
Kernel density estimation
Kernel density estimation is a non-parametric method to estimate an unknown
one-dimensional distribution f based on a given sample from this distribution.
Kernel density estimators are closely related to histograms, but usually they are
smoother. Denoting the sample by x1, . . . ,xn, the kernel density estimator of f is
then defined as
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Here K is the so-called kernel, i.e., a non-negative function that integrates to one
and h is the so-called bandwidth of the kernel. Furthermore, the so-called scaled
kernel Kh is defined as Kh(x) = 1

hK( x
h). That is, Kh is obtained by stretching or

shrinking, respectively, K regarding its width by the factor h, rescaling its height
so that K again integrates up to one. A frequent choice for the kernel is the Gaus-
sian kernel, i.e., K(y) = φ(y), where φ is the standard normal density function,
i.e.,
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Alternative kernel definitions are, e.g., uniform, triangular, and Epanechnikov,
to name only a few. For the remainder of this document, we will consider the
Gaussian kernel case.

Figure 1: A histogram (left) and a kernel density estimator (right) for 6 data points
x1 = −2.1, x2 = −1.3, x3 = −0.4, x4 = 1.9, x5 = 5.1, x6 = 6.2, using Gaussian
kernels with a variance of 2.25, i.e., h = 1.5. The 6 individual kernels are colored
in red, the resulting kernel density estimator in blue. The figure has been taken
from Wikipedia (https://en.wikipedia.org/wiki/Kernel_density_estimation).
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Figure 1 illustrates the principle of kernel density estimation by means of a small
sample with six observations.

The bandwidth h is an important parameter for kernel density estimation. It allows
to control the smoothness of the kernel density estimator. More precisely, the
higher h is chosen, the smoother the resulting kernel density estimator becomes.
This effect is illustrated in Figure 2. One the one hand, one can observe the kernel
density estimator becomes over-smoothed for high values of h, which results in
much of the underlying structure to be obscured. On the other hand, the kernel
density estimator becomes under-smoothed for low values of h, resulting in too
many spurious data artifacts.
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Figure 2: Kernel density estimators for h = 3,1.5,1,0.5 using the same data as
above.

Various approaches exist to determine appropriate values for h, such as such as
cross-validation, Silverman’s rule (Silverman, 1986), and Scott’s variation of Sil-
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verman’s rule (Scott, 1992). Silverman’s rule sets

h = 0.9min
(

σ̂x,
IQRx

1.34

)
n−1/5,

where n, σ̂x and IQRx correspond to the sample size, the standard deviation of
the sample and the sample’s interquartile range. For Scott’s variation of the band-
width, the value 0.9 is replaced by 1.06.
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