. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **3** $[M+H]^+$: m/z 325, C₂₀H₂₆N₂¹⁵NO).

Fig. S132. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound 4 $[M+H]^+$: m/z 339, C₂₁H₂₈N₂¹⁵NO).

Fig. S133. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound **5** $[M+H]^+$: m/z 353, $C_{22}H_{30}N_2^{15}NO$).

Fig. S134. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated ¹⁵N derived from ¹⁵NH₄Cl (compound 7 $[M+H]^+$: m/z 381 via 366, C₂₄H₃₄N₂¹⁵NO).

Fig. S135. HRMS² of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **1** $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S136. HRMS² of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S137. HRMS² of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S138. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S140. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **7** $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S141. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **1** $[M+H]^+$: m/z 299 via 281, C₁₈H₁₉D₃N₃O).

Fig. S142. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313 via 295, C₁₉H₂₁D₃N₃O).

Fig. S143. HRMS³ of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **3** $[M+H]^+$: m/z 327 via 309, C₂₀H₂₃D₃N₃O).

Fig. S144. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **4** $[M+H]^+$: m/z 341 via 323, C₂₁H₂₅D₃N₃O).

Fig. S145. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355 via 337, C₂₂H₂₇D₃N₃O).

Fig. S146. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **7** $[M+H]^+$: m/z 383 via 366, C₂₄H₃₁D₃N₃O).

Fig. S147. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 1 $[M+H]^+$: m/z 299, C₁₈H₁₉D₃N₃O).

Fig. S148. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **2** $[M+H]^+$: m/z 313, C₁₉H₂₁D₃N₃O).

Fig. S149. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 3 $[M+H]^+$: m/z 327, C₂₀H₂₃D₃N₃O).

Fig. S150. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 4 $[M+H]^+$: m/z 341, C₂₁H₂₅D₃N₃O).

Fig. S151. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound **5** $[M+H]^+$: m/z 355, C₂₂H₂₇D₃N₃O).

Fig. S152. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated methyl-D₃ group derived from [methyl-D₃]-L-methionine (compound 7 $[M+H]^+$: m/z 383, C₂₄H₃₁D₃N₃O).

Fig. S153. HRMS² of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **1** [M+H]⁺: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S154. HRMS² of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311, $C_{18}^{-13}CH_{24}N_3O$).

Fig. S155. HRMS² of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325, $C_{19}^{13}CH_{26}N_3O$).

Fig. S156. HRMS² of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 [M+H]⁺: m/z 339, $C_{20}^{-13}CH_{28}N_3O$).

120 | Page

Fig. S157. HRMS² of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 5 [M+H]⁺: m/z 353, C₂₁¹³CH₃₀N₃O).

Fig. S158. HRMS² of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 [M+H]⁺: m/z 381, C₂₃¹³CH₃₄N₃O).

Fig. S159. HRMS³ of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **1** $[M+H]^+$: m/z 297 via 282, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S160. HRMS³ of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 [M+H]⁺: m/z 311 via 296, C₁₈¹³CH₂₄N₃O).

Fig. S161. HRMS³ of prodigiosin with incorporated $[1^{-13}C]$ -L-proline (compound **3** $[M+H]^+$: m/z 325 via 310, $C_{19}^{13}CH_{26}N_3O$).

Fig. S162. HRMS³ of 2-methyl-3-hexyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 4 [M+H]⁺: m/z 339 via 324, $C_{20}^{-13}CH_{28}N_3O$).

Fig. S163. HRMS³ of 2-methyl-3-heptyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 5 [M+H]⁺: m/z 353 via 338, C₂₁¹³CH₃₀N₃O).

Fig. S164. HRMS³ of 2-methyl-3-nonyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 7 [M+H]⁺: m/z 381 via 366, C₂₃¹³CH₃₄N₃O).

Fig. S165. Proposed mass spectral fragmentation pathway of 2-methyl-3-propyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound **1** $[M+H]^+$: m/z 297, $C_{17}^{-13}CH_{22}N_3O$).

Fig. S166. Proposed mass spectral fragmentation pathway of 2-methyl-3-butyl prodiginine with incorporated $[1^{-13}C]$ -L-proline (compound 2 $[M+H]^+$: m/z 311, $C_{18}^{-13}CH_{24}N_3O$).

Fig. S167. Proposed mass spectral fragmentation pathway of prodigiosin with incorporated [1- 13 C]-L-proline (compound **3** [M+H]⁺: m/z 325, C₁₉ 13 CH₂₆N₃O).

Fig. S168. Proposed mass spectral fragmentation pathway of 2-methyl-3-hexyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound 4 $[M+H]^+$: m/z 339, $C_{20}^{13}CH_{28}N_3O$).

Fig. S169. Proposed mass spectral fragmentation pathway of 2-methyl-3-heptyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound **5** $[M+H]^+$: m/z 353, $C_{21}^{13}CH_{30}N_3O$).

Fig. S170. Proposed mass spectral fragmentation pathway of 2-methyl-3-nonyl prodiginine with incorporated $[1-^{13}C]$ -L-proline (compound 7 $[M+H]^+$: m/z 381, $C_{23}^{13}CH_{34}N_3O$).

Fig. S171. HRMS² of prodigiosin with 5 incorporated $[1,2^{-13}C_2]$ -acetate units (compound **3** $[M+H]^+$: m/z 334, $C_{10}^{13}C_{10}H_{26}N_3O$).

Fig. S172. HRMS² of prodigiosin with 6 incorporated $[1,2^{-13}C_2]$ -acetate units (compound **3** $[M+H]^+$: m/z 336, $C_8^{13}C_{12}H_{26}N_3O$).

Fig. S173. HRMS² of prodigiosin with 7 incorporated $[1,2^{-13}C_2]$ -acetate units (compound **3** $[M+H]^+$: m/z 338, $C_6^{13}C_{14}H_{26}N_3O$).

Fig. S174. Confrontation assay of endophytic *Pichia* spp. against *S. aureus* (DSM 799) and *E. coli* (DSM 682).

Fig. S175. Confrontation assay of endophytic *A. caesiellus* against *S. aureus* (DSM 799) and *E. coli* (DSM 682).

Fig. S176. Confrontation assay of endophytic *P. virgatula* against *S. aureus* (DSM 799) and *E. coli* (DSM 682).

Fig. S177. Scanning electron microscopic images of endophytic S. marcescens MSRBB2.

Fig. S178. Scanning electron microscopic images of endophytic *P. virgatula*.

Fig. S179. Scanning electron microscopic images (1) of endophytic A. caesiellus.

Fig. S180. Scanning electron microscopic images (2) of endophytic A. caesiellus.

Fig. S181. Scanning electron microscopic images (1) of endophytic *Pichia* spp.

Fig. S183. Scanning electron microscopic images (1) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S184. Scanning electron microscopic images (2) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S185. Scanning electron microscopic images (3) of co-cultivation of endophytic *P. virgatula* and *S. marcescens* MSRBB2.

Fig. S186. Scanning electron microscopic images (1) of co-cultivation of endophytic *A. caesiellus* and *S. marcescens* MSRBB2.

Fig. S189. Scanning electron microscopic images (3) of co-cultivation of endophytic *A. caesiellus* and *S. marcescens* MSRBB2.

Fig. S190. Scanning electron microscopic images (1) of co-cultivation of endophytic *Pichia* spp. and *S. marcescens* MSRBB2.

Fig. S191. Scanning electron microscopic images (2) of co-cultivation of endophytic *Pichia* spp. and *S. marcescens* MSRBB2.

Fig. S192. Scanning electron microscopic images of Aspergillus fumigatus (DSM 21023).

Fig. S193. Scanning electron microscopic images of co-cultivation of endophytic *S. marcescens* MSRBB2 and *Aspergillus fumigatus* (DSM 21023).

Fig. S194. Scanning electron microscopic images of Pichia membranifaciens (DSM 70366).

Fig. S196. Scanning electron microscopic images of *Pestalotiopsis versicolor* (DSM 62887).

Fig. S198. Dose and time dependent disc line assay of different prodigiosin concentrations against *A. caesiellus*

Fig. S199. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *A. caesiellus*

Fig. S200. Dose and time dependent disc line assay of different prodigiosin concentrations against *Pichia* spp.

Fig. S201. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *Pichia* spp.

Fig. S202. Dose and time dependent disc line assay of different prodigiosin concentrations against *P. virgatula*

Fig. S203. Dose and time dependent Y-shape disc assay of different prodigiosin concentrations against *P. virgatula*

Fig. S204. *S. marcescens* MSRBB2 on chitinase detection agar incubated at 30 °C and monitored for 14 days. Chitinase detection media¹ (A) showing degradation of chitin by chitinase enzymes resulting in pH change and color change of Bromocresol purple dye. Chitinase detection media with supplemented glucose (20 g/L, B) showing no chitinase enzyme expression. Glucose is inhibiting chitinase expression.

Fig. S205. Digital microscope images with different magnifications of the colonization of endophytic *A. caesiellus* by *S. marcescens* MSRBB2. Hyphae of the fungus is overgrown with *S. marcescens* MSRBB2 colonies.

Fig. S206. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S207. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S208. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 5 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm).

Fig. S209. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S210. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of prodiginines ($[M+H]^+ \pm 2$ ppm, (A)). Different fragments of MALDI-imaging-HRMS² of prodigiosin (B).

Fig. S211. Images of solo cultivation of endophytic S. marcescens MSRBB2 (Control).

Fig. S212. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of prodiginines **1-5** ($[M+H]^+ \pm 2$ ppm).

160 | Page

Fig. S213. HPLC-HRMS comparison of prodigiosin (Extracted ion chromatograms, $[M+H]^+ \pm 2$ ppm) production by endophytic *S. marcescens* MSRBB2 of mono-cultivation and co-cultivations with fungal endophytes *A. caesiellus* and *Pichia* spp. (five Petri dishes) after 7 days incubation (30°C).

Fig. S214. HPLC-HRMS of extracts of bacterial endophyte *S. marcescens* MSRBB2 incubated at 30°C and 37°C for 24h, optical images of incubated nutrient agar Petri dishes, and extracted ion chromatograms of serrawettin w1 ($[M+H]^+ \pm 2$ ppm) (A) Enlarged microscopic images (B).

Fig. S215. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 3 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S216. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 5 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S217. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S218. MALDI-imaging-HRMS of the co-cultivation of bacterial endophyte *S. marcescens* MSRBB2 and fungal endophyte *A. caesiellus* after 7 days. Optical image with assigned scan area and localization of serratamolides ($[M+K]^+ \pm 2$ ppm).

Fig. S219. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of serratamolides $([M+K]^+ \pm 2 \text{ ppm}).$

Fig. S220. MALDI-imaging-HRMS of solo cultivation of bacterial endophyte *S. marcescens* MSRBB2 after 7 days. Optical image with assigned scan area and localization of serratamolides $([M+K]^+ \pm 2 \text{ ppm}).$

Fig. S221. Possible decomposition of serratamolides by hydrolysis resulting in open-ring serratamolides and/ or "monomers".

Fig. S222. Digital microscope images of leaf puncture bioassay of *M. canariensis*, *M. heterophylla*, and *M. senegalensis* against prodigiosin (B) and serrawettin W1 (C) after 6 days (Scale bar = 500μ m; Blank (A).

169 | Page

Fig. S223. Isolation of endophytic *S. marcescens* MSRBB2 from *M. serrata* stem. Primary isolation plate (A) along with magnification (C) and spread axenic isolate (B).

Fig. S224. Microscopic images of endophytic fungi *Pichia* spp. (A), *A. caesiellus* (B), and *P. virgatula* (C) isolated from *M. serrata*.

II. SUPPLEMENTARY TABLES

Table S1. Peak height ratios from high resolution mass spectrometry of serratamolides labeled
with $[1,2^{-13}C_2]$ -sodium acetate (n.d. = not detected; * = observed peak height in % of M+4).

Sum formula				Observed peak height (% of M)									
No.	[M+H]	M+2	M+4	M+6	M+8	M+10	M+12	M+14	M+16	M+18	M+20	M+22	M+24
8	C ₂₄ H ₄₃ N ₂ O ₈	n.d.	100*	139	228	127	n.d.						
9	$C_{25}H_{45}N_2O_8$	248	648	1139	857	423	115	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
10	$C_{26}H_{47}N_2O_8$	140	334	603	783	763	554	295	118	31	3	n.d.	n.d.
11	$C_{27}H_{49}N_2O_8$	323	634	1077	1090	891	466	198	n.d.	n.d.	n.d.	n.d.	n.d.
12	$C_{28}H_{51}N_2O_8$	80	205	390	556	606	518	344	176	65	16	1	n.d.
13	$C_{29}H_{53}N_2O_8$	111	139	616	737	678	344	168	30	n.d.	n.d.	n.d.	n.d.
14	$C_{30}H_{55}N_2O_8$	33	88	215	312	386	363	285	171	82	27	1	n.d.
15	$C_{26}H_{45}N_2O_8$	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
16	$C_{27}H_{47}N_2O_8$	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
17	$C_{28}H_{49}N_2O_8$	116	324	631	889	984	848	571	294	109	20	1	n.d.
18	$C_{29}H_{51}N_2O_8$	93	80	100	241	218	n.d.						
19	$C_{30}H_{53}N_2O_8$	37	151	323	504	591	599	477	303	126	31	3	4
20	$C_{26}H_{49}N_2O_9$	113	279	491	647	631	474	265	108	27	4	n.d.	n.d.
21	$C_{27}H_{51}N_2O_9$	161	474	865	1086	1040	776	416	163	45	5	1	n.d.
22	$C_{28}H_{53}N_2O_9$	76	205	369	524	573	481	329	165	62	16	1	n.d.
23	$C_{28}H_{51}N_2O_9$	81	217	414	602	686	595	409	209	76	5	1	n.d.
24	$C_{25}H_{47}N_2O_9$	448	736	1132	1206	773	129	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
25	$C_{29}H_{55}N_2O_9$	343	718	983	1067	924	597	318	118	25	1	n.d.	n.d.
26	$C_{30}H_{57}N_2O_9$	43	117	233	333	404	400	314	189	89	30	2	n.d.
27	$C_{31}H_{59}N_2O_9$	142	978	1805	3971	4689	4343	3218	2286	246	54	n.d.	n.d.
28	$C_{29}H_{53}N_2O_9$	209	559	1173	1634	1847	1561	1034	577	198	54	5	n.d.
29	$C_{30}H_{55}N_2O_9$	34	98	197	327	383	367	307	188	90	27	6	n.d.
30	$C_{31}H_{57}N_2O_9$	50	183	668	1099	1381	1429	1112	610	305	16	n.d.	n.d.
31	$C_{13}H_{26}NO_{5}$	207	328	273	115	21	n.d.	-	-	-	-	-	-
32	$C_{15}H_{30}NO_{5}$	166	287	295	189	80	13	n.d.	-	-	-	-	-
33	$C_{15}H_{28}NO_{5}$	170	329	365	245	96	15	n.d.	-	-	-	-	-

III. REFERENCES

[1] Agrawal, T. & Kotasthane, A. S. Chitinolytic assay of indigenous *Trichoderma* isolates collected from different geographical locations of Chhattisgarh in Central India. *SpringerPlus* 1:73 (2012).