# **1** Supplemental Materials

2

# 3 **Definitions/Abbreviations**

- 4 Categorical Agreement (CA) Percent of all test results with same category result as the 5 reference result.
- 6 Essential Agreement (EA) Percent of all test results within one 2-fold dilution of the reference

7 result

- 8 False negative (FN) Test negative and reference positive
- 9 False positive (FP) Test positive and reference negative
- 10 Gram stain resolved/mitigated Accelerate Pheno system incorrect identification result that
- 11 could be arbitrated by comparison with Gram stain results. (i.e. Accelerate Pheno<sup>™</sup> system
- 12 *Staphylococcus aureus* identification result determined to be a false-positive due to comparison
- 13 with a Gram stain result containing only Gram-negative rods.)
- 14 Gram stain unresolved/unmitigated Accelerate Pheno system incorrect identification result that
- 15 could not be arbitrated by comparison with Gram stain results. (i.e. Accelerate Pheno<sup>™</sup> system
- 16 *Klebsiella* spp. identification result that was actually *E. coli*. Comparison with a Gram stain
- 17 result containing only Gram-negative rods would fail to resolve.)
- 18 Invalid No results reported for a sample
- 19 Indeterminate No results reported for a FISH ID probe
- 20 Major Error (ME) Percent of reference-susceptible results that are test resistant (false-
- 21 resistance)
- Minor Error (mE) Percent of all test results where one result (test or reference) is intermediate
   and the other is not.
- 24 Negative Percent Agreement (NPA) The number of true negative results for a diagnostic test
- divided by the number of negative results by the reference method. Same calculation asspecificity.
- 27 Positive Percent Agreement (PPA) The number of true positive results for a diagnostic test
- 28 divided by the number of positive results by the reference method. Same calculation as
- 29 sensitivity.
- 30 Positive Predictive Value (PPV) The number of true positive results divided by all positive
- 31 results for a diagnostic test.
- 32 Sensitivity (clinical) How often a diagnostic test is positive in diseased patients
- 33 Specificity (clinical) How often a diagnostic test is negative in non-diseased patients

- 34 True negative (TN) = Test negative and reference negative
- 35 True positive (TP) = Test positive and reference positive
- 36 Valid Results reported for a sample
- Very Major Error (VME) Percent of reference-resistant results that are test susceptible (false-
- 38 susceptible)
- 39

# 40 Equations

- 41 Essential Agreement Rate: %EA = [100x(Number of test MIC results within one doubling
- 42 dilution of reference MIC)]/(Total number of results)
- 43 Categorical Agreement Rate: %CA = [100x(Number of test results in categorical agreement with
- 44 reference)]/(Total number of results)
- 45 Indeterminate Rate: %IND = (100xIND)/(total tests)
- 46 Invalid Rate: %INV = (100xINV)/(total tests)
- 47 Major Error Rate: %ME = [100x(Number of false-resistant test results)]/(Total susceptible
- 48 results by reference)
- 49 Minor Error Rate: % mE = [100x(Number of results where one result is intermediate and the
- 50 other result is susceptible or resistant)]/(Total number of results)
- 51 Positive Predictive Value: PPV = (100xTP)/(TP+FP)]
- 52 Sensitivity/PPA = (100 xTP)/(TP+FN)
- 53 Specificity/NPA = (100 xTN)/(TN+FP)
- 54 Very Major Error Rate: % VME = [100x(Number of false-susceptible test results)]/(Total
- 55 resistant results by reference)
- 56
- 57 Methods
- 58 Study Phases. In Phase I, fresh BC samples were tested and analyzed at 11 of the 13
- 59 clinical sites participating in the study, and seeded samples were provided, tested, and analyzed
- at 11 sites. Nine clinical sites tested both fresh and seeded samples. In Phase II, five of the
- 61 clinical sites enrolled and tested positive BC prepared from fresh and seeded samples with the
- 62 Accelerate Pheno<sup>TM</sup> system. Reference testing was performed at the reference laboratory Phase

III was carried out at Accelerate Diagnostics, Inc. (Tucson, AZ) using only seeded samples and
all reference testing was performed on-site during this phase. Phases II and III provided
additional data for certain organism/antimicrobial combinations for which there was insufficient
enrollment in Phase I.

Bottle Types. BACTEC<sup>TM</sup> (n=10) (Becton Dickinson, Baltimore, MD), BacT/ALERT<sup>®</sup> 67 (n=1) (bioMérieux, Marcy-l'Étoile, France), or VersaTREK<sup>®</sup> (n=1) (Thermo Fisher Scientific, 68 Waltham, MA) blood culture systems were used at the clinical sites. Accelerate Diagnostics, Inc. 69 used both BACTEC<sup>™</sup> and VersaTREK<sup>®</sup> bottles. BacT/ALERT<sup>®</sup> SA Standard Aerobic and SN 70 Anaerobic bottles, BACTEC<sup>™</sup> Standard/10 Aerobic/F Medium, BACTEC<sup>™</sup> Standard 71 Anaerobic/F Medium, BACTEC<sup>TM</sup> Plus Aerobic/F Medium, BACTEC<sup>TM</sup> Plus Anaerobic/F 72 Medium, BACTEC<sup>™</sup> PEDS PLUS/F Medium, BACTEC<sup>™</sup> Lytic/10 Anaerobic/F Medium, 73 VersaTREK<sup>®</sup> Redox 1 Aerobic Media, and VersaTREK<sup>®</sup> Redox 2 Anaerobic Media were used 74 with their corresponding systems. Fresh samples from mycobacterial type blood culture media 75 (BACTEC<sup>TM</sup> Myco/F Lytic, BacT/ALERT<sup>®</sup> MP Bottle, VersaTREK<sup>®</sup> Myco) were excluded. 76

77 **Seeded Sample Preparation.** Seeded samples were prepared by spiking clinical isolates 78 into blood culture media containing 10 mL of commercially available healthy human whole 79 blood (Bioreclamation, Baltimore, MD) collected in 6% w/v sodium polyanetholesulfonate (SPS; 80 Sigma Aldrich, St. Louis, MO). Seeded bottles were loaded onto automated blood culture instruments and incubated according to the system's specifications. Organisms for spiking were 81 82 suspended in normal saline and standardized to a 0.5 McFarland concentration for bacteria (~1.5 x  $10^8$  CFU/mL), or a 2 McFarland concentration for yeast (~5 x  $10^6$  CFU/mL). The suspensions 83 underwent three 1:100 serial dilutions before inoculating the blood culture bottle with 500 µL to 84 produce a final concentration of ~75 CFU per bottle. 85

Frozen Isolate Preparation at Clinical Site for AST Discrepancy Testing. Frozen
isolates were prepared from sub-cultured plates as described earlier. The plates used for
preparation of frozen isolates were sub-cultured from refrigerated sub-culture plates of the
original positive blood culture. In some cases, the sub-cultured plates of the original positive
blood culture were removed from the refrigerator, parafilmed and sent to Accelerate Diagnostics,
Inc. directly.

Reference AST Testing. The reference standard for AST comparator testing were the 92 Clinical and Laboratory Standard Institute (CLSI) reference frozen broth microdilution (BMD) 93 94 panels made in-house at Accelerate Diagnostics, Inc., and shipped to the reference laboratory. BMD panels were prepared using cation-adjusted Mueller Hinton Broth (CAMHB) (BD, Difco, 95 Catalogue number 275730) and antibiotics obtained from Merck, Sigma, USP and Pfizer. Cation 96 concentrations for CAMHB were tested externally using ICP-OES as required by CLSI, and 97 every BMD lot underwent biological quality control testing per CLSI standards (1, 2). In order 98 to account for MIC variability seen in BMD for some isolates, each isolate was tested in 99 triplicate (1) and the modal MIC was used as the comparator. If no modal MIC was obtained, 100 triplicate BMD was repeated for the sample and the modal MIC was used from the results of the 101 102 six repeats. If no modal MIC was obtained after 6 replicate BMD tests, the sample was excluded from analysis. For cefoxitin testing of staphylococci, disk diffusion was performed with FOX-30 103 disks (Hardy Diagnostics, Santa Maria, CA, Catalog number 231590) on MHA plates (Becton 104 105 Dickinson). For cases in which the test failed (due to sparse growth, hazy or double zones, heterogeneous growth) or if the disk diffusion zone of growth inhibition was within 1 mm of the 106 107 breakpoint, testing was repeated in triplicate and the modal category from the 4 repeats used as

108 the comparator. If no modal category was obtained after repeat testing, the sample was excluded

109 from analysis.

```
Quality Control (QC) Testing on the Accelerate Pheno<sup>™</sup> system. For the Accelerate
110
```

Pheno<sup>™</sup> system, one QC panel (EPEES, SES, CASKS, Table 1) was run on one module per day. 111

- The panels were rotated such that each panel was tested at least once per week. QC testing was 112
- rotated between modules such that all modules were used to perform QC at approximately the 113

same frequency. QC panels were run per manufacturer instructions (3). 114

| Table 1: QC panels an | iu organisiis ior iD and/or AS1 |                                         |
|-----------------------|---------------------------------|-----------------------------------------|
| QC Panel              | Species                         | Strain Number                           |
| EPEES (AST)           | Escherichia coli                | ATCC <sup>®</sup> 25922™                |
|                       | Escherichia coli                | АТСС <sup>®</sup> 35218 <sup>тм</sup>   |
|                       | Pseudomonas aeruginosa          | АТСС <sup>®</sup> 27853 <sup>тм</sup>   |
|                       | Enterococcus faecalis           | АТСС <sup>®</sup> 29212 <sup>тм</sup>   |
|                       | Staphylococcus aureus           | АТСС <sup>®</sup> 29213 <sup>тм</sup>   |
| SES (AST)             | Enterococcus faecalis           | АТСС <sup>®</sup> 51299 <sup>тм</sup>   |
|                       | Staphylococcus aureus           | АТСС <sup>®</sup> 43300 <sup>тм</sup>   |
|                       | Staphylococcus aureus           | ATCC <sup>®</sup> BAA-977 <sup>TM</sup> |
| CASKS (ID)            | Staphylococcus lugdunensis      | АТСС <sup>®</sup> 700328 <sup>тм</sup>  |
|                       | Klebsiella pneumoniae           | АТСС <sup>®</sup> 700603 <sup>тм</sup>  |
|                       | Acinetobacter baumannii         | АТСС <sup>®</sup> 19606 <sup>тм</sup>   |
|                       | Citrobacter freundii            | ATCC <sup>®</sup> 6879™                 |
|                       | Streptococcus agalactiae        | АТСС <sup>®</sup> 12403 <sup>тм</sup>   |
|                       | Candida glabrata                | ATCC <sup>®</sup> 2001™                 |

- - -

116

#### 117 References

- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; 118 1. Approved Standard—Ninth Edition. CLSI document M07-A9 (ISBN 1-56238-783-9 [Print]; ISBN 1-119 56238-784-7 [Electronic]). Clinical and Laboratory Standards Institute., 950 West Valley Road, 120 121 Suite 2500, Wayne, Pennsylvania 19087, USA, 2012.
- 122 2. CLSI. 2016. Performance Standards for Antimicrobial Susceptibility Testing. 26th ed. CLSI 123 supplement M100S (ISBN 1-56238-923-8 [Print]; ISBN 1-56238-924-6 [Electronic]). Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, 124 USA. 125
- 126 3. Diagnostics A. 2017. Accelerate PhenoTest<sup>™</sup> BC kit Instructions for Use.
- 127

### 128 FIG S1 Sample Flowchart of Specimen Disposition at Time of FDA Clearance



- 129 130
- <sup>a</sup>Protocol Deviation (n=216); Experiments Halted (n=26); Experiments Never Ran (n=15); Bottle >8 h Post-Positivity (n=31);

132 Gram stain shows no organism (n=24); Isolate Not Received at Reference Laboratory (n=18); Isolate Received Later than 4 days

from Media Preparation (n=3); ID Reference Growth Failure (n=29); Non-Pure Isolate (n=169); ID Reference Purity Plate

134 Failure (n=6); Invalid ID Reference Result (n=1); Accelerate Pheno<sup>™</sup> System Run State Not "Complete" (n=22)

<sup>b</sup>Single on-panel organism reported

136 <sup>c</sup>Polymicrobial samples where Accelerate PhenoTest<sup>TM</sup> BC kit ID results exactly match the reference

<sup>d</sup>Monomicrobial or polymicrobial runs containing any false positive(s)

138 <sup>e</sup>Fresh samples with only indeterminate/negative results = 27, Fresh samples including indeterminate result(s) = 74

139 <sup>f</sup>Seeded samples with only indeterminate/negative results = 11, Seeded samples including indeterminate result(s) = 198

140 <sup>g</sup>Of the 44 fresh unresolved false-positives, 38 showed genus-level agreement, while the remaining six were one *E. coli* called *E.* 

141 *coli*+CNS+*Enterobacter* spp., one *S. aureus*+*Pantoea* spp. mix called *Klebsiella* spp., one *Klebsiella* pneumoniae called

142 *Klebsiella* spp.+*E. coli*, one *Lactococcus raffinolactis* called *Streptococcus* spp., one *Streptococcus parasanguinis* called

Streptococcus spp.+C. glabrata and one Acinetobacter lwoffii called A. baumannii+Enterobacter spp. by the Accelerate Pheno™
 system.

<sup>h</sup>Of the 29 seeded samples containing unresolved false-positives, 16 showed genus-level agreement, while the remaining 13 were

146 one *Enterococcus cecorum* called *E. faecalis+C. glabrata*, one *Pantoea* spp. called *Enterobacter* spp., one *C. koseri* called

147 *Citrobacter* spp.+*Proteus* spp., two *C. koseri* called *Citrobacter* spp.+*Klebsiella* spp., one *C. freundii* called *Citrobacter* spp.+*P*.

148 *aeruginosa*, one *C. koseri* sample called *Citrobacter* spp.+*E. faecium*+*Klebsiella* spp., one *E. cloacae* complex and one *E.* 

149 aerogenes called Enterobacter spp.+P. aeruginosa, one P. mirabilis called Proteus spp.+E. coli, one E. coli called E.

150 *coli+Citrobacter* spp., one *Streptococcus pyogenes* called *Streptococcus* spp.+*E. faecium*, and one *S. marcescens* called *S.* 

151 *marcescens+A. baumannii+Enterobacter* spp.+*P. aeruginosa+S. aureus* by the Accelerate Pheno<sup>™</sup> system.

152

# 153 Table S1: Gram-positive Target Organism/Antimicrobial Combinations with Reportable

## 154 Ranges

|                           |                                              |         |                      | ID Targ              | et     |            |
|---------------------------|----------------------------------------------|---------|----------------------|----------------------|--------|------------|
| Class                     | Antimicrobial <sup>a</sup>                   | SAU     | SLU                  | CNS                  | EFM    | EFS        |
| Penicillins               | Ampicillin                                   |         |                      |                      | 2-32   | 2-32       |
| Cephalosporins            | Ceftaroline                                  | 0.25-8  |                      |                      |        |            |
| Lipopeptides              | Daptomycin                                   | 0.25-2  | 0.25-2 <sup>b</sup>  | 0.25-2               | 1-8    | 1-8        |
| Tetracyclines             | Doxycycline <sup>b</sup>                     | 1-32    | 1-32                 | 1-32                 | 2-32   |            |
| Macrolides                | Erythromycin                                 | 0.12-16 | 0.12-16 <sup>b</sup> | 0.12-16 <sup>b</sup> |        |            |
| Oxazolidinones            | Linezolid<br>Trimethoprim-                   | 1-16    | 1-16 <sup>b</sup>    | 1-16 <sup>b</sup>    | 0.5-16 | 0.5-<br>16 |
| Folate pathway inhibitors | Sulfamethoxazole <sup>b</sup>                | 0.5-8   | 0.5-8                |                      |        |            |
| Glycopeptides             | Vancomycin                                   | 0.5-32  | 1-64                 | 1-64                 | 1-64   | 1-64       |
| Resistance Phenotypes     | Cefoxitin (MRSA)<br>Erythromycin-Clindamycin | Pos/Neg | Pos/Neg              | Pos/Neg              |        |            |
|                           | (MLSb)                                       |         | Pos/Neg              | Pos/Neg              |        |            |

155 Abbreviations: SAU=Staphylococcus aureus; SLU=Staphylococcus lugdunensis; CNS=Coagulase-

156 negative Staphylococcus spp. (i.e., Staphylococcus epidermidis, Staphylococcus haemolyticus,

157 Staphylococcus hominis, Staphylococcus capitis, Staphylococcus lugdunensis, Staphylococcus warneri,

158 not differentiated); EFM=Enterococcus faecium; EFS=Enterococcus faecalis; STR=Streptococcus spp.

159 (i.e., Streptococcus mitis, Streptococcus oralis, Streptococcus gallolyticus, Streptococcus agalactiae,

160 *Streptococcus pneumoniae*, not differentiated)

161 <sup>a</sup>Antimicrobial concentrations are listed in  $\mu$ g/mL.

162 <sup>b</sup>RUO

163

# Table S2: Gram-negative Target Organism/Antimicrobial Combinations with Reportable Ranges

|                  |                                       | <b>ID</b> Target |               |               |               |                |                |                     |                   |
|------------------|---------------------------------------|------------------|---------------|---------------|---------------|----------------|----------------|---------------------|-------------------|
|                  |                                       | FCO              |               |               |               |                | SM             | <b>D</b> / <b>D</b> |                   |
| Class            | Antimicrobial"                        | ECO              | KLE           | ENT           | CIT           | РКО            | <u>A</u>       | PAE                 | ABA               |
| Aminoglycosides  | Amikacin                              | 4-128            | 4-128         | 4-128         | 4-128         | 4-128          | 4-<br>128      | 4-128               | 4-128             |
|                  | Gentamicin                            | 1-32             | 1-32          | 1-32          | 1-32          | 1-32           | 1-32           | 1-32                |                   |
|                  | Tobramycin                            | 1-32<br>0.12-    | 1-32<br>0.12- | 1-32<br>0.12- | 1-32<br>0.12- | 1-32<br>0.12-  | 1-32<br>0.12-  | 1-32                |                   |
| Carbapenems      | Ertapenem                             | 4<br>0.25-       | 4<br>0.25-    | 4             | 4<br>0.25-    | 4<br>0.25-     | 4<br>0.25-     |                     | 0.5-              |
|                  | Meropenem                             | 8<br>0 5-        | 8<br>0 5-     | 0.5-8         | 8             | 8              | 8              | 1-16                | 16 <sup>b</sup>   |
| Cephalosporins   | Cefazolin <sup>b</sup>                | 16               | 16            |               |               |                |                |                     |                   |
|                  | Cefepime                              | 1-32             | 1-32          | 1-32          | 1-32          | 1-32           | 1-32           | 2-32                | 2-64 <sup>b</sup> |
|                  | Ceftazidime                           | 2-32<br>0.25-    | 2-32<br>0.25- | 2-32<br>0.25- | 2-32<br>0.25- | 1-32           | 1-32           | 2-32                |                   |
|                  | Ceftriaxone                           | 8<br>0.25-       | 8<br>0.25-    | 8             | 8<br>0.25-    | 0.5-8<br>0.25- | 0.5-8<br>0.25- |                     | 0.25-             |
| Fluoroquinolones | Ciprofloxacin                         | 8                | 8             | 0.5-8         | 8             | 8              | 8              | 0.25-8              | $8^{b}$           |
| Monobactams      | Aztreonam                             | 1-32             | 1-32          | 1-32          | 1-32          | 1-32           | 1-32           |                     |                   |
| BL-BLIs          | Ampicillin-Sulbactam<br>Piperacillin- | 2-64             | 2-64          |               |               | 4-64           | 4-             |                     | 2-64 <sup>b</sup> |
|                  | Tazobactam                            | 4-256            | 4-256         | 4-256         | 4-256         | 4-256          | 256            | 8-256               | 4-256             |
| Polymyxins       | Colistin <sup>b</sup>                 | 0.5-8            | 0.5-8         | 0.5-8         | 0.5-8         |                |                | 0.5-16              | 0.5-8             |
| Tetracyclines    | Minocycline <sup>b</sup>              |                  |               |               |               |                |                |                     | 1-32              |

166 Abbreviations: BL-BLIs=Beta-lactam / beta-lactamase inhibitors; ECO=*Escherichia coli*;

167 KLE=*Klebsiella* spp. (i.e., *Klebsiella pneumoniae*, *Klebsiella oxytoca*, not differentiated);

168 ENT=Enterobacter spp. (i.e., Enterobacter cloacae, Enterobacter aerogenes, not differentiated);

169 CIT=Citrobacter spp. (i.e., Citrobacter freundii, Citrobacter koseri, not differentiated); PRO=Proteus

170 spp. (i.e., Proteus mirabilis, Proteus vulgaris, not differentiated); SMA=Serratia marcescens;

171 PAE=Pseudomonas aeruginosa; ABA=Acinetobacter baumannii

172 <sup>a</sup>Antimicrobial concentrations are listed in  $\mu$ g/mL.

173 <sup>b</sup>RUO

174

175

| 176 | <b>TABLE S3</b> Identification Performance by DNA Probe at FDA Clearance |  |
|-----|--------------------------------------------------------------------------|--|
|-----|--------------------------------------------------------------------------|--|

|                            |      |    |       |     | Sensitivity |              | Specificity |              |
|----------------------------|------|----|-------|-----|-------------|--------------|-------------|--------------|
| Probe                      | ТР   | FN | TN    | FP  | %           | 95% CI       | %           | 95% CI       |
| Gram-Positive              |      |    |       |     |             |              |             |              |
| Staphylococcus aureus      | 238  | 5  | 1548  | 24  | 97.9        | (95.3-99.1)  | 98.5        | (91.1-98.3)  |
| CNS <sup>a</sup>           | 243  | 12 | 1458  | 27  | 95.3        | (92.0-97.3)  | 98.2        | (97.4-98.8)  |
| Staphylococcus lugdunensis | 77   | 2  | 1748  | 1   | 97.5        | (91.2-99.3)  | 99.9        | (99.7-100.0) |
| Enterococcus faecium       | 100  | 2  | 1724  | 15  | 98          | (93.1-99.5)  | 99.1        | (98.6-99.5)  |
| Enterococcus faecalis      | 98   | 3  | 1726  | 2   | 97          | (91.6-99.0)  | 99.9        | (99.6-100)   |
| Streptococcus spp.         | 171  | 5  | 1615  | 39  | 97.2        | (93.5-98.)   | 97.6        | (96.8-98.3)  |
| Gram-Positive Total        | 927  | 29 | 9819  | 108 | 97          | (95.7-97.9)  | 98.9        | (98.7-99.1)  |
| Gram-Negative              |      |    |       |     |             |              |             |              |
| Escherichia coli           | 92   | 3  | 1677  | 12  | 96.8        | (93.3-98.9)  | 99.3        | (99.3-99.9)  |
| Klebsiella spp.            | 144  | 4  | 1690  | 5   | 97.3        | (91.1-98.3)  | 99.7        | (99.2-99.8)  |
| Enterobacter spp.          | 122  | 5  | 1651  | 6   | 96.1        | (92.3-99.1)  | 99.6        | (99.0-99.7)  |
| Proteus spp.               | 107  | 3  | 1682  | 9   | 97.3        | (92.1-99.4)  | 99.5        | (99.2-99.8)  |
| Citrobacter spp.           | 86   | 2  | 1751  | 7   | 97.7        | (91.1-98.9)  | 99.6        | (98.8-99.6)  |
| Serratia marcescens        | 51   | 0  | 1795  | 2   | 100         | (93.0-100.0) | 99.9        | (99.6-100)   |
| Pseudomonas aeruginosa     | 58   | 0  | 1779  | 10  | 100         | (93.8-100)   | 99.4        | (99.0-99.7)  |
| Acinetobacter baumannii    | 68   | 1  | 1764  | 6   | 98.6        | (92.2-99.9)  | 99.7        | (99.3-99.8)  |
| Gram-Negative Total        | 728  | 18 | 13789 | 57  | 97.6        | (96.2-98.5)  | 99.6        | (99.5-99.7)  |
| Yeast                      |      |    |       |     |             |              |             |              |
| Candida albicans           | 45   | 0  | 1777  | 8   | 100         | (92.1-100)   | 99.6        | (99.1-99.8)  |
| Candida glabrata           | 50   | 0  | 1754  | 29  | 100         | (92.9-100)   | 98.4        | (97.7-98.87) |
| Yeast Total                | 95   | 0  | 3531  | 37  | 100         | (96.1-100)   | 99          | (98.6-99.3)  |
| Overall                    | 1750 | 47 | 27139 | 202 | 97.4        | (96.5-98.0)  | 99.3        | (99.2-99.4)  |

<sup>a</sup>Coagulase-Negative *Staphylococcus* spp.

|                                            | FDA Clearance |              |              | 2017 Software Update |              |              |  |
|--------------------------------------------|---------------|--------------|--------------|----------------------|--------------|--------------|--|
|                                            | Fresh         | Seeded       | Overall      | Fresh                | Seeded       | Overall      |  |
| N. Total Samples                           | 872           | 1068         | 1940         | 872                  | 1068         | 1940         |  |
| Invalid                                    | 79 (9.1%)     | 11 (1.0%)    | 90 (4.6%)    | 0 (0.0%)             | 2 (0.2%)     | 2 (0.1%)     |  |
| Valid                                      | 793 (90.9%)   | 1057 (99.0%) | 1850 (95.4%) | 872 (100%)           | 1066 (99.8%) | 1938 (99.9%) |  |
| Indeterminate <sup>a,b</sup>               | 74 (9.3%)     | 198 (18.7)   | 272 (14.7%)  | 39 (4.5%)            | 6 (0.6%)     | 45 (2.3%)    |  |
| False Positives <sup>b</sup>               | 95 (12.0%)    | 84 (7.9%)    | 179 (9.7%)   | 83 (9.5%)            | 60 (5.6%)    | 143 (7.4%)   |  |
| Resolved False<br>Positives <sup>c</sup>   | 51 (53.7%)    | 55 (65.5%)   | 106 (59.2%)  | 35 (42.2%)           | 36 (60.0%)   | 71 (49.7%)   |  |
| Unresolved False<br>Positives <sup>c</sup> | 44 (46.3%)    | 29 (34.5%)   | 73 (40.8%)   | 48 (57.8%)           | 24 (40.0%)   | 72 (50.3%)   |  |

TABLE S4 Invalid, Indeterminate and False Positive Rates by Sample Type 

<sup>a</sup>Samples with any indeterminate results. <sup>b</sup>Rates calculated out of total valid results <sup>c</sup>Rates calculated out of total false positives 

| Category                                    | Limitation Language                                                                                                                                                                                                                                                                                                                                     | Antibiotic                            | Bacteria                                                                        |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|---------------------------------------------------------------------------------|
| Insufficient number of                      | The ability of the Accelerate PhenoTest <sup>™</sup>                                                                                                                                                                                                                                                                                                    | Amikacin                              | Citrobacter spp., Enterobacter spp., E. coli, Proteus spp., S. marcescens       |
| R strains                                   | BC kit to detect resistance                                                                                                                                                                                                                                                                                                                             | Aztreonam                             | Proteus spp., S. marcescens                                                     |
|                                             | in the following<br>combinations is unknown<br>because an insufficient<br>number of resistant<br>isolates were encountered                                                                                                                                                                                                                              | Cefepime                              | Citrobacter spp., Proteus spp., S. marcescens                                   |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Ceftazidime                           | Proteus spp., S. marcescens                                                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Ceftaroline                           | S. aureus                                                                       |
|                                             | at the time of comparable testing:                                                                                                                                                                                                                                                                                                                      | Ceftriaxone                           | Citrobacter spp., E. cloacae, S. marcescens                                     |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Ciprofloxacin                         | Citrobacter spp., Proteus spp., S.<br>marcescens                                |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Daptomycin                            | S. aureus                                                                       |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Ertapenem                             | Citrobacter spp., Proteus spp., and S. marcescens                               |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Gentamicin                            | Citrobacter spp., Enterobacter spp.,<br>Proteus spp., S. marcescens             |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Meropenem                             | <i>Citrobacter</i> spp., <i>E. coli, Proteus</i> spp., and <i>S. marcescens</i> |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Piperacillin/Tazobactam               | Proteus spp., and S. marcescens                                                 |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Tobramycin                            | Citrobacter spp., Proteus spp., S. marcescens                                   |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Cefoxitin (Methicillin<br>Resistance) | S.lugdunensis                                                                   |
|                                             |                                                                                                                                                                                                                                                                                                                                                         | Erythromycin/Clindamycin (MLSb)       | S.lugdunensis                                                                   |
| nsufficient<br>iumber of<br>VS strains      | The current absence of<br>data on daptomycin-<br>resistant isolates<br>precludes defining any<br>categories other than<br>"susceptible". Isolates<br>yielding test results<br>suggestive of a non-<br>susceptible category<br>should be retested and if<br>the result is confirmed,<br>the isolate should be<br>retested using the<br>reference method. | Daptomycin                            | Staphylococcus spp. (excluding S. lugdunensis), Enterococcus spp.               |
| nsufficient<br>number of<br>VISA<br>strains | The ability of the<br>Accelerate PhenoTest <sup>™</sup><br>BC kit to detect<br>vancomycin-intermediate<br><i>Staphylococcus aureus</i><br>isolates (VISA) is<br>unknown because<br>insufficient numbers of<br>VISA isolates were<br>evaluated at the time of<br>comparative testing.                                                                    | Vancomycin                            | S. aureus                                                                       |

Table S5: Accelerate PhenoTest<sup>™</sup> BC Kit Limitations

| Category                                                         | Limitation Language                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Antibiotic              | Bacteria                                                                                                                                                                     |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Major<br>error<br>limitations                                    | The following<br>antimicrobial/organism<br>combinations may<br>produce a resistant result                                                                                                                                                                                                                                                                                                                                                                                        | Ceftazidime             | <i>P. aeruginosa</i> (Any <i>P. aeruginosa</i> isolate<br>that provides an MIC $\geq 16 \ \mu$ g/mL should be<br>retested using an alternate method)<br><i>P. aeruginosa</i> |
|                                                                  | that can be found                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ertapenem               | Enterobacter spp.                                                                                                                                                            |
|                                                                  | susceptible by the                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Meropenem               | Enterobacter spp                                                                                                                                                             |
|                                                                  | critical to patient care                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Piperacillin/Tazobactam | A haumannii                                                                                                                                                                  |
|                                                                  | confirm these results with an alternate method:                                                                                                                                                                                                                                                                                                                                                                                                                                  | Piperacillin/Tazobactam | Klebsiella spp.                                                                                                                                                              |
| Essential                                                        | Due to a low essential                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Ceftriaxone             | S. marcescens                                                                                                                                                                |
| agreement<br>limitation<br>Inaccurate<br>MIC's in<br>the R range | agreement for <i>Serratia</i><br><i>marcescens</i> with<br>ceftriaxone, results should<br>be confirmed with an<br>alternate method if<br>critical to patient care.<br>The ability of the<br>Accelerate PhenoTest <sup>TM</sup><br>BC kit to provide<br>accurate MICs with<br>amikacin resistant strains<br>of <i>A. baumannii</i> has not<br>been established; isolates<br>of this species that<br>provide resistant results<br>should be confirmed by<br>an alternative method. | Amikacin                | A. baumannii                                                                                                                                                                 |
| MIC's tend                                                       | Accelerate PhenoTest <sup>™</sup><br>BC kit "antibiotic" MIC                                                                                                                                                                                                                                                                                                                                                                                                                     | Ampicillin/Sulbactam    | Enterobacteraiaceae                                                                                                                                                          |
| dilution                                                         | values for "organism"                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Aztreonam               |                                                                                                                                                                              |
| higher than                                                      | tended to be one doubling                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Ceftazidime             |                                                                                                                                                                              |
| reference                                                        | dilution higher than the                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ertapenem               |                                                                                                                                                                              |
| MIC's tend<br>to be one<br>dilution<br>lower than<br>reference   | Accelerate PhenoTest <sup>TM</sup><br>BC kit ceftazidime MIC<br>values for <i>P. aeruginosa</i><br>tended to be one doubling<br>dilution lower than the<br>reference MIC value.                                                                                                                                                                                                                                                                                                  | Ceftazidime             | P. aeruginosa                                                                                                                                                                |