Supplementary Information

A new generation of ferrociphenols leads to a great diversity of reactive metabolites,

and exhibits remarkable antiproliferative properties

Yong Wang, Patrick M. Dansette, Pascal Pigeon, Siden Top,* Michael J. McGlinchey, Daniel Mansuy,* and Gérard Jaouen*

Supplementary Methods

General Synthetic Methods. All reagents and solvents were obtained from commercial suppliers. Acetone was dried over 4 Å molecular sieves. Thin layer chromatography (TLC) was performed on silica gel 60 GF₂₅₄. Column chromatography was performed on silica gel Merck 60 (40-63 μ m). All NMR experiments (¹H, ¹³C) were carried out at room temperature on Bruker 300 and 400 NMR spectrometers, and chemical shifts (δ) are reported in ppm relative to the referenced solvent; s, d, t and q were used for singlet, doublet, triplet, and quartet, respectively. Mass spectra (MS) were obtained on a Focus/DSQII spectrometer for both electron impact (EI) and chemical ionization (CI) methods, and an API 3000 PE SciexApplied Biosystems spectrometer for the electrospray ionization (ESI) method. HRMS measurements were performed on a Thermo Fischer LTQ-Orbitrap XL apparatus equipped with an electrospray source by IPCM (UMR 8232). Elemental analyses were performed by the microanalysis service of ICSN (Gif sur Yvette, France). Ferrociphenols **3a** and **3b**, and corresponding quinone methides, **4a** and **4b**, were prepared by previously described procedures.^[1] All other products including enzymes were from Sigma-Aldrich (St. Quentin Fallavier, France). Ag₂O was prepared according the literature procedure.^[2]

Reaction of QM 4b under acid conditions

With 1N HCl. Freshly made Ag₂O (0.22g, 0.9 mmol) was added to a solution of 4,4'-(5-hydroxy-2ferrocenylpent-1-ene-1,1-diyl)diphenol **3b** (0.1 g, 0.23 mmol) in 6 ml of acetone. The dark grey mixture changed to become a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding 5 drops of 1N HCl aqueous solution, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give 6 compounds. **4,4'-(hydroxy(2ferrocenyltetrahydrofuran-2-yl)methylene)diphenol (9b)** as a brown solid 20 mg, yield 18%. ¹H NMR (300 MHz, Acetone- d_6) $\delta = 1.75$ (m, 1H; CH₂), 2.60 (m, 2H; CH₂), 3.51 (s, 1H; OH), 3.93 (m, 2H; CH₂), 4.00 (s, 1H; CH₂), 4.03 (m, 2H; C₅H₄), 4.10 (s, 1H; C₅H₄), 4.12(m, 5H; Cp), 4.19 (s, 1H; C_5H_4), 6.59 (d, J = 8.9 Hz, 2H; C_6H_4), 6.69 (d, J = 8.9 Hz, 2H; C_6H_4), 7.51 (d, J = 8.8 Hz, 2H; C_6H_4), 7.58 (d, J = 8.9 Hz, 2H; C_6H_4), 7.99 (s, 1H; OH), 8.11 (s, 1H; OH). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 26.8$ (CH₂), 38.2 (CH₂), 67.1 (CH; C_5H_4), 68.1 (CH; C_5H_4), 68.6 (CH; C_5H_4), 69.4 (5 CH; Cp), 70.2 (CH; C_5H_4), 70.4 (OCH₂), 80.6 (C), 91.9 (C), 97.0 (C), 114.4 (4 CH; C_6H_4), 129.8 (4 CH; C_6H_4), 136.6 (C; C_6H_4), 138.7 (C; C_6H_4), 156.3 (C; C_6H_4), 156.5 (C); MS-CI (NH₃) *m/z*: 471 (M+H)⁺. HRMS calcd for $C_{27}H_{26}FeO_4$ (M)⁺: 470.1180, found: 470.1183. Anal. Calcd for $C_{27}H_{26}FeO_4$ (H₂O)_{0.6}: C, 67.40; H, 5.70. Found: C, 67.48; H, 5.94. **4,4'-(3-ferrocenyl-5,6-dihydro-2H-pyran-2,2-diyl)diphenol (5b)** as a brown solid 10 mg, yield 10%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 2.38$ (q, J = 5.4 Hz, 2H; CH₂), 3.50 (t, J = 5.7 Hz, 2H; OCH₂), 3.83 (s, 2H; C_5H_4), 3.97 (s, 2H; C_5H_4), 4.03 – 4.08 (m, 5H; Cp), 6.57 (s, 1H; CH=C), 6.75 (d, J = 8.7 Hz, 4H; C_6H_4), 72.0 (d, J = 8.7 Hz, 4H; C_6H_4), 70.9 (5 CH; Cp), 84.1 (C; C-O), 86.2 (C; Fc_{ipso}), 114.7 (4 CH; C_6H_4), 125.7 (CH; CH=C), 131.9 (4 CH; C_6H_4), 136.2 (2 C; C_6H_4), 141.5 (C; CH=C), 157.4 (2 C; C_6H_4). MS-EI *m/z*: 452 (M)⁺. HRMS calcd for $C_{27}H_{24}FeO_3$ (M)⁺: 452.1075, found: 452.1090. Anal. Calcd for $C_{27}H_{24}FeO_3(H_2O)_{0.5}$: C, 70.29; H, 5.46. Found: C, 70.27; H, 5.89.

5-hydroxy-1,1-bis(4-hydroxyphenyl)-1-ferrocenylpentan-2-one(6b) as a brown solid 30 mg, yield 28%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 1.81$ (m, 2H; CH₂), 2.82 – 2.90 (m, 2H; CH₂), 3.55 (m, 3H; OH and OCH₂), 3.85 (s, 2H; C₅H₄), 4.14 (s, 5H; Cp), 4.25 (s, 2H; C₅H₄), 6.77 (d, J = 8.8 Hz, 4H; C₆H₄), 6.92 (d, J = 8.8 Hz, 4H; C₆H₄), 8.37 (s, 2H; OH). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 29.0$ (CH₂), 38.8 (CH₂), 61.9 (OCH₂), 66.3 (C), 68.7 (2 CH; C₅H₄), 70.2 (5 CH; Cp), 71.6 (2 CH; C₅H₄), 92.2 (C; Fc_{ipso}), 115.0 (4 CH; C₆H₄), 131.8 (4 CH; C₆H₄), 136.0 (2 C; C₆H₄), 157.0 (2 C; C₆H₄), 208.6 (C=O). MS-EI m/z: 470 (M)⁺. HRMS calcd for C₂₇H₂₆FeO₄ (M)⁺: 470.1180, found: 470.1198. Anal. Calcd for C₂₇H₂₆FeO₄(H₂O)_{0.5}: C, 67.65; H, 5.68. Found: C, 67.68; H, 5.82. **4-hydroxy-1-ferrocenylbutan-1-one** (7) as a brown solid 14 mg, yield 25%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 1.81-1.93$ (m, 2H; CH₂), 2.86 (m, 2H; CH₂), 3.62 (m, 3H; OH and OCH₂), 4.22 (s, 5H; Cp), 4.50 – 4.54 (m, 2H; C₅H₄), 4.78 – 4.82(m, 2H; C₅H₄). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 28.2$ (CH₂), 36.5 (CH₂), 61.9 (OCH₂), 70.0 (2 CH; C₅H₄), 70.5 (5 CH; Cp), 72.7 (2 CH; C₃H₄), 80. 6 (C; Fc_{ipso}), 203.75 (C=O). **bis(4-hydroxyphenyl)methanone (8b)** as a brown solid 10 mg, yield 23%. ¹H NMR (300 MHz, acetone- d_6) $\delta = 28.2$ (CH₂), 36.0 (CH₂), 70.0 (2 CH; C₅H₄), 70.5 (5 CH; Cp), 72.7 (2 CH; C₃H₄), 80. 6 (C; Fc_{ipso}), 203.75 (C=O).

= 6.95 (d, *J* = 8.6 Hz, 4H; C₆H₄), 7.68 (d, *J* = 8.6 Hz, 4H; C₆H₄), 9.17 (s, 2H; OH). ¹³C NMR (75 MHz, acetone-*d*₆) δ = 115.8 (4 CH; C₆H₄), 130.8 (2 C; C₆H₄), 133.0 (4 CH; C₆H₄), 162.0 (2 C; C₆H₄), 194.0 (C=O). **4,4'-(2-(dihydrofuran-2-yl)-2-ferrocenylethene-1,1-diyl)diphenol (10b)** as a brown solid 20 mg, yield 18%. ¹H NMR (400 MHz, Acetone-*d*₆) δ = 2.73 (td, *J* = 2.4, 9.4Hz, 2H; CH₂), 3.95 (s, 2H; C₅H₄), 4.15 (s, 2H; C₅H₄),4.21 (s, 5H; Cp), 4.51 (t, *J* = 9.4Hz, 2H; CH₂), 4.55 (t, *J* = 2.4Hz, 1H; CH),6.70 (d, *J* = 8.8Hz, 2H; C₆H₄), 6.97 (d, *J* = 8.8Hz, 2H; C₆H₄), 8.19 (s, 2H; 2OH). ¹³C NMR (100 MHz, acetone-*d*₆) δ = 30.2 (CH₂), 67.8 (2 CH; C₅H₄), 69.9 (5 CH; Cp), 70.9 (CH₂), 71.5 (2 CH; C₅H₄),96.5 (C), 99.7 (CH), 114.6 (4 CH; C₆H₄), 131.2 (4 CH; C₆H₄), 138.0 (2 C), 156.7 (2 C), 165.4 (2 C); MS-ESI *m/z*: 452 (M)⁺. HRMS calcd for C₂₇H₂₄FeO₃ (M)⁺: 452.1075, found: 452.1070. Anal. Calcd for C₂₇H₂₄FeO₃(H₂O)_{0.4}: C, 70.57; H, 5.44. Found: C, 70.84; H, 5.68.

With 1N HCI-Et₂O. After the complete conversion of the starting material to quinone methide 4b (20 minutes), filtration was followed by adding 5 drops of HCI-Et₂O whereupon the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give 2 major compounds **3b-A** (yield: 35%) and **3b-B** (yield: 47%).

Reaction of QM 4b with methanol

Freshly made **4b** (100 mg, 0.22 mmol) was dissolved in methanol and the solution was stirred for approximately 2 hrs. The solvent was removed and the residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give **14b** (70 mg, yield: 65.7%). ¹H NMR (300 MHz, Acetone- d_6) $\delta = 1.79$ (m, 1H; CH₂), 2.25 (m, 1H; CH₂), 2.54 (m, 1H; CH₂), 2.79 (s, 3H; OCH₃), 3.59 (s, 1H; CH₂), 3.92 (m, 1H; CH₂), 3.96 (m, 2H; C₅H₄), 4.05(m, 5H; Cp), 4.15 (s, 1H; CH₂), 4.22 (m, 2H; C₅H₄), 6.59(d, J = 8.8 Hz, 2H; C₆H₄), 6.74 (t, J = 9.5 Hz, 4H; C₆H₄), 7.54 (d, J = 8.7 Hz, 2H; C₆H₄), 8.22 (s, 1H; OH), 8.28 (s, 1H; OH); ¹³C NMR (75 MHz, acetone- d_6) $\delta = 27.3$ (CH₂), 37.1 (CH₂), 52.9 (OCH₃), 66.7 (CH; C₅H₄), 66.9 (CH; C₅H₄), 69.2 (5 CH; Cp), 69.9 (CH; C₅H₄), 70.4 (OCH₂), 71.9 (CH; C₅H₄), 91.0 (C), 92.1 (C), 96.9 (C), 113.5 and 114.2 (4 CH; C₆H₄), 130.7 (C; C₆H₄), 131.8 (C; C₆H₄),

133.2 and 133.6 (4 CH; C₆H₄), 156.9 (C; C₆H₄), 157.2 (C); MS-ESI *m/z*: 507 (M+Na)⁺; HRMS (TOF MS ESI⁺, C₂₈H₂₈FeNaO₄, [M]⁺⁺) calcd: 507.1235, found: 507.1218.

Reaction of QM 4b with mercaptoethanol

Freshly made Ag₂O (0.22 g, 0.9 mmol) was added to a solution of 4,4'-(5-hydroxy-2-ferrocenylpent-1ene-1,1-diyl)diphenol **3b** (0.1 g, 0.23 mmol) in 6 ml of acetone. The dark grey mixture became a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding 0.1 ml mercaptoethanol and 60 mg NaOH, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give **15b** (90 mg, yield: 75%). ¹H NMR (300 MHz, Acetone- d_6) $\delta = 2.15$ (m, 2H; CH₂), 2.41 (m, 1H; CH₂), 2.80 (m, 1H; CH₂), 3.20 (m, 2H; CH₂), 3.26 (s, 1H; CH₂), 3.49 (t, *J* = 5.8 Hz, 1H; OH), 3.90 (m, 1H; CH₂), 4.01 (s, 1H; CH₂), 4.06 (s, 6H; Cp and C₅H₄), 4.23 (m, 1H; C₅H₄), 4.32 (m, 2H; C_5H_4), 6.61(dd, J = 9.0, 2.7 Hz, 4H; C_6H_4), 7.10 (d, J = 8.7 Hz, 2H; C_6H_4), 7.43 (d, J = 8.9 Hz, 2H; C₆H₄), 8.20 (s, 1H; OH), 8.27 (s, 1H; OH); ¹³C NMR (75 MHz, acetone- d_6) δ = 27.7 (CH₂), 35.1 (CH₂), 39.7 (CH₂), 61.6 (CH₂), 61.6 (CH₂), 66.6 (CH; C₅H₄), 66.9 (CH; C₅H₄), 69.4 (5 CH; Cp), 70.2 (CH₂), 70.4 (CH; C₅H₄), 71.4 (CH; C₅H₄), 93.4 (C), 96.8 (C), 113.6 and 113.9 (4 CH; C₆H₄), 133.9 and 134.2 (4 CH; C₆H₄), 135.1 (2 C; C₆H₄), 156.3 and 156.6 (2 C; C₆H₄); MS-ESI m/z: 553 (M+Na)⁺; HRMS (TOF MS ESI⁺, C₂₉H₃₀FeNaO₄S, [M]⁺⁺) calcd: 553.1112, found: 553.1107. Anal. Calcd for C₂₉H₃₀FeO₄S(H₂O)₂₅: C, 60.52; H, 6.13. Found: C, 60.78; H, 6.04.

Reaction of QM 4b with N-Acetyl-L-cysteine methyl ester

Freshly made Ag₂O (0.22 g, 0.9 mmol) was added to a solution of 4,4'-(5-hydroxy-2-ferrocenylpent-1ene-1,1-diyl)diphenol **3b** (0.1 g, 0.23 mmol) in 6 ml of acetone. The dark grey mixture became a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding N-acetyl-L-cysteine methyl ester (0.23 g, 1.3 mmol) and 60 mg NaOH, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give **16b** (120 mg, yield: 83%). ¹H NMR (300 MHz, Acetone- d_6) δ = 1.85 (d, J = 5.2 Hz, 3H; CH₃), 2.26 (m, 1H; CH₂), 2.40 (m, 1H; CH₂), 2.51 (m, 1H; CH₂), 2.80 (m, 1H; CH₂), 3.14 (s, 1H; CH₂), 3.57 (s, 3H; OCH₃), 3.89 (s, 1H; CH₂), 4.02 (m, 1H; CH₂), 4.06 (s, 5H; Cp), 4.16 - 4.45 (m, 4H; C₅H₄), 6.62(d, J = 8.5 Hz, 4H; C₆H₄), 6.90 (m, 1H; NH), 7.05 (t, J = 8.8 Hz, 2H; C₆H₄), 7.39 (t, J = 8.7 Hz, 2H; C₆H₄), 8.25 (s, 1H; OH), 8.33 (s, 1H; OH); ¹³C NMR (75 MHz, acetone- d_6) δ = 22.6 (CH₃), 27.8 (CH₂), 34.0 (CH₂), 39.9 (CH₂), 52.5 (CH₃), 52.7 (CH), 52.9 (OCH₃), 66.7 (CH; C₅H₄), 67.0 (CH; C₅H₄), 69.5 (5 CH; Cp), 70.0 (CH₂), 70.3 (CH; C₅H₄), 71.2 (CH; C₅H₄), 71.7 (C), 74.5 (C), 93.5 (C), 113.2 and 113.7 (4 CH; C₆H₄), 133.9 and 134.0 (4 CH; C₆H₄), 134.7 (2 C; C₆H₄), 156.4 and 156.8 (2 C; C₆H₄), 171.9 (C=O), 178.1 (C=O); MS-ESI *m/z*: 652 (M+Na)⁺. HRMS (TOF MS ESI⁺, C₃₃H₃₅FeNNaO₆S, [M]⁺⁺) calcd: 652.1432, found: 652.1427.

Reaction of QM 4a under acid conditions

With 1N HCl. Freshly made Ag₂O (0.5 g, 2 mmol) was added to a solution of **3a** (0.19 g, 0.43 mmol) in 10 ml of acetone. The dark grey mixture became a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding 5 drops of 1N HCl, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give 4 compounds. **4-((R)hydroxy(phenyl)((R)-2-ferrocenyltetrahydrofuran-2-yl)methyl)phenol (9a)** as a brown solid 50 mg, yield: 26%. ¹H NMR (300 MHz, Acetone- d_6) $\delta = 1.74$ (m, 1H; CH₂), 2.62 (m, 2H; CH₂), 3.56 (s, 1H; OH), 3.76 (m, 1H; CH₂), 3.97 (m, 2H; C₅H₄), 4.05 (m, 2H; CH₂), 4.14 (m, 2H; C₅H₄), 4.20(s, 5H; Cp), 4.24 (m, 1H; CH₂), 6.71(m, 2H; C₆H₄), 7.25 (m, 3H; C₆H₅), 7.55 (m, 2H; C₆H₄), 7.72 (m, 2H; C₆H₅), 8.08 and 8.19 (s, 1H; OH). ¹³C NMR (75 MHz, acetone- d_6) $\delta = 26.8$ (CH₂), 38.3 (CH₂), 67.2 (CH; C₅H₄), 67.8 (CH; C₅H₄), 68.2 (CH; C₅H₄), 69.5 (5 CH; Cp), 70.4 (CH; C₅H₄), 70.5 (OCH₂), 80.8 (C), 91.9 (C), 96.8 (C), 114.5 and 114.8 (2 CH; C₆H₄), 126.8 (CH; C₆H₅), 127.7 (CH; C₆H₅), 128.0 (2

CH; C₆H₄), 129.9 (2 CH; C₆H₅), 132.1 (CH; C₆H₅), 138.7 (C; C₆H₄), 145.8 (C; C₆H₅), 156.5 and 156.7 (C); MS-CI (NH₃) m/z: 455(M+H)⁺. HRMS calcd for C₂₇H₂₆FeO₃ (M)⁺: 454.1231, found: 454.1225. Anal. Calcd for C₂₇H₂₆FeO₃(H₂O)_{0.7}: C, 69.45; H, 5.91. Found: C, 69.68; H, 6.28. 5-hydroxy-1-(4hydroxyphenyl)-1-phenyl-1-ferrocenylpentan-2-one (6a) as a brown solid 45 mg, yield: 24%. ¹H NMR (300 MHz, Acetone- d_6) δ 8.39 (s, 1H, OH), 7.39 – 7.19 (m, 3H, C₆H₅), 7.10 (dd, J = 7.9, 1.7 Hz, 2H, C₆H₄), 6.93 (d, J = 8.8 Hz, 2H, C₆H₄), 6.78 (d, J = 8.8 Hz, 2H, C₆H₅), 4.29(s, 2H, C₅H₄), 4.18(s, 5H, 2H, C₆H₄), 4.18(s, 5H, 2H, C_6H₄), 4.18(s, 5H, 2 C₅H₅), 3.93 (s, 1H, C₅H₄), 3.80 (s, 1H, C₅H₄), 3.55 (m, 3H, OH and OCH₂), 2.90 (m, 2H, CH₂), 1.82 (m, 2H, CH₂); ¹³C NMR (75 MHz, Acetone- d_6) δ 208.2 (C=O), 157.1 (C, C₆H₄), 145.2 (C, C₆H₅), 135.4 (C, C₆H₄), 131.8 (2 CH, C₆H₄), 130.8 (2 CH, C₆H₄), 128.1 (2 CH, C₆H₅), 127.5 (CH, C₆H₅), 115.1 (2 CH, C₆H₄), 90.5 (C, C₅H₄), 71.8 (2 CH, C₅H₄), 70.4 (5 CH, C₅H₅), 69.0 (2 CH, C₅H₄), 67.0 (C), 61.8 (OCH₂), 38.9 (CH₂), 28.8 (CH₂); MS-EI *m/z*: 454 (M)⁺. HRMS calcd for C₂₇H₂₆FeO₃ (M)⁺: 454.1231, found: 454.1229. Anal. Calcd for C₂₇H₂₆FeO₃(H₂O)_{0.5}: C, 69.99; H, 5.87. Found: C, 70.18; H, 6.14. 4hydroxy-1-ferrocenylbutan-1-one (7) as a brown solid 10 mg, yield: 9%. ¹H NMR (300 MHz, Acetone- d_6) δ 4.82–4.78 (m, 2H, C₅H₄), 4.54–4.50 (m, 2H, C₅H₄), 4.22 (s, 5H, C₅H₅), 3.62 (m, 2H, OH and OCH₂), 2.86 (m, 2H, CH₂), 1.93–1.81 (m, 2H, CH₂); ¹³C NMR (75 MHz, Acetone-d₆) δ 203.75 (C=O), 80.56 (C, C₅H₄), 72.68 (2 CH, C₅H₄), 70.46 (5 CH, C₅H₅), 69.97 (2 CH, C₅H₄), 61.94 (OCH₂), 36.49 (CH₂), 28.18 (CH₂). (4-hydroxyphenyl)(phenyl)methanone (8a) as a brown solid 9 mg, yield: 11%. ¹H NMR (300 MHz, Acetone- d_6) δ 9.26 (s, 1H, OH), 7.82–7.68 (m, 4H, C₆H₄), 7.67–7.68 $(m, 1H, C_6H_5)$, 7.58 – 7.47 $(m, 2H, C_6H_5)$, 6.97 $(d, J = 8.8 Hz, 2H, C_6H_5)$; ¹³C NMR (75 MHz, Acetoned₆) δ 195.2 (C=O), 162.5 (C, C₆H₄), 139.5 (C, C₆H₅), 133.4 (2 CH, C₆H₄), 132.5 (CH, C₆H₅), 130.2 (2 C, C₆H₄), 129.1 (2 CH, C₆H₅), 116.0 (2 CH, C₆H₅).

Reaction of QM 4a with mercaptoethanol

Freshly made Ag_2O (0.4 g, 2 mmol) was added to a solution of **3a** (0.29 g, 0.66 mmol) in 6 ml of acetone. The dark grey mixture became a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding 0.1 ml mercaptoethanol and 60 mg NaOH, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic

layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (1:2) to give **15a** (100 mg, yield: 65%). ¹H NMR (300 MHz, Acetone- d_6) $\delta = 2.15$ (m, 2H; CH₂), 2.44 (m, 1H; CH₂), 2.85 (m, 1H; CH₂), 3.19 (t, J = 6.8 Hz, 2H; CH₂), 3.23 (s, 1H; CH₂), 3.48 (brs, 1H; OH), 3.90 (m, 1H; CH₂), 4.02 (s, 1H; CH₂), 4.07 (s, 5H; Cp), 4.23 (m, 2H; C₅H₄), 4.36 (m, 2H; C₅H₄), 6.63 (dd, J = 8.9, 3.2 Hz, 2H; C₆H₄), 7.10 (m, 4H; C₆H₄), 7.31 (d, J = 5.8 Hz, 1H; C₆H₅), 7.42 (d, J = 8.8 Hz, 1H; C₆H₅), 7.61 (m, 1H; C₆H₅), 8.20 and 8.27 (s, 1H; OH); ¹³C NMR (75 MHz, acetone- d_6) $\delta = 27.7$ (CH₂), 35.2 (CH₂), 39.8 (CH₂), 61.6 (CH₂), 66.7 (CH; C₅H₄), 67.0 (CH; C₅H₄), 69.5 (5 CH; Cp), 70.3 (CH₂), 70.5 (CH; C₅H₄), 71.4 (CH; C₅H₄), 93.4 (C), 96.6 (C), 113.7 and 114.0 (2 CH; C₆H₄), 126.7 (CH; C₆H₅), 126.9 (CH; C₆H₅), 127.1 (CH; C₆H₅), 132.8 and 133.0 (2 CH; C₆H₄), 133.8 and 134.0 (2 CH; C₆H₅), 134.2 (C), 143.7 abd 144.6 (C), 156.4 and 156.8 (C); MS-EI *m/z*: 514 M⁺. HRMS (TOF MS ESI⁺, C₂₉H₃₀FeNaO₃S, [M]⁺⁺) calcd: 537.1163, found: 537.1158. Anal. Calcd for C₂₉H₃₀FeO₃S(H₂O)_{1.5}: C, 64.33; H, 6.14. Found: C, 64.38; H, 5.98.

Reaction of QM 4a with N-Acetyl-L-cysteine methyl ester

Freshly made Ag₂O (0.4 g, 2 mmol) was added to a solution of **3a** (0.29 g, 0.66 mmol) in 6 ml of acetone. The dark grey mixture became a dark red suspension about 5 minutes later. The reaction was monitored by TLC until complete conversion of the starting material (20 minutes). Filtration was followed by adding N-Acetyl-L-cysteine methyl ester (0.27 g, 1.5 mmol) and 60 mg NaOH, the red suspension became orange and clear immediately. The solution was diluted with ethyl acetate and washed twice with water, the organic layer was dried over MgSO₄ and the solvent was removed under vacuum. The residue was purified by column chromatography on silica gel eluting with PE:EtOAc (2:1) to give **16a** (120 mg, yield: 65%). ¹H NMR (300 MHz, Acetone-*d*₆) δ = 1.85 (d, *J* = 5.3 Hz, 3H; CH₃), 2.23 (m, 2H; CH₂), 2.47 (m, 2H; CH₂), 2.80 (m, 1H; CH₂), 3.14 (s, 1H; CH₂), 3.57 (s, 3H; OCH₃), 3.89 (s, 1H; CH₂), 4.03 (m, 1H; CH₂), 4.07 (s, 5H; Cp), 4.25 (m, 2H; C₅H₄), 4.36 (m, 2H; C₅H₄), 6.64(m, 2H; C₆H₄), 7.01 (m, 2H; C₆H₄), 7.01 (m, 3H; C₆H₅), 7.26 (m, 1H; NH), 7.38 (d, *J* = 8.7 Hz, 1H; C₆H₅), 7.57 (d, *J* = 5.8 Hz, 1H; C₆H₅), 8.29 and 8.32 (s, 1H; OH); ¹³C NMR (75 MHz, acetone-*d*₆) δ = 22.6 (CH₃), 27.7 (CH₂), 34.0 (CH₂), 40.0 (CH₂), 52.6 (OCH₃), 52.8 (CH), 66.8 (CH; C₅H₄), 67.2 (CH; C₅H₄), 69.6 (5 CH; Cp), 70.1 (CH₂), 70.4 (CH; C₅H₄), 71.2 (CH; C₅H₄), 93.4 (C), 96.3 (C), 113.9 and 114.2 (2 CH;

 C_6H_4), 127.0 and 127.3 (2 CH; C_6H_4), 132.8 (CH; C_6H_5), 134.0 (4 C; C_6H_5), 134.3 (C), 144.3 (C), 156.6 and 157.0 (C), 169.8 and 170.9 (C=O), 171.8 (C=O); MS-ESI *m/z*: 614 M⁺, 636 (M+Na)⁺. HRMS (TOF MS ESI⁺, $C_{33}H_{35}FeNNaO_5S$, [M]⁺⁺) calcd: 636.1483, found: 636.1478. Anal. Calcd for $C_{33}H_{35}FeNO_5S(H_2O)_{2.5}$: C, 60.18; H, 6.12; N, 2.13. Found: C, 60.25; H, 5.91; N, 2.06.

X-Ray crystal structure determination of 10b

A suitable crystal of compound **10b** was mounted and transferred into a cold nitrogen gas stream. Intensity data was collected with a Bruker Kappa-APEX2 system using micro-source Cu-Kα radiation. Data collection was carried out with the Bruker APEX2 suite of programs. Unit-cell parameters determination, integration and data reduction were performed with SAINT. SADABS was used for scaling and multi-scan absorption corrections. The structure was solved with SHELXT-2014^[3] and refined by full-matrix least-squares methods with SHELXL-2014^[3] using the WinGX suite^[4]. All nonhydrogen atoms were refined anisotropically. Hydrogen atoms were placed at calculated positions and refined with a riding model. The structure was deposited at the Cambridge Crystallographic Data Centre with number CCDC 1527404 and can be obtained free of charge via www.ccdc.cam.ac.uk.

Kinetic experiments of QM 4b. The disappearance of **4b** (0.15 mM) in 50 mM phosphate buffer (1 mL, pH 7.4, 37 °C) was followed by monitoring the decrease in UV absorbance at 325 nm (1 min/scan) using a Cary 50 Scan UV/VIS spectrophotometer. The disappearance of **4b** (0.15 mM) in the presence of thiols nucleophiles (50 mM) in 50 mM phosphate buffer (1 mL, pH 7.4, 37 °C) was followed by monitoring the decrease in absorbance at 325 nm (5 s/scan) at 37 °C. Pseudo first rate constants were determined in triplicate for at least four half-lives.

Peroxidase oxidation of 3a and 3b.

3a and **3b** at $0.1 \sim 0.25$ mM final concentration, were incubated in 50mM phosphate buffer (pH 7.4, 37 °C). When indicated, $0.02\% \sim 0.1\%$ H₂O₂ and $1 \sim 4$ equivalents HRP were also added after 5 min preincubation. The oxidation was followed by UV-Vis, HPLC and LC-MS.

Incubation of 3a and 3b with liver microsomes in the absence or presence of thiols.

Rat liver microsomes were isolated from rat pretreated for 7 days by 1g/L phenobarbital in drinking water (2 nmole P450/mg protein); ^[5] All the experiments with animals were performed in accordance with the French Agricultural and Fishing Ministry regulations, following an agreement from the French Ministry of Education and Research (Nb APAFIS#794-2016102716338280 v2). Male Srague Dawley rats (220-250 g) were used for the study. Human liver microsomes were obtained from Corning as UltraPool HLM-150 containing 350 pmol P450/mg protein. Typical incubations were performed in potassium phosphate buffer (0.1 M, pH 7.4) containing microsomes (0.5-1 mg protein/mL for rat microsomes and 1 mg/mL for HLM), 1 mM NADP, 15 mM glucose-6-phosphate, 2 unit/mL of glucose-6-phosphate dehydrogenase, and substrate (5-500 μ M) at 37 °C. Reactions were stopped either by adding one-half volume of CH₃CN:CH₃COOH (9:1) and centrifugation of precipitated proteins (12000 g, 10 min) or by solid-phase extraction using Oasis columns (Waters, St. Quentin en Yvelines, France) (1 mL loading, 1 mL water wash, and 1 mL CH₃OH elution), evaporation of the solvent with N₂, and redissolution in HPLC mobile phase.

HPLC-MS analyses.

HPLC-MS studies were performed on a Surveyor HPLC instrument coupled to a LCQ Advantage ion trap mass spectrometer (Thermo, Les Ulis, France), using a Biobasic C18 column (100 mm x 2 mm, 3 μ m) and a 20 min linear gradient of A) ammonium acetate (10 mM, pH 4.6) to B) CH₃CN:CH₃OH:H₂O (7:2:1) mixture at 200 μ L/min. For some compounds an alternative gradient system was used: A) H₂O: HCOOH 0.5% and B) CH₃CN: HCOOH 0.1%. Mass spectra were obtained by electrospray ionization (ESI) in positive ionization mode detection under the following conditions: source parameters: sheath gas, 20; auxiliary gas, 5; spray voltage, 4.5 kV; capillary temperature, 200 °C; capillary voltage, 15 V; and m/z range for MS recorded generally between 200 and 900. Semiquantitative analysis of the yield of different metabolites from the two quinone methide pathways was achieved by comparing the areas under the respective peaks of different compounds visible in the UV traces of the LC-MS analysis. High resolution HPLC-MS was performed with a Shimadzu Prominence HPLC system coupled to an Exactive-Orbitrap mass spectrometer (Thermo, Les Ulis, France), using a Satisfaction C18 column 100

mm x 2 mm, 3 μ m) (CIL, Sainte Foix la Grande, France) and the above alternative gradient and the same source parameters.

Cell Culture and Proliferation Assay.

Stock solutions (10 mM) of the compounds to be tested were prepared in DMSO and were kept at -20 °C in the dark. Serial dilutions in Dulbecco's modified eagle medium (DMEM) without phenol red/Glutamax I were prepared just prior to use. DMEM without phenol red, Glutamax I and fetal bovine serum were purchased from Gibco; MDA-MB-231 cells were obtained from ATCC (Manassas, VA, USA). Cells were maintained in a monolayer culture in DMEM with phenol red/Glutamax I supplemented with 9% fetal bovine serum at 37 °C in a 5% CO2/air-humidified incubator. For proliferation assays, MDA-MB-231 cells were plated in 1 mL of DMEM without phenol red, supplemented with 9% decomplemented and hormone-depleted fetal bovine serum, 1% kanamycin, 1% Glutamax I and incubated. The following day (D0), 1 mL of the same medium containing the compounds to be tested was added to the plates. After 3 days (D3) the incubation medium was removed and 2 mL of the fresh medium containing the compounds was added. At different days (D4, D5), the protein content of each well was quantified by methylene blue staining as follows: cell monolayers were fixed for 1 h at room temperature with methylene blue (1mg mL-1 in 50:50 water/MeOH mixture), then washed with water. After addition of HCl (0.1 M, 2 mL), the plate was incubated for 1 h at 37 °C and then the absorbance of each well (4 wells for each concentration) was measured at 655 nm with a Biorad spectrophotometer. The results are expressed as the percentage of proteins versus the control. Two independent experiments, run in quadruplicate, were performed.

A2780 and A2780cisR ovarian carcinoma cells were grown in RPMI 1640 supplemented with 10% fetal calf serum (FCS) and 1% glutamine. MRC-5 cells were grown in Gibco medium DMEM supplemented with 10% fetal calf serum (FCS) and 1% glutamine. Cells were maintained at 37 °C in a humidified atmosphere containing 5% CO₂. Cell growth inhibition was determined by an MTS assay according to the manufacturer's instructions (Promega, Madison, WI, USA). Briefly, the cells were seeded in 96-well plates $(2.5 \times 10^3 \text{ cells/well})$ containing 100 μ L of growth medium. After 24 h of culture, the cells were treated with the tested compounds at 10 different final concentrations. After 72 h of incubation, 20 μ L of

CellTiter 96® AQ_{ueous} One Solution Reagent was added for 2 h before recording absorbance at 490 nm with a spectrophotometric plate reader PolarStar Omega (BMG Labtech, USA). The dose-response curves were plotted with Graph Prism software and the IC_{50} values were calculated using the Graph Prism software from polynomial curves (four or five-parameter logistic equations).

NCI/DTP cytotoxicity tests.

The protocol for the determination of cytotoxicity on the 60 cell line panel can be found at http://dtp.nci.nih.gov/branches/btb/ivclsp.html; The DTP homepage can be accessed at http://dtp.cancer.gov/.

Figure S1. Proposed mechanisms for the formation of products 5 - 10.

Figure S2. Products obtained from incubation of **2** with liver microsomes (LM) and NADPH; $R^{*} = OH$, or $O(CH_2)_3NMe_2$.

Figure S3. The characteristic assignment of QM **4b** (blue solid point), QM *E***-11b** (brown hollow point) and QM *Z***-11b** (brown hollow grid) (¹H NMR spectrum of **3b** after 30 min oxidation by Ag_2O in acetone- d_6 , upper, 100 mM substrate with 5 equivalents of Ag_2O ; lower, 5 mM substrate with 1 equivalent of Ag_2O).

Figure S4. ¹H NMR study of the evolution of **4b** (blue solid point) in acetone- d_6 in 24 hrs under dark and anaerobic conditions (- hv, - O_2), light and aerobic conditions (+ hv, + O_2), dark and aerobic conditions (- hv, + O_2), light and anaerobic conditions (- hv, + O_2). Only very small amount of compound **9b** (brown hollow grid) was observed under light or aerobic conditions.

Figure S5. ¹H NMR study of the evolution of **4b** in acetone- d_6 in 7 days under dark and anaerobic conditions (- hv, - O₂), light and aerobic conditions (+ hv, + O₂), dark and aerobic conditions (- hv, + O₂), light and anaerobic conditions (- hv, + O₂). Only under dark and anaerobic conditions small amount of compound **9b** (**brown** hollow grid) could be observed after 7 days. There are more ketone compounds **7** (**black** solid point) and **8b** (**black** hollow triangle) in this case compared with those of **4b** in 24 h under identical

Figure S6. ¹H NMR study of the stability of **14b** (brown hollow point) in acetone- d_6 . There are more ketone compounds **7** (black solid point) and **8b** (black hollow triangle) after around 5 weeks.

Figure S7. ¹H NMR study of the stability of **15b** (violet solid diamond) in acetone- d_6 . There are more ketone compounds **7** (black solid point) and **8b** (black hollow triangle) after around one week.

Figure S8. ¹H NMR study of the stability of stability of 16b (brown solid diamond) in acetone- d_6 . There are more ketone compounds 7 (black solid point) and 8b (black hollow triangle) after around one week.

Table S	1. Crystal	lographic	Data	for	10b.
---------	------------	-----------	------	-----	------

10b			
Formula	C ₂₇ H ₂₄ FeO ₃	Selected bond lengths	(Å)
Molecular Weight	452.31	C(1)-C(2)	1.524(3)
Crystal description	Orange stick	C(1)-C(6)	1.530(3)
Crystal size (mm)	0.35x 0.15x 0.02	C(1)-C(16)	1.538(3)
λ (Å)	1.5418	C(1)-C(22)	1.550(3)
Temperature (K)	200(1)	C(2)-C(3)	1.321(3)
Crystal system	Monoclinic	C(2)-O(1)	1.373(3)
Space group	$P 2_1/c$	C(5)-O(1)	1.449(3)
<i>a</i> (Å)	11.0994(4)	Fe(1)-C(6)	2.051(3)
<i>b</i> (Å)	8.5265(3)	Selected Bond Angles	(°)
<i>c</i> (Å)	21.7146(8)	C(2)-C(1)-C(22)	108.2(2)
α (°)	90	C(2)-C(1)-C(6)	111.9(2)
β(°)	97.392 (3)	C(2)-O(1)-C(5)	106.8(2)
γ (°)	90	C(3)-C(2)-O(1)	113.8(2)
Volume (Å3)	2037.97(13)	C(16)-C(1)-C(6)	109.2(2)
Z	4	C(1)-C(6)-C(7)	125.8(2)
R	0.045	C(2)-C(3)-C(4)	109.3(2)
Rw	0.1217		
GOF	1.068		

Table S2. Diversity of products resulting from oxidation of ferrocenyl compounds **3** by liver microsomes (0.5 mg protein/ ml incubate) in the presence of NADPH, or by the HRP + H_2O_2 system (0.02% HRP + 1 equivalent of H_2O_2).

C		QMs 4 pathway								QMs 11 pathway		
Comp.	Conditions	5	6	7	8	9	10	Thiol adducts	12	18	Thiol adducts	
	PB, HRP + H_2O_2 , 3 min	+	trace	+	+	++	trace		+	+		
	PB, LM, 30 min	++	trace	++	++++	trace	trace		trace	++		
3b	PB, LM, ME, 30 min	++	trace	++	++++	trace	trace	+	trace	+	+	
3a	PB, LM, NACM, 30 min	++	trace	++	++++	trace	trace	++	trace	+	+	
	PB, LM, GSH, 30 min	+	trace	++	++	trace	trace	++++	trace	+	+	
	PB, HRP + H_2O_2 , 3 min	+	trace	+	+	++	trace		+	+		
	PB, LM, 30 min	++	trace	++	++++	trace	trace		trace	++		
	PB, LM, ME, 30 min	++	trace	++	++++	trace	trace	+	trace	+	+	
	PB, LM, NACM, 30 min	++	trace	++	++++	trace	trace	++	trace	+	+	
	PB, LM, GSH, 30 min	+	trace	++	++	trace	trace	++++	trace	+	+	

(a) Semiquantitative analysis method was used to determine the amount of products according to their HPLC or LC-MS spectra: trace, < 1%; +, 1% ~ 5%; ++, 5% ~ 30%; ++++, >30%.

Table S3. Diversity of products resulting from the oxidation of ferrocenyl compounds **3** by liver microsomes (0.85 mg protein/ ml incubate) in the presence of NADPH, or by the HRP + H_2O_2 system (0.1% HRP + 4 equivalents of H_2O_2).

0				Q	QMs 11 pathway						
Comp.	Conditions	5	6	7	8	9	10	Thiol adducts	12	18	Thiol adducts
	PB, HRP + H_2O_2 , 3 min	+	trace	++	++++	+	+		trace	trace	
	PB, LM, 30 min	++	trace	++++	++++	trace	trace		trace	+	
3b	PB, LM, ME, 30 min	++	trace	++++	++++	trace	trace	trace	trace	+	+
	PB, LM, NACM, 30 min	++	trace	++++	++++	trace	trace	trace	trace	+	+
	PB, LM, GSH, 30 min	+	trace	++++	++++	trace	trace	+	trace	+	trace
	PB, HRP + H_2O_2 , 3 min	+	trace	++	++++	+	+		trace	trace	
	PB, LM, 30 min	+	trace	++++	++++	trace	trace		trace	+	
3a	PB, LM, ME, 30 min	++	trace	++++	++++	trace	trace	trace	trace	+	++
	PB, LM, NACM, 30 min	++	trace	++++	++++	trace	trace	trace	trace	+	+
	PB, LM, GSH, 30 min	+	trace	++++	++++	trace	trace	++	trace	+	trace

(a) Semiquantitative analysis method was used to determine the amount of products according to their HPLC or LC-MS spectra: trace, < 1%; +, 1% ~ 5%; ++, 5% ~ 30%; ++++, >30%.

Compound	Mr (Calc.)		RТ	
Compound	Wir (Curc.)	MS	MS^2	KI
15a(1,6-ME)	514	537 [<i>M</i> + Na] ⁺	437, 371, 255	16.67
16a(1,6-NACM)	613	636 [<i>M</i> + Na] ⁺	437, 371, 255	16.46
17a(1,6-SG)	743	766 [<i>M</i> + Na] ⁺	437, 371, 255	11.85
19a(1,8-ME)	514	514 [<i>M</i>] ⁺	449, 438, 373, 270	14.12, 15.84
20a(1,8-NACM)	613	613 [<i>M</i>] ⁺	548, 438, 373, 270	13.95, 15.79
21a(1,8-SG)	743	743 [<i>M</i>] ⁺	456, 373, 280	8.41, 9.39
15b(1,6-ME)	530	553 [<i>M</i> + Na] ⁺	453, 387, 267	14.11
16b(1,6-NACM)	629	652 [<i>M</i> + Na] ⁺	453, 387, 267	14.03
17b(1,6-SG)	759	782 [<i>M</i> + Na] ⁺	453, 387, 267	10.41
19b(1,8-ME)	530	530 [<i>M</i>] ⁺	465, 454, 389, 286	12.50, 12.96
20b(1,8-NACM)	629	629 [<i>M</i>] ⁺	564, 454, 389, 286	12.50, 13.10
21b(1,8-SG)	759	759 [<i>M</i>] ⁺	456, 373, 280	8.55, 8.92

Table S4. Retention times (RT), MS, and MS² properties of thiol adducts 15, 16, 17 resulting from QM4, and 19, 20, 21 resulting from QM 11.

National Cancer Institute Developmental Therapeutics Program															
NSC : 775548 / 1 Experiment ID : 1311NS86							Test	Type : 08	Units : N	Nolar					
Report Date	Januar	/ 14, 201	14		Tes	t Date	: Nove	mber 12,	2013			QNS	1	MC :	
COMI : P53 ((130859)				Sta	in Rea	gent : S	RB Dual-	Pass I	Related	ł	SSP	L : 0Y9M		
	Time			Maar	Ontion	Lo	og10 Cor	ncentration	n	oreent (Provide				
Panel/Cell Line	Zero	Ctrl	-8.0	-7.0	-6.0	-5.0	-4.0	-8.0	-7.0	-6.0	-5.0	-4.0	GI50	TGI	LC50
CCRF-CEM HL-60(TB) MOLT-4 RPMI-8226 SR	0.539 0.667 0.612 0.957 0.252	1.738 2.727 2.258 2.275 1.046	1.768 2.633 2.373 2.273 1.078	1.386 2.218 2.165 1.846 0.681	0.797 0.957 1.267 1.392 0.396	0.555 0.574 0.653 0.630 0.225	0.363 0.553 0.411 0.815 0.207	102 95 107 100 104	71 75 94 67 54	22 14 40 33 18	1 -14 2 -34 -11	-33 -17 -33 -15 -18	2.63E-7 2.59E-7 6.49E-7 3.21E-7 1.29E-7	1.09E-5 3.18E-6 1.18E-5 3.10E-6 4.24E-6	> 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4 > 1.00E-4
Non-Small Cell Lur A549/ATCC HOP-62 HOP-92 NCI-H226 NCI-H226 NCI-H23 NCI-H322M NCI-H460 NCI-H522	ng Cancer 0.398 0.830 0.944 0.851 0.672 0.888 0.386 1.103	1.457 1.766 1.443 2.259 2.033 2.233 3.254 2.174	1.480 1.729 1.412 2.196 2.001 2.256 3.272 2.130	1.400 1.644 1.294 2.113 1.555 2.307 2.813 1.979	0.572 1.111 1.192 1.511 0.816 2.069 0.692 1.748	0.065 0.365 0.882 0.568 0.236 0.188 0.189 0.390	0.113 0.162 0.270 0.816 0.205 0.139 0.208 0.547	102 96 94 98 102 101 96	95 87 70 90 65 105 85 82	16 30 50 47 11 88 11 60	-84 -56 -7 -33 -65 -79 -51 -65	-72 -80 -71 -4 -70 -84 -46 -50	3.72E-7 4.45E-7 9.67E-7 8.46E-7 1.88E-7 1.69E-6 2.94E-7 1.21E-6	1.46E-6 2.23E-6 7.63E-6 3.84E-6 1.38E-6 3.36E-6 1.49E-6 3.03E-6	4.61E-6 8.50E-6 4.67E-5 > 1.00E-4 6.35E-6 6.71E-6 7.63E-6
Colon Cancer COLO 205 HCC-2998 HCT-116 HCT-15 KM12 SW-620	0.527 0.568 0.207 0.284 0.508 0.314	1.435 1.953 1.806 2.269 2.624 2.596	1.372 1.951 1.759 2.050 2.628 2.439	1.213 1.893 1.439 1.878 2.435 1.538	0.817 1.299 0.594 1.008 1.609 1.138	0.102 0.072 0.037 0.037 0.222 0.759	0.118 0.113 0.030 0.075 0.306 0.160	93 100 97 89 100 93	76 96 77 80 91 54	32 53 24 36 52 36	-81 -87 -82 -87 -56 19	-78 -80 -86 -74 -40 -49	3.84E-7 1.05E-6 3.25E-7 4.91E-7 1.04E-6 1.61E-7	1.92E-6 2.38E-6 1.69E-6 1.97E-6 3.02E-6 1.92E-5	5.33E-6 5.41E-6 4.99E-6 5.02E-6 > 1.00E-4
CNS Cancer SF-268 SF-295 SF-539 SNB-19 SNB-75 U251	0.564 0.641 0.954 0.705 0.763 0.597	1.893 2.647 2.577 2.184 1.515 1.836	1.914 2.362 2.321 2.137 1.271 1.787	1.680 1.926 1.419 1.881 1.266 1.374	0.944 0.929 0.866 1.240 1.102 0.921	0.498 0.482 0.242 0.992 0.781 0.573	0.250 0.136 0.312 0.167 0.217 0.016	102 86 84 97 68 96	84 64 29 80 67 63	29 14 -9 36 45 26	-12 -25 -75 19 2 -4	-56 -79 -67 -76 -72 -97	4.11E-7 1.92E-7 4.13E-8 4.79E-7 5.91E-7 2.22E-7	5.12E-6 2.32E-6 5.69E-7 1.59E-5 1.08E-5 7.36E-6	7.40E-5 2.92E-5 4.20E-6 5.30E-5 5.11E-5 3.11E-5
Melanoma LOX IMVI MDA-MB-435 SK-MEL-2 SK-MEL-2 SK-MEL-5 UACC-257 UACC-62	0.316 0.452 0.554 1.069 0.627 0.621 1.042 0.774	2.162 1.732 2.500 2.220 1.859 2.475 2.044 2.948	2.172 1.539 2.188 2.200 1.817 2.300 2.039 2.709	1.607 0.873 1.953 2.108 1.786 1.460 1.985 1.815	0.477 0.252 1.450 2.026 1.484 0.971 1.723 0.747	0.003 0.180 0.387 0.341 0.189 0.021 0.575 0.112	0.083 0.060 0.077 0.246 0.218 0.135 0.051 0.119	101 85 84 98 97 91 100 89	70 33 72 90 94 45 94 48	9 -44 46 83 70 19 68 -4	-99 -60 -30 -68 -70 -97 -45 -86	-74 -87 -86 -77 -65 -78 -95 -85	2.11E-7 4.69E-8 7.03E-7 1.66E-6 1.38E-6 7.85E-8 1.44E-6 8.88E-8	1.20E-6 2.67E-7 4.01E-6 3.55E-6 3.15E-6 1.46E-6 4.00E-6 8.53E-7	3.51E-6 2.26E-6 2.26E-5 7.59E-6 7.20E-6 3.95E-6 1.27E-5 3.69E-6
Ovarian Cancer IGROV1 OVCAR-3 OVCAR-4 OVCAR-5 OVCAR-5 NCI/ADR-RES SK-OV-3	0.763 0.513 0.665 0.693 0.632 0.494 0.933	2.332 1.625 1.455 1.466 2.173 1.778 1.588	2.422 1.693 1.267 1.377 2.135 1.775 1.605	2.188 1.524 1.241 1.456 1.772 1.392 1.523	1.822 1.246 1.177 1.004 1.001 0.743 1.217	0.940 0.057 0.072 0.101 0.396 0.268 0.746	0.487 0.091 0.447 0.137 0.389 0.376 0.044	106 106 76 88 98 100 103	91 91 73 99 74 70 90	67 66 65 40 24 19 43	11 -89 -89 -85 -37 -46 -20	-36 -82 -33 -80 -38 -24 -95	2.05E-6 1.27E-6 1.25E-6 6.80E-7 3.01E-7 2.48E-7 7.22E-7	1.73E-5 2.66E-6 2.64E-6 2.09E-6 2.46E-6 1.99E-6 4.82E-6	 > 1.00E-4 5.60E-6 > 5.22E-6 > 1.00E-4 > 1.00E-4 2.50E-5
Renal Cancer 786-0 A498 ACHN CAKI-1 RXF 393 SN12C TK-10 UO-31	0.506 1.386 0.448 0.613 0.735 0.945 0.971 0.831	1.836 2.302 1.858 2.544 1.356 3.097 2.136 2.325	1.722 2.168 1.713 2.362 1.270 3.034 2.144 2.325	0.913 1.757 0.612 1.542 1.070 2.830 1.972 1.793	0.563 1.543 0.593 1.090 0.928 1.604 1.938 1.419	0.278 1.055 0.417 0.575 0.388 0.146 1.184 1.142	0.099 0.050 0.171 0.038 0.162 0.177 0.118 0.250	91 85 90 91 86 97 101 100	31 41 12 48 54 88 86 64	4 17 10 25 31 31 83 39	-45 -24 -7 -6 -47 -85 18 21	-80 -96 -62 -94 -78 -81 -88 -70	4.80E-8 6.14E-8 3.22E-8 9.01E-8 1.49E-7 4.57E-7 3.23E-6 3.75E-7	1.22E-6 2.61E-6 3.92E-6 6.30E-6 2.50E-6 1.84E-6 1.84E-6 1.49E-5 1.70E-5	1.38E-5 2.29E-5 6.06E-5 3.16E-5 1.23E-5 5.01E-6 4.40E-5 6.03E-5
Prostate Cancer PC-3 DU-145	0.671 0.354	1.471 1.477	1.379 1.556	1.260 1.272	1.107 0.512	0.097 0.057	0.119 0.029	88 107	74 82	54 14	-86 -84	-82 -92	1.08E-6 2.94E-7	2.45E-6 1.39E-6	5.57E-6 4.50E-6
Breast Cancer MCF7 MDA-MB-231/ATC HS 578T BT-549 T-47D MDA-MB-468	0.349 CC 0.612 1.009 0.820 0.857 0.681	1.995 1.415 2.181 1.638 1.493 1.239	1.677 1.433 2.099 1.423 1.414 1.212	1.263 1.315 2.040 1.345 1.343 1.206	0.682 1.209 1.865 1.236 1.103 1.077	0.068 0.294 0.750 0.415 0.638 0.258	0.159 0.346 0.942 0.130 0.426 0.175	81 102 93 74 88 95	55 88 88 64 76 94	20 74 73 51 39 71	-81 -52 -26 -49 -26 -62	-55 -44 -7 -84 -50 -74	1.43E-7 1.56E-6 1.71E-6 1.02E-6 4.98E-7 1.44E-6	1.59E-6 3.88E-6 5.49E-6 3.22E-6 3.99E-6 3.41E-6	4.97E-6 > 1.00E-4 1.04E-5 9.68E-5 8.11E-6

Table S5. In Vitro testing results for 3b from the NCI/DTP, data from one experiment shown, maximum concentration: 100μ M, after 48 h incubation.

Compound	GI ₅₀ (µM)	TGI (µM)	LC ₅₀ (µM)
2b	0.52	4.28	22.9
3 b	0.40	3.19	18.3
Tamoxifen ^a	4.31	11.7	31.3
Cisplatin ^a	15	58.4	92.5

 Table S6. Antiproliferative effects (mean-graph midpoint) of 2b, 3b, tamoxifen and cisplatin in the

 NCI-60 screen.

(a) The data of tamoxifen and cisplatin from NCI/DTP screening, June 2016, maximum concentration: 100μ M, after 48 h incubation.

Supplementary References

(1) Y. Wang, P. Pigeon, S. Top, M. J. McGlinchey, and G. Jaouen, *Angew. Chem. Int. Ed.* 2015, 54, 10230-10233.

- (2) D. Y. Curtin, R. J. Harder, J. Am. Chem. Soc. 1960, 82, 2357-2368.
- (3) G. M. Sheldrick, Acta Cryst. A 2008, 64, 112-122.
- (4) L. J. Farrugia, J. Appl. Cryst. 1999, 32, 837-838.

(5) P. Kremers, P. Beaune, T. Cresteil, J. de Graeve, S. Columelli, J. P. Leroux, J. E. Gielen. *Eur. J. Biochem.* **1981**, *118*(3), 599-606.