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S1 Supplementary Methods

S1.1 Implementation details

Algorithms 1 and 2 in the main manuscript present FastCMH using high-level pseudocode, which we reproduce here
again for convenience. Specific implementation details are left out for the sake of clarity, but the source code is
available at the URL mentioned in the main manuscript (Abstract!Availability).

The core of FastCMH is the routine get testable regions, which aims at computing Tarone’s adjusted sig-
nificance threshold �

tar

and retrieving the set of testable genomic regions R
T

(�
tar

). In this section, we describe
precisely how specific steps of get testable regions can be implemented e�ciently.

Algorithm 1 FastCMH

Input: Dataset G = {g
i

, y
i

, c
i

}n
i=1, desired FWER ↵

Output: Set of non-overlapping conditionally associated genomic regions R
sig,filt

= {Jt
s

, t
e

K | p(Jt
s

, t
e

K)  �
tar

}
1: (�

tar

,R
T

(�
tar

)) get testable regions(G,↵)
2: R

sig,raw

 {Jt
s

, t
e

K 2 R
T

(�
tar

) | p(Jt
s

, t
e

K)  �
tar

}
3: R

sig,filt

 filter overlapping regions(R
sig,raw

)
4: Return R

sig,filt

Algorithm 2 get testable regions

Input: Dataset G = {g
i

, y
i

, c
i

}n
i=1, desired FWER ↵

Output: Tarone’s adjusted significance threshold �
tar

and set of testable genomic regions R
T

(�
tar

)
1: �  1, R

T

(�) ;
2: R

cand

 {Jt
s

, t
e

K | 1  t
s

 t
e

 l}
3: for Jt

s

, t
e

K 2 R
cand

do . Regions in R
cand

enumerated firstly in increasing order of length and then starting
position

4: if p
min

(Jt
s

, t
e

K)  � then
5: R

T

(�) R
T

(�) [ {Jt
s

, t
e

K}
6: while � > ↵/|R

T

(�)| do
7: Decrease �
8: P  {Jt

s

, t
e

K 2 R
T

(�) | p
min

(Jt
s

, t
e

K) > �}
9: R

T

(�) R
T

(�) \ P
10: if pruning condition(Jt

s

, t
e

K) then
11: Remove all Jt0

s

, t0
e

K � Jt
s

, t
e

K from R
cand

12: Return �
tar

 � and R
T

(�
tar

) = R
T

(�)

In Line 4 of Algorithm 2, we assess if the genomic region Jt
s

, t
e

K being processed is testable. This requires
computing the corresponding meta-marker g

i

(Jt
s

, t
e

K) for all individuals i in the dataset. If implemented naively,

this would have complexity O(n(t
e

� t
s

+ 1)) with n =
P

k

h=1 nh

being the total number of individuals and
t
e

� t
s

+1 the number of variants in the genomic region. However, since candidate genomic regions are enumerated
in increasing order of length, it is possible to obtain the meta-marker g

i

(Jt
s

, t
e

K) corresponding to region Jt
s

, t
e

K from
either the meta-marker g

i

(Jt
s

, t
e

� 1K) of region Jt
s

, t
e

� 1K or the meta-marker g
i

(Jt
s

+1, t
e

K) of region Jt
s

+1, t
e

K.
Therefore, the complexity can be reduced to O(n). Moreover, since g

i

(Jt
s

, t
e

� 1K) = 1 or g
i

(Jt
s

+ 1, t
e

K) = 1
imply that g

i

(Jt
s

, t
e

K) = 1, the complexity can be further reduced to O(n � x
prev

), where x
prev

is the number
of individuals that have meta-marker equal to 1 in either region Jt

s

, t
e

� 1K or region Jt
s

+ 1, t
e

K. Implementing
the computation of the meta-marker in this manner in Line 4 of Algorithm 2 greatly increases the e�ciency of
the algorithm with only a moderate increase in memory usage, equivalent to storing a second copy of the original
dataset in memory.

In Line 7 of Algorithm 2, the tentative significance threshold � is decreased until the FWER condition
�  ↵/|R

T

(�)| is satisfied again. In practice, we implement this step as �  10���, where � is an implementation-
dependent hyperparameter. This is equivalent to performing grid-search on �, with logarithmically-spaced candi-
date values with step-size � in the log scale. Provided that � is not too large, we found this hyperparameter to
have a negligible e↵ect on the results. We fixed � = 0.06 throughout our experiments, corresponding to considering
500 values of � in a logarithmic grid between � = 1 and � = 10�30.

In Lines 8 and 9, we remove all previously enumerated genomic regions that were found to be testable using
previous values of �, but are no longer testable due to � having been decreased in Line 7 of Algorithm 2. Based
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on the scheme to decrease � described in the paragraph above, the set P of genomic regions to be removed from
R

T

(�) is composed of those genomic regions Jt
s

, t
e

K currently in R
T

(�) that satisfy � < p
min

(Jt
s

, t
e

K)  10��. This
property shows that it is possible to implement Lines 8 and 9 with O(1) complexity by using a data-structure for
R

T

(�) that stores genomic regions in di↵erent bins according to their minimum attainable p-value. More precisely,
we assign a genomic region Jt

s

, t
e

K to the i-th bin if 10�i� < p
min

(Jt
s

, t
e

K)  10�(i�1)�. With this data -structure,
each execution of Lines 8 and 9 corresponds to removing exactly one bin from R

T

(�), a O(1) operation that
requires no search.

Finally, a possibility that should be considered is the case in which R
T

(�) is too large to fit in memory.
While this has not occurred in any of our experiments, it could be the case if FastCMH was applied to biobank-
sized datasets. Notice that, in principle, in order to compute Tarone’s adjusted significance threshold �

tar

, only
the number of testable genomic regions |R

T

(�)| is needed. In other words, each bin described in the previous
paragraph needs to store only the number of elements currently in the bin, not the elements themselves. Once
�
tar

has been obtained, the enumeration procedure can be executed again from scratch but with � = �
tar

fixed
throughout the enumeration. During this second enumeration, for each genomic region with p

min

(Jt
s

, t
e

K)  �
tar

,
the p-value for the genomic region can be computed to assess significance. Implementing FastCMH in this manner
avoids the need to store R

T

(�) in memory, only at the cost of roughly doubling the runtime, due to the need to
execute the enumeration procedure twice.

S1.1.1 Filtering procedure used in FastCMH

Algorithm 3 describes the filter overlapping regions method used in Step 3 in Algorithm 1 above.

Algorithm 3 filter overlapping regions

Input: Set of regions with the associated p-values, R
sig,raw

= {(Jt
s

, t
e

K, p(Jt
s

, t
e

K))}
Output: Set of non-overlapping regions R

sig,filt

⇢ R
sig,raw

which are most significant in each cluster
1: Determine disjoint clusters C1, C2, . . . , C`

, where each cluster is the union of a subset of R
sig,raw

2: for each Jt
s

, t
e

K 2 R
sig,raw

do
3: for j 2 {1, 2, . . . , `} do
4: if Jt

s

, t
e

K belongs to C
j

then
5: Assign Jt

s

, t
e

K the label j

6: for j 2 {1, 2, . . . , `} do
7: Find the region Jt

s,j

, t
e,j

K that has the smallest p-value p(Jt
s,j

, t
e,j

K) amongst all region in C
j

8: Let R
sig,filt

= {Jt
s,j

, t
e,j

K | j = 1, 2, . . . , `}
9: Return R

sig,filt

In simple terms, the regions in R
sig,raw

are first grouped into clusters; if one considers the union of all regions
in R

sig,raw

, then there would be several groups of overlapping regions which each form larger contiguous regions.
We call each of these larger contiguous regions a cluster. Note that the clusters do not overlap, but the regions
within each cluster do overlap. Figure S1 shows an example of a cluster containing four regions. The clusters can
be determined in Line 1 by following two rules: (i) every regions must belong to one cluster, and (ii) if two regions
overlap, they belong to the same cluster.

After the clusters C1, C2, . . . , C`

have been determined, another pass is made through the regions and each
region is given the label {1, 2, . . . , `} of the cluster to which it belongs (Lines 2 to 5).

Next, the region in each cluster which has the smallest p-value is determined (Lines 6 to 7). In the case of ties
(two or more region with the same minimum p-value), the region that has the longest length is returned. If the
lengths are the same, then the region with the smallest ⌧ is returned.

Finally, we construct R
sig,filt

in Line 8 as the collection of those regions that are the most significant in each
cluster (i.e. one interval per cluster). Figure S1 illustrates the procedure for a single cluster; it illustrates how four
overlapping regions (red) form a single cluster (magenta), and the filtering process identifies the region with the
smallest p-value (the green region, p=1e-9). This filtering procedure was first used in Llinares-López et al. (2015).
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1e-9

1e-9
1e-5

1e-4

1e-7

Filtering

Cluster

Figure S1: An illustrative example of filter overlapping regions. There are four overlapping significant
regions (in red), which together form a single cluster (magenta). The result of the filtering in this cluster is the
green region, since it has the smallest p-value, p=1e-9

S1.2 Theoretical aspects of FastCMH

S1.2.1 p-value for the CMH test

We use the same notation as in the contingency table in the main document. n
h

is the number of individuals with
c
i

= h, divided into n1,h cases and n2,h controls. Similarly, x
h

is the number of individuals with c
i

= h for which
the meta-marker g

i

(Jt
s

, t
e

K) takes value 1, a
h

of which are cases and x
h

� a
h

controls. Using those parameters
{n

h

, n1,h, xh

, a
h

}k
h=1, we can compute the p-value p(Jt

s

, t
e

K) for a genomic region Jt
s

, t
e

K under the CMH test as:

p(Jt
s

, t
e

K) = 1� F
�

2
1

0

B@

⇣P
k

h=1 ah �
xhn1,h

nh

⌘2

P
k

h=1
n1,h

nh

⇣
1� n1,h

nh

⌘
x
h

⇣
1� xh

nh

⌘

1

CA

with F
�

2
1
(·) being the cumulative distribution function of a �2 random variable with 1 degree of freedom.

S1.2.2 Minimum attainable p-value for the CMH test

Let Jt
s

, t
e

K be an arbitrary genomic region with table margins {x
h

, n1,h, nh

}k
h=1. Then, as shown in Papaxanthos

et al. (2016), Tarone’s minimum attainable p-value p
min

(Jt
s

, t
e

K) when using the CMH test can be obtained as:

p
min

(Jt
s

, t
e

K) = p
min

(x1, . . . , xk

) = 1� F
�

2
1
(T

max

(x1, . . . , xk

))

where T
max

(x1, . . . , xk

) = max(T (a
min

, x1, . . . , xk

), T (a
max

, x1, . . . , xk

)), a
min

=
P

k

h=1 max(0, x
h

� n2,h), amax

=P
k

h=1 min(x
h

, n1,h) and:

T (a, x1, . . . , xk

) =

⇣
a�

P
k

h=1 xh

n1,h

nh

⌘2

P
k

h=1
n1,h

nh

⇣
1� n1,h

nh

⌘
x
h

⇣
1� xh

nh

⌘

Since all genomic regions Jt
s

, t
e

K have the same values for {n1,h, nh

}k
h=1, they can be treated as constants, and the

dependence of p
min

(Jt
s

, t
e

K) = p
min

(x1, . . . , xk

) on them has been omitted to simplify the notation.

S1.2.3 Pruning condition for the CMH test

In this section, we revise the novel pruning condition for the CMH test proposed in Papaxanthos et al. (2016),
which we employ in Line 10 of Algorithm 2 as discussed in the main manuscript. For the sake of clarity, we adapt
their notation and rephrase their statements to match our setting: mining significantly associated genomic regions
while correcting for a categorical covariate. For a more in-depth treatment of the theory, we refer the reader
to Papaxanthos et al. (2016).

As discussed in Section 3.2 of the main manuscript, the pruning condition involves computing a lower bound
p̃
min

on the minimum attainable p-value p
min

. This lower bound p̃
min

is defined only on the set of genomic regions
R

C

= {Jt
s

, t
e

K |x
h

2 Jmax(n1,h, nh

� n1,h), nh

K 8h 2 {1, . . . , k}}, where x
h

is the number of individuals belonging
to category h of the covariate for which the meta-marker of region Jt

s

, t
e

K has value 1. Pruning never occurs for
genomic regions which do not belong to R

C

. In practice, a large proportion of all candidate genomic regions
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belong to R
C

because their corresponding genomic meta-markers accumulate meta-minor alleles as the length of
the region grows.

For convenience, we introduce the following notation in the remainder of this section. Given a genomic re-
gion Jt

s

, t
e

K, we define R
sup

(Jt
s

, t
e

K) to be the set of all genomic super-regions Jt0
s

, t0
e

K which contain Jt
s

, t
e

K, i.e.
R

sup

(Jt
s

, t
e

K) = {Jt0
s

, t0
e

K | Jt0
s

, t0
e

K ◆ Jt
s

, t
e

K}. Also, for a genomic region Jt
s

, t
e

K, we define its vector of meta-minor
allele counts x 2 Nk as x = (x1, x2, . . . , xk

). Whenever relevant, we make explicit the dependence of the minimum
attainable p-value of a genomic region Jt

s

, t
e

K on x by denoting p
min

(Jt
s

, t
e

K) as p
min

(x). Finally, we write x0 � x
if x0

h

� x
h

8 h = 1, . . . , k.

Definition 1. Let Jt
s

, t
e

K 2 R
C

be a genomic region and let x be its k-dimensional vector of meta-minor allele
counts. The lower bound p̃

min

: Jt
s

, t
e

K 2 R
C

! p̃
min

(Jt
s

, t
e

K) is defined as:

p̃
min

(Jt
s

, t
e

K) = min
Jt0s,t0eK2Rsup(Jts,teK)

p
min

(Jt0
s

, t0
e

K) (1)

= min
x

0�x

p
min

(x0)

The lower bound p̃
min

satisfies the following two properties, which together allow e�ciently pruning the search
space:

Property 1. p
min

(Jt
s

, t
e

K) � p̃
min

(Jt
s

, t
e

K) holds for all genomic regions Jt
s

, t
e

K 2 R
C

.

Proof. The proof follows directly from the definition of p̃
min

. Indeed, p̃
min

(Jt
s

, t
e

K) = min
Jt0s,t0eK2Rsup(Jts,teK)

p
min

(Jt0
s

, t0
e

K)

implies p̃
min

(Jt
s

, t
e

K)  p
min

(Jt
s

, t
e

K) since Jt
s

, t
e

K 2 R
sup

(Jt
s

, t
e

K).

Property 2. p̃
min

(Jt0
s

, t0
e

K) � p̃
min

(Jt
s

, t
e

K) holds for all genomic regions Jt
s

, t
e

K 2 R
C

, Jt0
s

, t0
e

K 2 R
sup

(Jt
s

, t
e

K).

Proof. p̃
min

(Jt
s

, t
e

K)  p̃
min

(Jt0
s

, t0
e

K) follows from the definition of p̃
min

and from R
sup

(Jt0
s

, t0
e

K) ⇢ R
sup

(Jt
s

, t
e

K).

These properties lead to the main statement: p̃
min

lets us prune a large proportion of non-testable candidate
regions without actually computing their minimum attainable p-values p

min

.

Theorem 1 (Papaxanthos et al. (2016), Theorem 1). Let � be the current adjusted significance threshold. If
p̃
min

(Jt
s

, t
e

K) > � holds for Jt
s

, t
e

K 2 R
C

, then all genomic regions Jt0
s

, t0
e

K 2 R
sup

(Jt
s

, t
e

K) are not testable and can
be pruned from the search space R

cand

.

Proof. Theorem 1 follows from the definition of p̃
min

combined with Properties 1 and 2, indeed: p̃
min

(Jt
s

, t
e

K) >
� ) 8Jt0

s

, t0
e

K 2 R
sup

(Jt
s

, t
e

K), p
min

(Jt0
s

, t0
e

K) �
Prop. 1

p̃
min

(Jt0
s

, t0
e

K) �
Prop. 2

p̃
min

(Jt
s

, t
e

K) > �. Therefore, it ensues

that Jt0
s

, t0
e

K is not-testable.

Theorem 1 explains why the pruning condition in Line 10 of Algorithm 2 evaluates to True if and only if
p̃
min

(Jt
s

, t
e

K) > �. In this case, all genomic super-regions of Jt
s

, t
e

K cannot be testable and are pruned from the set
of candidate regions R

cand

. Property 2 is key to the pruning step described in Theorem 1, as it is that monotonicity
property what allows discarding all super-regions of a genomic region. It also explains the necessity of using a lower
bound p̃

min

instead of the minimum p-value p
min

, which is not monotonic in R
C

when k � 2. This problem does
not occur when k = 1, i.e. when categorical covariates are not taken into account.

Since the pruning criterion has to be evaluated for all enumerated regions, it is essential to compute p̃
min

e�ciently. However, naively evaluating p̃
min

, as defined in Equation 1, would be too computationally inten-
sive as it would require one to optimize p

min

over a set of size
Q

k

h=1 min(n1,h, nh

� n1,h) = O(mk) with m =

(
Q

k

h=1 min(n1,h, nh

� n1,h))
1
k . However, in Papaxanthos et al. (2016) the authors proved that an e�cient algo-

rithm to compute p̃
min

(Jt
s

, t
e

K) 8 Jt
s

, t
e

K 2 R
C

exists:

Theorem 2 (Papaxanthos et al. (2016), Theorem 2). Let Jt
s

, t
e

K 2 R
C

be a genomic region and let x be its
k-dimensional vector of meta-minor allele counts, with k being the number of states of the categorical covariate.

Define the quantities �l

h

= n1,h

nh

xh
nh

, �r

h

=
⇣
1� n1,h

nh

⌘
xh
nh

for each h = 1, . . . , k and let ⇡
l

and ⇡
r

be permutations

⇡
l

,⇡
r

: J1, kK 7! J1, kK that order the respective sets
�
�l

h

 
k

h=1
and {�r

h

}k
h=1 in increasing order. Then, the solution

x⇤ of the optimization problem x⇤ = argmin
x

0�x

p
min

(x0) defining p̃
min

(Jt
s

, t
e

K) satisfies one of the following two

conditions:

1. x⇤
⇡l(j)

= x
⇡l(j) for j   and x⇤

⇡l(j)
= 0 for j > ,  2 J1, kK
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2. x⇤
⇡r(j)

= x
⇡r(j) for j   and x⇤

⇡r(j)
= 0 for j > ,  2 J1, kK

In a nutshell, Theorem 2 states that only 2k di↵erent points x0, k of them satisfying condition 1 and k satisfying
condition 2, could be the solution to the optimization problem x⇤ = argmin

x

0�x

p
min

(x0), which defines the lower bound

p̃
min

(Jt
s

, t
e

K) needed to evaluate the pruning criterion given by Theorem 1. By evaluating the minimum attainable
p-value function for the CMH test, p

min

(x0), at only those 2k points, the solution to the optimization problem can
be found e�ciently.

According to Condition 1, k possible candidates x0 to be the solution can be obtained as follows. Firstly,
compute �l

h

= n1,h

nh

xh
nh

for each category h = 1, . . . , k. Next, let ⇡
l

: J1, kK 7! J1, kK be a permutation that sorts

those values in ascending order, that is, �l

⇡l(1)
 �l

⇡l(2)
. . .�l

⇡l(k�1)  �l

⇡l(k)
. Then, the first solution candidate,

corresponding to  = 1 in the statement of Condition 1 in Theorem 2, is a vector x0 such that its ⇡
l

(1) entry has
value x

⇡l(1), with all other entries having value 0. The next solution candidate, corresponding to  = 2, is another
vector x0 such that its ⇡

l

(1) entry has value x
⇡l(1) and its entry ⇡

l

(2) has value x
⇡l(2), with all other entries having

value 0. Eventually, the last candidate, corresponding to  = k, is x0 = x.
The k solution candidates corresponding to Condition 2 are obtained analogously, with the sole di↵erence that

the permutation ⇡
l

: J1, kK 7! J1, kK is obtained by sorting the values �r

h

=
⇣
1� n1,h

nh

⌘
xh
nh

, h = 1, . . . , k in ascending

order.
Therefore, Theorem 2 leads to an algorithm to evaluate the pruning condition in only O(k log k) time, since

the sorting steps dominate the total runtime complexity. That method, which we use in the core routine
get testable regions of FastCMH, is reproduced in Algorithm 4 for convenience, adapting the original nota-
tion in Papaxanthos et al. (2016) to our setting.

Algorithm 4 pruning condition

Input: Table margins {x
h

, n1,h, nh

}k
h=1 for genomic region Jt

s

, t
e

K, current adjusted significance threshold �
Output: A Boolean (true or false) indicating if the pruning condition applies to genomic region Jt

s

, t
e

K
1: if Jt

s

, t
e

K 62 R
C

then
2: Return false

3: �l

h

 n1,h

nh

xh
nh

, �r

h

 
⇣
1� n1,h

nh

⌘
xh
nh

for each h = 1, . . . , k

4: ⇡
l

 argsort(
�
�l

h

 
k

h=1
), ⇡

r

 argsort({�r

h

}k
h=1) . Sort sets in ascending order

5: f
l

 0, f
r

 0
6: g  0, g

r

 0
7: for i 2 J1, kK do

8: f
l

 f
l

+
⇣
1� n1,⇡l(i)

n⇡l(i)

⌘
(n

⇡l(i) � x
⇡l(i)), fr  f

r

+
n1,⇡r(i)

n⇡r(i)
(n

⇡r(i) � x
⇡r(i))

9: g
l

 g
l

+
n1,⇡l(i)

n⇡l(i)

⇣
1� n1,⇡l(i)

n⇡l(i)

⌘
x
⇡l(i)

⇣
1� x⇡l(i)

n⇡l(i)

⌘
, g

r

 g
r

+
n1,⇡r(i)

n⇡r(i)

⇣
1� n1,⇡r(i)

n⇡r(i)

⌘
x
⇡r(i)

⇣
1� x⇡r(i)

n⇡r(i)

⌘

10: pl
i

 1� F
�

2

⇣
f

2
l
gl

⌘
, pr

i

 1� F
�

2

⇣
f

2
r

gr

⌘

11: p̃
min

(Jt
s

, t
e

K) min(pl1, . . . , p
l

k

, pr1, . . . , p
r

k

)
12: if p̃

min

(Jt
s

, t
e

K) > � then
13: Return true

14: else
15: Return false

Firstly, in Line 1, the algorithm checks if the current genomic region Jt
s

, t
e

K belongs to the set R
C

defined
earlier in this section. If not, the pruning condition does not apply to the genomic region currently being processed
and the algorithm terminates. Otherwise, the procedure described by Theorem 2 begins. In Line 3, we evaluate
the quantities �l

h

and �r

h

for all tables h = 1, . . . , k, a step with complexity O(k). Next, in Line 4, the sets�
�l

h

 
k

h=1
and {�r

h

}k
h=1 are sorted to obtain the permutations ⇡

l

, ⇡
r

described in the theorem. This is the step
that dominates the overall complexity, requiring O(k log k) time. According to conditions 1. and 2. in Theorem 2,
each of the two permutations ⇡

l

, ⇡
r

implicitly defines k candidate values x0 to solve the optimization problem
x⇤ = argmin

x

0�x

p
min

(x0) that defines the lower bound p̃
min

(Jt
s

, t
e

K). Between Lines 5 and 10, the algorithm evaluates

p
min

(x0) for each of those 2k candidate values, storing them in the variables pl1, . . . , p
l

k

, pr1, . . . , p
r

k

. Notice that,
since the values are computed incrementally, the complexity of this step is O(k). Finally, in Line 11, the value
for the lower bound p̃

min

(Jt
s

, t
e

K) is obtained by taking the minimum value of p
min

(x0) among the 2k candidates
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previously computed, requiring also O(k) time. Using that value, the pruning condition p̃
min

(Jt
s

, t
e

K) > � given
by Theorem 1 can be finally evaluated.

Removal of pruned candidates from R
cand

An example illustrating how to perform the pruning of the search
space in Line 10 of Algorithm 2 is shown in Figure S2. Assuming there are only 6 markers, the first level in the
figure (top row) shows all regions of length 1, i.e. each marker by itself. In the second level we find all regions of
length 2, and similarly for the other levels.

Figure S2: Schematic illustration of how pruning can e�ciently reduce the number of candidate genomic regions.
In this case, the pruning condition applies to the region J4, 5K (dark red) and all regions which contain it (in light
red).

Let us assume that the candidate region that is being evaluated by Algorithm 2 in Line 10 is Jt
s

, t
e

K = J4, 5K
(marked in dark red in Figure S2). If the function pruning condition(J4, 5K) returns true, then all regions that
contain J4, 5K can be pruned from the search space. Line 10 then prunes the regions marked in light red in Figure S2.

S1.3 Generalization of the meta-marker

In Section 2.1 of the main manuscript, we considered a setting in which the genotype of an individual i is represented
as an ordered sequence of l binary genomic markers, g

i

= (g
i

[1],g
i

[2] . . . ,g
i

[l]) with g
i

[t] 2 {0, 1}. The meta-marker
for a genomic region Jt

s

, t
e

K was defined as g
i

(Jt
s

, t
e

K) = max (g
i

[t
s

],g
i

[t
s

+ 1], . . . ,g
i

[t
e

]). Intuitively, if the binary
genotypes are encoded such that g

i

[t] indicates the presence of at least one minor allele at position t (i.e. a
dominant encoding), then the meta-marker of a genomic region can be interpreted as an indicator of the presence
or absence of minor alleles in the genomic region. Alternatively, from an statistical point of view, combining the
markers within a genomic region using the max operator o↵ers the highest sensitivity to aggregate weak signals,
but is also the most a↵ected by noisy, irrelevant variants included in the region. Both biologically and statistically,
it might be interesting to generalize our working definition of meta-marker to o↵er greater flexibility. As we show
next, this can be done with no additional changes to FastCMH, other than the computation of the meta-marker
itself.

Consider an ordered sequence of l genomic markers, g
i

= (g
i

[1],g
i

[2] . . . ,g
i

[l]) with g
i

[t] 2 {0, 1, 2}, corre-
sponding to an additive encoding of the markers. We can generalize the definition of meta-marker as:

g
i

(Jt
s

, t
e

K;m
g

) =

"
teX

t=ts

g
i

[t] � m
g

#
(2)

where m
g

2 N is a fixed allelic burden threshold and [·] = 1 if its argument is true, and [·] = 0 otherwise. This
corresponds to defining the meta-marker of a region to be 1 if it contains at least m

g

minor alleles. Thus, the
definition of meta-marker used throughout the main manuscript corresponds to the special case m

g

= 1.
All properties of the meta-marker necessary for Definition 1 and Theorems 1 and 2 to hold are satisfied regardless

of the value of m
g

2 N. Therefore, FastCMH can be straightforwardly generalized to arbitrary m
g

with no additional
modifications.
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If multiple values of m
g

2M
g

are to be considered, a naive approach would be to run FastCMH independently
for each value, dividing the individual adjusted significance threshold �

tar

obtained with FastCMH for each value
of m

g

by the total number of values considered |M
g

| before assessing the significance of each genomic region.
However, this would be computationally ine�cient, as the entire enumeration process would need to be repeated
|M

g

| times.
An important property we can exploit to solve that limitation is that, for m0

g

� m
g

, we have g
i

(Jt
s

, t
e

K;m0
g

) =
1 ) g

i

(Jt
s

, t
e

K;m
g

) = 1. In turn, this implies x(m
g

) � x(m0
g

), where x(m
g

) and x(m0
g

) are the vectors of meta-
allele counts obtained for genomic region Jt

s

, t
e

K when using values m
g

and m0
g

in the definition of the meta-marker.

Since the table margins {n1,h, nh

}k
h=1 do not depend on m

g

, this implies that p̃
min

(Jt
s

, t
e

K;m0
g

)  p̃
min

(Jt
s

, t
e

K;m
g

)
for all genomic regions Jt

s

, t
e

K 2 R
C

. As a consequence, we obtain the following key result:

Proposition 1. If the pruning condition defined by Theorem 1 applies to a genomic region Jt
s

, t
e

K 2 R
C

using a
generalized meta-marker with allelic burden threshold m0

g

, then the pruning condition will also apply for the same
region if the generalized meta-marker is defined with any other allelic burden threshold satisfying m

g

 m0
g

.

Proposition 1 shows that, to run FastCMH with multiple values of m
g

2M
g

, it is possible to process all values
at once, performing search space pruning according to the value of the meta-marker for the largest allelic burden
threshold in M

g

.

S1.4 Extending FastCMH to use False Discovery Rate (FDR) control

Following a suggestion from a reviewer, we incorporated a False Discovery Rate (FDR) procedure that uses
Tarone’s method into FastCMH, and we call this modified procedure FastCMH-FDR. This section briefly discusses
this modification. The results comparing FastCMH and FastCMH-FDR, obtained on di↵erent datasets, can be found
in Section S3.

We note that the paper Gilbert (2005) was the first to combine Tarone’s method (Tarone, 1990) with the
False Discovery Rate (FDR) procedure (Benjamini and Hochberg, 1995a), and this is the method upon which
FastCMH-FDR is based. On the other hand, FastCMH uses Tarone’s procedure which controls the Family-wise Error
Rate. We start with a brief review of the standard FDR procedure from Benjamini and Hochberg (1995a).

Original False Discovery Rate (FDR) procedure

Suppose there are m null hypotheses H1, H2, . . . , Hm

being tested simulataneously. Define:

• R to be the number of null hypotheses rejected by a particular testing procedure,

• V to be the number of true null hypotheses rejected by a particular testing procedure.

The false discovery rate (FDR) is then defined as:

FDR =

(
E [V/R] , if R > 0,

0, otherwise.

Every hypothesis test H
i

results in a p-value p
i

. In order to compute the FDR, one orders first the m p-values:

p(1)  p(2)  · · ·  p(m)

so that p(i) is the ith largest p-value, and H(i) is the corresponding null hypothesis. Next, for a pre-specified
significance threshold ↵ 2 (0, 1), one checks in turn:

p(m)  ↵,

p(m�1) 
✓
m� 1

m

◆
↵,

...

p(i) 
✓

i

m

◆
↵,

...

p(2) 
✓

2

m

◆
↵,

p(1) 
✓

1

m

◆
↵,
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stopping at the first (and largest) index k such that

p(k) 
✓

k

m

◆
↵.

Then, once k is found, the procedure specifies rejecting the null hypotheses H(1), H(2), . . . , H(k). So, in other words,
we start from the LARGEST p-value, and work down to the smallest p-value.

In Benjamini and Hochberg (1995a) it was shown that this procedure controls the FDR at significance level ↵
(i.e. FDR  ↵) for independent, continuous test statistics.

In Benjamini and Yekutieli (2001) it was shown that this procedure also controls FDR  ↵ for independent,
discrete test statistics.

In Benjamini and Yekutieli (2001) it was also shown that if, instead of checking

p(i) 
✓

i

m

◆
↵,

one rather checks

p(i) 
✓

i

m

◆
e↵, e↵ =

↵P
m

j=1(1/j)
,

then this procedure also controls the FDR for dependent test statistics, under certain kinds of dependence structures
(known as positive regression dependence).

Gilbert’s modified Tarone-FDR procedure

Suppose there are m hypotheses H1, H2, . . . , Hm

, which result in m p-values p1, p2, . . . pm, which are all computed
from contingency tables. Suppose also that we have pre-specified a significance threshold ↵.

The first step of Gilbert’s modified FDR-Tarone Gilbert (2005) procedure is to apply Tarone’s original procedure
to the p-values (and the associated minimum attainable p-values ↵⇤

i

) to compute the integer K, the set R
K

and
the size of this set m(K) = |R

K

|, i.e.

R
K

= {i 2 {1, 2, . . . ,m} |↵⇤
i

< ↵/K}, m(K) = |R
K

|  K.

The second step is to then perform the original FDR procedure Benjamini and Hochberg (1995a) on the subset
of m(K) hypotheses indexed in R

K

. If necessary, relabel these hypotheses as H1, H2, . . . , H
m(K). Then, sort the

p-values as in the original procedure:
p(1)  p(2)  · · ·  p(m(K)),

and then find L, the largest i such that

p(i) 
✓

i

m(K)

◆
↵.

Instead of ↵, one could use

e↵ =
↵

P
m(K)
j=1 (1/j)

, (3)

as suggested in Benjamini and Yekutieli (2001), in order to account for special form of dependence.

Implementation of Tarone-FDR procedure with FastCMH

Gilbert’s modified FDR-Tarone procedure can be easily integrated into the original FastCMH algorithm as detailed
in Algorithm 1. Line 1 in Algorithm 1 finds �

tar

and R
T

(�
tar

), using Tarone’s procedure (here, �
tar

is actually ↵/K
in Tarone’s original notation). This step results in the set of testable hypotheses R

T

(�
tar

) and their associated
p-values.

Next, in the original algorithm Line 2 procedes with Tarone’s method for determining which p-values are
significant and which null hypotheses should be rejected.

However, in Algorithm 1⇤ Line 2 is now the FDR step in Gilbert’s modified procedure.
Line 3, as in the original Algorithm 1, is the filtering step that clusters overlapping genomic regions and selects

the most significant region in a cluster, discarding the rest.
It is also possible to use the threshold in Equation (3) to create an algorithm FastCMH-FDRDep, which takes a

form of dependence into account.
Experimental results comparing FastCMH with FastCMH-FDR on simulated data and the COPDGene study can

be found in Sections S3.1.7 and S3.2.7, respectively.
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Algorithm 1⇤ FastCMH-FDR

Input: Dataset G = {g
i

, y
i

, c
i

}n
i=1, desired FWER ↵

Output: Set of non-overlapping conditionally associated genomic regions R
sig,filt

= {Jt
s

, t
e

K | p(Jt
s

, t
e

K)  �
tar

}
1: (�

tar

,R
T

(�
tar

)) get testable regions(G,↵)
2: R

sig,raw

 FDR procedure on p-values indexed by R
T

(�
tar

)
3: R

sig,filt

 filter overlapping regions(R
sig,raw

)
4: Return R

sig,filt

S1.5 Burden tests

In this section, we describe the burden tests that were performed on the three types of data detailed in Section S2,
i.e. simulated datasets, a case/control human dataset (COPDGene) and five plant datasets (Arabidopsis thaliana)

In general, two alternative encodings have been used to collapse the SNPs (or markers) in each candidate region
into a single meta-marker:

(I) an indicator of the presence of any number of minor allele in the region, equivalent to the encoding used by
FastCMH.

(II) the count of minor alleles in the region.

The di↵erent experimental designs of the burden tests, on each type of data in which they were performed, are
described below.

S1.5.1 Simulated data

We performed two types of burden test on two di↵erent simulated datasets: window-based burden tests and gene-
based burden tests. This section describes the two types of simulations and the burden tests ran on them. Section
4.1.2 in the main document presents the results of the simulations with window-based burden tests. The results
on the simulated gene-based burden tests are described in Section S3.1.5.

Window-based burden tests: The datasets were generated as described in Section 4.1.2 of the main manuscript.
We performed simulations using two types of windows, namely non-overlapping and sliding windows. For both of
them, w was the size of the window that was tested and varied across the burden tests.

For the burden tests with sliding windows, inc = 1 was the number of markers (or stride) between
the starting positions of two consecutive windows. This is illustrated in Figure S3. In the literature
(Schmid and Yang, 2008; Casale et al., 2015), strides of length inc 2 [1, 20] are considered, as well as
a stride of length inc = w/2, however the most common one is inc = 1. Additional simulations, which
are not shown here, with di↵erent values of inc have been performed and lead to the same conclusion
regarding the gain of power of FastCMH compared to the sliding window-based burden tests.

For the burden tests with non-overlapping windows, the alignment of the window boundaries with the
boundaries of the truly associated genomic regions has a strong influence on the power of the burden
test. In the analysis described in Section S3.1.5, our goal is to compare FastCMH against the most
favorable scenario for burden tests. Therefore, the starting position of all truly associated regions
coincide with the starting position of one tested window. The windows can be smaller or bigger than
the truly associated region, but because there will always be a window that starts in the same location
as the region, this puts the burden tests in a more favorable position by minimizing the fragmentation
of the genome in windows of size w.

To represent the biological diversity of causal regions each dataset included seven truly associated genomic
regions of di↵erent length `, with ` 2 [2, 4, 6, 8, 10, 12, 14]. The same layout was applied to the confounded genomic
regions. When simulating the data, we ensured that the confounded regions were far apart from each other in order
to have distinct signals for all associated regions. In all window-based burden tests, for a fixed p

s

, we calculated
the power, the false detection proportion of confounded regions and the FWER by averaging the results over all
associated genomic regions and by correcting with a Bonferroni correction factor equal to the total number of tests
performed (i.e. number of windows ' l/inc where l is the total number of markers in the sequence). In this study
we did not take into account the dependence between the tests. This is left for future work.
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Figure S3: An illustration of the sliding window simulation with w = 8 genomic markers. The stride of one
marker (inc = 1) between two consecutive windows is indicated in green. All of the windows are tested. Two truly
associated genomic regions are represented in red with lengths ` = 10 and `0 = 6.

Gene-based burden tests: As opposed to window-based burden tests, gene-based burden tests do not take into
account all genomic markers but only predefined regions of interest, normally based on prior biological knowledge.
In the simulations, two associated regions are simulated, one truly associated with the phenotype and one con-
founded with the phenotype. In order to define the genomic regions that are tested – also referred to as windows
in this analysis – two parameters w and f were used. The parameter w indicates the number of markers in each
of the windows tested by the burden tests. One of the windows overlaps with the truly associated region and one
window overlaps with the confounded region. The parameter f measures the overlap of a region (either the truly
associated or the confounded) to a tested window. More precisely, f is equal to the proportion of the w markers
of the tested window that are contained in a region (again, truly associated or confounded). The burden tests
were performed under seven combinations of (w, f) as shown in Table S1. Figure S4 illustrates the interplay of the
parameters w, ` and f in the simulated data.

Table S1: Combinations of parameters w and f used in simulation experiments for burden tests.

Case
Parameters
w f

(a) 8 0
(b) 8 1/4
(c) 8 1/2
(d) 8 3/4
(e) 10 4/5
(f) 4 1
(g) 8 1

Figure S4: A simulation of a gene-based burden test. The burden tests will only be conducted on the w markers
of the regions marked in blue. For simplicity, we assume that these regions correspond to genes and that all genes
have the same number of markers (w = 8 in the figure). The region highlighted in red with length ` = 10 is the
truly associated genomic region. The overlap between the truly associated region and a gene is shown in green.
The value of f is equal to the proportion of the w markers in the gene that are also contained in the truly associated
genomic region. In this example, f = 5

8 .

S1.5.2 Human data: COPDGene

We conducted two sets of experiments using burden tests on human data. For both we used the encodings (I)
and (II) described above to combine the markers in the genomic regions of interest, however these two sets of
experiments di↵ered by the type of genomic regions that were analyzed.

(a) As candidate genomic regions we considered all genes that overlap with at least one marker1 This resulted
in 17,817 regions for COPDGene.

(b) As candidate genomic regions, we partitioned the genome into contiguous non-overlapping windows of: i) 500
kilobases and ii) 1 megabase. Burden tests were performed on the SNPs that overlapped with these windows

1A marker is considered to overlap with a gene if it is located within 10 kb of the gene boundaries.
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using the same encodings (I) and (II) mentioned above. It is worth noting that in this setup, all SNPs are
being tested by being included in one and only one genomic window.

All types of burden tests were performed using both the likelihood ratio test under a logistic regression model,
with the categorical covariate encoded using k dummy indicator variables, as well as using the CMH test in the
same way FastCMH does2

S1.5.3 Plant data: Arabidopsis thaliana

As it was the case for the burden tests on human data, here we also used the encodings (I) and (II) to combine
the markers in the genomic regions of interest. As candidate genomic regions, we considered:

(a) All genes that overlap with at least one marker (same mapping as in human data). This resulted in 24,426
regions for Arabidopsis thaliana.

(b) Partitions of the genome into contiguous non-overlapping windows of: i) 500 kilobases and ii) 1 megabase.
Burden tests were performed on the SNPs that overlapped with these windows.

The burden tests were performed using both the likelihood ratio test under a logistic regression model, with
the categorical covariate encoded using k dummy indicator variables, as well as using the CMH test in the same
way FastCMH does. In the case of the A. thaliana datasets, we performed the previously mentioned burden tests
as well as a last one that uses the three largest principal components from the kinship matrix as covariates (Price
et al., 2006) for both encodings (I) and (II).

2The CMH test only applies to encoding (I), which is binary.
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S2 Datasets

This section provides additional information of the datasets used throughout the experiments. In Section S2.1,
details about the data generation process are provided for all simulation experiments. Additional characteristics
of the human and plant data are also presented in Sections S2.2 and S2.3. Finally, Section S2.4 discusses how the
categorical covariates were defined for both human and plant data.

S2.1 Simulated data

Here, we describe in detail the model used to generate synthetic data for each of the simulations included in this
article. Firstly, in Section S2.1.1, we present the basic simulation model employed for the experiments of Section
4.1 in the main manuscript. Next, Section S2.1.2 describes how we extended the previous model to include a simple
form of linkage disequilibrium, leading to the results presented in Section S3.1.4.

S2.1.1 Basic simulation model: generating truly significant and confounded genomic regions

In the simulation study in Section 4.1, Figures 2(a) and 2(b) were created using a dataset where each sample had
one truly significant genomic region and one confounded genomic region. This section provides further details on
how these sequences and this dataset were constructed.

In order to investigate the di↵erence in power between the FastCMH, FAIS-�2 and BonfCMH, we construct a
simulated dataset consisting of n individuals with l binary markers each. Besides, we consider a covariate with
k = 2 categories for each sample.

Initially each element g
i

[t] is sampled i.i.d. from a Bernoulli distribution with probability p1 of being a 1, i.e.
g
i

[t] ⇠ B(1, p1). In our case, we set p1 = 0.3. One could consider this to be the “background noise”. Next, in each
sample, two significantly associated genomic regions will be included: Jt

s,sig

, t
e,sig

K and Jt
s,con

, t
e,con

K. Note that
in our experiment, the length of each region, denoted by `, is the same. The first one, Jt

s,sig

, t
e,sig

K, will be directly
associated with the phenotype y. However, the other one, Jt

s,con

, t
e,con

K, will be associated with y merely via
the covariate c (see Figure S5). To generate data according to that dependence structure, we initially sample (R
package bindata) three random binary variables intSig, c and y according to a (three-dimensional) multivariate
Binomial distribution with mean vector µ and covariance matrix ⌃,

µ = (0.5, 0.5, 0.5), ⌃ =

2

4
1 0 ps/2
0 1 ⇢con/2

ps/2 ⇢con/2 1

3

5 .

The rows/columns of ⌃ correspond to:

• the first row/column represents the genomic marker g(Jt
s,sig

, t
e,sig

K) of the truly significant genomic region.

• the second row/column represents the value of the categorical covariate c (which has two classes, i.e k = 2).

• the third row/column represents the case/control status, y.

To be clear, for each sample i 2 {1, 2, . . . , n},

(intSig
i

, c
i

, y
i

) ⇠ B(1;µ,⌃).

Since the mean vector µ has all its components equal to 0.5, there will be approximately n/2 samples with y = 0
(controls) and n/2 samples with y = 1 (cases). Also, approximately n/2 of the values for intSig will be 1,
and n/2 will be zero. Let us consider the vectors y = (y1, y2, . . . , yn), intSig = (intSig1, intSig2, . . . , intSign),
c = (c1, c2, . . . , cn). By our choice of ⌃, if the parameter ps is close to 1, then the vectors y and intSig will be
highly correlated, i.e. when y

i

= 1, then intSig
i

will be 1 with high probability, and when y
i

= 0, then intSig
i

will be 0 with high probability.
Now, a random location for the interval Jt

s,sig

, t
e,sig

K is chosen, with length `. If intSig
i

= 1, all values in
Jt

s,sig

, t
e,sig

K are set to zero (recall that some of these binary values may be equal to 1, having been generated
by B(1, p1)), except one randomly chosen index j, t

s,sig

 j  t
e,sig

, which is set to be 1. So, a truly significant
interval (when intSig

i

= 1) contains exactly one 1. On the other hand, when intSig
i

= 0, then all binary values in
the randomly chosen interval will be zero. This explains the construction of the truly significant genomic regions.

For the confounded intervals, the genomic marker of the confounded genomic region g(Jt
s,con

, t
e,con

K), denoted
intCon, is obtained from the values of the categorical covariate c by flipping its value with a low probability
p
✏

= 0.05. To be clear, we sample ✏ ⇠ B(1, p
✏

) and then

intCon = c� ✏,
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where � is the xor operator. By looking at ⌃, we see that the parameter ⇢con controls the degree of association
between c and y. For high values of ⇢con, the vectors c and y will be highly correlated.

Similarly to the case for the truly significant genomic region, when intCon = 1, an interval Jt
s,con

, t
e,con

K
containing exactly one 1 is inserted into the sequence of genomic markers (and when intCon = 0, all the values in
the genomic region are zero). Note that the significant and confounded regions are placed at random locations in
the sequence of genomic markers, with the only constraint being that they do not overlap.

intSigintSig

intCon

c

y

Figure S5: A graphical model indicating the dependencies between significant regions, the labels, the confounding
variable and the confounded region. Here, intSig is an indicator variable indicating whether or not a given sample
has at least one minor allele in a truly significant genomic region, y is the case/control phenotype for the sample, c
is the category of the confounding variable for the sample, and intCon is an indicator variable indicating whether
or not the sample contains at least one minor allele in the confounded genomic region.

Creating Figures 2(a) and 2(b) in the main manuscript

For a single experiment, a dataset is generated with parameters: n = 500, l = 1, 000, 000, p1 = 0.3, k = 2 and the
length of the significant/confounded regions is set to be ` = 5. Furthermore, ⇢con = ps as ps varies in the interval
[0.1, 0.9]. Running the algorithms over this data set provide us with a set of values. This experiment is repeated
500 times to get average values which are then plotted in Figures 2(a) and 2(b).

Creating Figure 2(c) in the main manuscript

The parameters used to create Figure 2(c) were: n = 500, p1 = 0.3, k = 2 and l varies between l = 100 and
l = 10, 000, 000. Note that no significant/confounded regions were generated for this runtime plot (it was found in
earlier experiments that having/not having significant and confounded regions made no di↵erence to the runtime
results).

Creating Figure 2(d) in the main manuscript

The parameter values used to create Figure 2(d) were: n = 500, l = 100, 000, p1 = 0.3 and k varies between k = 1
and k = 30. Note that no significant/confounded regions were generated for this runtime plot (it was found in
earlier experiments that having/not having significant and confounded regions made no di↵erence to the runtime
results).

S2.1.2 Incorporating linkage disequilibrium into the model

We created an additional simulation dataset that incorporates a simplified model of linkage disequilibrium by
splitting the sequence of l markers into b disjoint blocks with l

b

= l/b markers each. Markers within each block
have pairwise correlation ⇢

ld

, whereas distinct blocks are uncorrelated. This results in genotype sequences that
exhibit a blockwise correlation structure, with the simulation parameter ⇢

ld

controlling the strength of linkage
disequilibrium inside each block. The minor allele frequency of each marker was independently sampled from a
uniform distribution in the range [0.01, 0.20].

Among the b disjoint blocks, two blocks are chosen to contain the truly associated and confounded signals,
respectively. The markers in the center of each block were used to generate the covariate and case/control status.
More precisely, the covariate is obtained by adding a small corruption to the central marker of the “confounded”
block, in the same manner as discussed in Section S2.1.1. Then, the case/control status is generated such that its
correlation with the covariate is ⇢

con

/2, and the correlation with the central marker of the “truly associated” block
is ⇢

s

/2. Most importantly, in this simulation, both central markers are removed from the dataset. This implies
that both the truly associated signal and the confounded signal are only present in the observed markers indirectly
via linkage disequilibrium.
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Using the model described in the paragraph above, we generated synthetic data corresponding to n = 500
individuals genotyped at l = 1, 000, 000 markers, split into b = 10, 000 disjoint blocks of l

b

= 100 markers each.
The signal strength was varied in the range ⇢

s

= ⇢
con

2 [0.05, 0.95]. To illustrate the e↵ect of changing the linkage
disequilibrium strength, four di↵erent values for ⇢

ld

were used: ⇢
ld

2 {0.175, 0.25, 0.375, 0.5}.

S2.2 Human data: COPDGene

The COPDGene dataset contains samples from two populations: African Americans and non-Hispanic whites. For
each population, samples with missing phenotypes (i.e. not labeled as either case or control) or with missing height
information were removed from the analysis. Additionally, SNPs were filtered out if: i) minor allele frequency <
0.01, or ii) Hardy-Weinberg equilibrium < 1.0e-6. Missing genotypes were imputed as described in (Cho et al.,
2014). SNPs were binarized using a dominant encoding: homozygous major SNPs were encoded as 0 while
heterozygous and homozygous minor SNPs were both encoded as 1. Table S2 shows the number of samples in each
of the cohorts.

Table S2: Details about the samples in each population of COPDGene. The column “case” refers to individuals
who were diagnosed with COPD. The number of SNPs in the intersection of both populations is 615,906 and these
were the SNPs used in our analysis.

Population
Disease status Gender

case control Total male female
African Americans 821 1,826 2,647 1,498 1,149
non-Hispanic whites 2,812 2,534 5,346 2,816 2,530
Total 3,633 4,360 7,993 4,314 3,679

We performed a principal component analysis (PCA) to highlight the genetic di↵erences between the individuals
in the African American and non-Hispanic white groups. Using the first two principal components, we plotted all
samples and Figure S6 shows their clustering.

Figure S6: Embedding of the 7,993 samples in COPDGene according to the first two principal components.

S2.3 Plant data: Arabidopsis thaliana

In order to provide a meaningful comparison with state-of-the-art algorithms, we chose five phenotypes for which
at least two significant genomic regions were identified in Llinares-López et al. (2015) –without any correction
for population structure. Additionally, the phenotypes should contain a relatively balanced number of cases and
controls (ratio between 80%�20%). For this study, we did not filter SNPs by minor allele frequency. Homozygous
minor SNPs were encoded as 1 whereas homozygous major SNPs were encoded as 0. No heterozygous SNPs were
present in the data. Table S3 provides information about the number of SNPs and samples for each phenotype.
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Table S3: Samples for which the five di↵erent phenotypes we analyzed was known. Depending on the phenotype
of interest, the number of SNPs varied. For each phenotype, the number of samples labeled as “case” vs. the
controls fluctuated between 22% (LES) and 66% (avrRpm1 ).

Phenotype Number of SNPs
Sample label

case control Total
avrB 214,032 55 32 87
avrRpm1 214,022 56 28 84
avrPphB 214,032 46 44 90
LES 214,051 21 74 95
LY 214,051 29 66 95

S2.4 Definition of covariates for COPDGene and Arabidopsis thaliana

In a GWAS, spurious associations between genotype and the trait of interest can be found due to confounding factors
such as gender, age or other phenotypic characteristics. A particularly common source of confounding in GWASs
is population structure (Marchini et al., 2004), a phenomenon that occurs when the dataset contains individuals
with genetic ancestry from distinct subpopulations exhibiting systematic genetic di↵erences (e.g. di↵erent allele
frequencies). When the trait of interest (e.g. disease prevalence) happens to also di↵er among subpopulations,
population structure leads to many spurious associations. The ability of FastCMH to handle categorical covariates
can be used to correct for confounding due to population structure. While defining the covariate is straightforward
in datasets for which the race or ethnicity of the individuals is known, as in the COPDGene study, FastCMH can
also be successfully applied in cases in which population structure acts as a hidden variable, as occurs in all five
A. thaliana datasets.

COPDGene

In the COPDGene study, the categorical covariate c can be based on the (known) genetic ancestry of the individuals,
namely African Americans and non-Hispanic whites. To illustrate both the ability of FastCMH to cope with several
covariates simultaneously and to handle a large number of categories k for each covariate, we also consider “height”.
Height has been used as a covariate in previous COPD studies to serve as a proxy for lung volume. To define the
categorical covariate c, the range of observed values for height across the entire dataset is split into ten deciles and
we set c

i

= h, h 2 {1, . . . , 10} for African American individuals with height corresponding to the h-th decile, and
c
i

= 10 + h, h 2 {1, . . . , 10} for non-Hispanic white individuals with height corresponding to the h-th decile.

A. thaliana

For each of the five A. thaliana datasets, the categorical covariate c we condition on to correct for population
structure was defined using k-means clustering on the three principal components (PCs) of the empirical kinship
matrix (Price et al., 2006). We selected the best value of k in a range from 2 to 5 according to the resulting
genomic inflation factor independently for each dataset. In this way, for each sample i 2 {1, . . . , n}, we define
c
i

= h if k-means assigned the sample to the h-th cluster.
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S3 Supplementary Results

This section presents additional results for each of the three types of data that were used in our analysis: 1)
simulated data, 2) COPDGene and 3) Arabidopsis thaliana.

S3.1 Simulation study results

Here we present results for a number of additional simulation experiments complementary to those described in
Section 4.1 of the main manuscript.

S3.1.1 Type I error control

Due to the use of Tarone’s method, FastCMH is theoretically guaranteed to control the Family-Wise Error Rate
(FWER). In this section, we illustrate this property with empirical results. Figure S7 shows the FWER correspond-
ing to the experiments described in Section 4.1.1 of the main manuscript. Those were performed on synthetic data
generated as described in Section S2.1.1 with n = 500 samples, l = 1, 000, 000 markers, k = 2 categories for the
covariate and p1 = 0.3. The signal strength, which was set to be identical for the truly associated and confounded
genomic regions, was varied in the range ⇢

s

= ⇢
con

2 [0.05, 0.95]. The target FWER was set to ↵ = 0.05 following
standard practice. The results here shown were obtained after averaging 500 repetitions of the experiment.

As shown in the figure, the actual FWER for FastCMH, FAIS-�2 and BonfCMH is indeed below this threshold,
empirically confirming FWER-control. BonfCMH, which does not employ Tarone’s method, can be seen to be greatly
over-conservative, leading to a significant loss of statistical power as shown in Figure 2(a) in the main manuscript.
In contrast, by using Tarone’s method, FastCMH and FAIS-�2 are only slightly over-conservative, being able to
retain a large statistical power. FastCMH and FAIS-�2 could be made even less over-conservative by employing a
criterion that takes into account the dependence existing between test statistics, such as permutation-testing based
approaches.
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Figure S7: The actual Family-wise Error Rate of FastCMH, FAIS-�2 and BonfCMH, when each algorithm specifies
the target FWER to be ↵ = 0.05.

Finally, Figure S8 illustrates Type I error control by comparing the QQ-plots for FastCMH and FAIS-�2 in
two representative scenarios: (a) the global null model, corresponding to ⇢

s

= ⇢
con

= 0 and (b) a model with
a single confounded genomic region with signal strength ⇢

con

= 0.8 but no truly associated genomic region, i.e
⇢
s

= 0. As expected, the distribution of p-values obtained with FastCMH agrees with the expected null distribution
in both scenarios (a) and (b). In contrast, the p-value distribution obtained with FAIS-�2 shows a mild inflation in
scenario (b), due to existence of one confounded genomic region. This deviation from the expected null would have
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been more severe if more confounded regions had been included in the simulation, since FAIS-�2 cannot correct
for covariates as FastCMH does.

Figure S8: Comparison of the QQ-plots for the p-values of all testable genomic regions in simulated data. (a)
global null model, ⇢

s

= ⇢
con

= 0. (b) a single confounded genomic region and no truly associated genomic region,
⇢
s

= 0, ⇢
con

= 0.8.

S3.1.2 Power, false detection proportion and FWER as a function of the number of categories

In this section, we explore the e↵ect that the number of categories for the covariate, k, has on the power, false
detection proportion and FWER of FastCMH and its comparison partners. To this end, we first generated data
according to the model described in Section S2.1.1, using n = 500 individuals, l = 1, 000, 000 markers and p1 = 0.3.
The strength of the signal and confounding were fixed to ⇢

s

= ⇢
con

= 0.5. In these experiments, the categorical
covariate was defined for each individual by assigning them a random category in the set c

i

2 1, 2, . . . , k

2 if the
(binary) covariate generated as described in Section S2.1.1 takes value 1 for the individual, and a random category
in the set c

i

2 k

2 + 1, . . . , k if it takes value 0. The value of the number of categories for the covariate, k, was varied
in the range k 2 J2, 18K. All results were obtained by averaging 500 repetitions of the experiment.

(a) (b) (c)

Figure S9: A comparison of (a) statistical power, (b) proportion of confounded regions falsely detected and (c)
FWER for FastCMH, FAIS-�2 and BonfCMH as the number of categories for the covariate, k, varies.

As Figure S9(a) shows, the power of both FastCMH and FAIS is approximately independent of the number of
categories, provided that the average number of observations per contingency table is not too small (e.g. � 15). In
Figure S9(b) we can observe that the e↵ectiveness of FastCMH to correct for confounders is una↵ected by k, while
Figure S9(c) shows that strict FWER control is retained for all k.
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S3.1.3 Scaling of the runtime with respect to the number of samples in the dataset

In Section 4.1.1 of the main manuscript, we showed that the runtime of FastCMH scales gently with respect to
the number of markers, l, and the number of categories of the covariate, k. In this section, we complement those
results by studying how FastCMH scales in terms of runtime with respect to the number of samples in the dataset,
n. Figure S10 shows that the computation time of FastCMH, FAIS-�2 and BonfCMH increases approximately linearly
with the number of samples, n. Consistent with the results shown in the main manuscript, FastCMH and FAIS-�2

show a similar performance in terms of runtime as the sample size varies. However, the absolute runtime is much
larger for BonfCMH, which does not employ Tarone’s method to e�ciently prune the search space. This becomes
clearer in Figure S11, which depicts the runtime of FastCMH and its two comparison partners in log-scale. For
instance, FastCMH and FAIS-�2 take approximately two minutes to process a data set with n = 10, 000 samples,
while BonfCMH takes over 24 hours to process the same data set. In all figures, we used k = 4, l = 100, 000 and
p1 = 0.3.
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Figure S10: The run times of FastCMH, FAIS-�2 and BonfCMH, as the number of samples, n, varies.
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Figure S11: The run times of FastCMH, FAIS-�2 and BonfCMH, as the number of samples, n, varies. In this figure,
both axes are log-scaled.
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S3.1.4 Taking linkage disequilibrium into account

In this section we extend our results on the simulated data that incorporates a form of linkage disequilibrium as
described in Section S2.1.2. In particular, the main goal is to assess the performance of FastCMH in a scenario
where the causal variants are not included among the observed markers. To that e↵ect, we compare our method
against FAIS-�2, BonfCMH and single-SNP testing.

Unlike under the data-generation model used in the main manuscript, here the di↵erent markers in the asso-
ciated genomic regions do not contain independent (weak) signals. Instead, the markers can be understood as
tagging variants for the hidden causal variant of the region, where the amount of signal preserved depends on ⇢

ld

.
In this setting, single-SNP testing can be expected to achieve good performance, specially if ⇢

ld

is su�ciently large.
In principle, FAIS-�2 and FastCMH do not benefit from aggregating the markers in the region as much as in the
previous model, since all variants being aggregated carry essentially the same signal. Nonetheless, the resulting
meta-marker might still exhibit a stronger association than any of the individual variants in the region, as it acts
as an “smoothed” tagging variant.

(a) (b) (c)

Figure S12: A comparison of (a) statistical power, (b) proportion of confounded regions falsely detected and (c)
FWER for FastCMH, FAIS-�2, BonfCMH and single-marker tests (BonfCMH, single-SNP) with ⇢

ld

= 0.175.

(a) (b) (c)

Figure S13: A comparison of (a) statistical power, (b) proportion of confounded regions falsely detected and (c)
FWER for FastCMH, FAIS-�2, BonfCMH and single-marker tests (BonfCMH, single-SNP) with ⇢

ld

= 0.25.
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(a) (b) (c)

Figure S14: A comparison of (a) statistical power, (b) proportion of confounded regions falsely detected and (c)
FWER for FastCMH, FAIS-�2, BonfCMH and single-marker tests (BonfCMH, single-SNP) with ⇢

ld

= 0.375.

(a) (b) (c)

Figure S15: A comparison of (a) statistical power, (b) proportion of confounded regions falsely detected and (c)
FWER for FastCMH, FAIS-�2, BonfCMH and single-marker tests (BonfCMH, single-SNP) with ⇢

ld

= 0.5.

We present our results based on the parameters used to generate the data described in Section S2.1.2, i.e.
n = 500 individuals with l = 1, 000, 000 markers, split into b = 10, 000 disjoint blocks of l

b

= 100 markers each.
Four di↵erent values for ⇢

ld

were used: ⇢
ld

2 {0.175, 0.25, 0.375, 0.5}. We averaged 150 repetitions of the experiment
to obtain the results shown here. Figures S12-S15(a) confirm the hypothesis stated in the previous paragraph.
While single-marker testing has non-zero power, FastCMH and FAIS-�2 are able to to exploit the existing linkage
disequilibrium by aggregating multiple tagging variants, resulting in a noticeable improvement in statistical power.
As expected, the e↵ect is particularly pronounced for moderate linkage, e.g. ⇢

ld

2 [0.2, 0.4].
Figures S12-S15(b), which show the probability of retrieving a confounded interval, illustrate that FastCMH’s

ability to correct for confounding is una↵ected by the presence of linkage disequilibrium. This is in contrast with
FAIS-�2, which continues to be unable to deal with confounding.

Finally, Figures S12-S15(c) confirm that FWER control is not lost due to the presence of linkage disequilibrium.
This is unsurprising, since Tarone’s method guarantees FWER control regardless of the underlying dependence
structure of the data.

S3.1.5 Burden tests

Here we present additional results to the ones presented in Section 4.1.2 of the manuscript. We first describe
the results of the simulations that compare FastCMH with the burden tests that use non-overlapping windows.
Secondly, we discuss the results of the burden tests with sliding windows. In both cases, markers in a window are
collapsed using the encoding Enc. (I) presented in Section S1.5. Results based on Enc. (II) are not presented
here because they are very similar to the results obtained using Enc. (I). We then compare our method FastCMH

to simulated gene-based burden tests that use both encodings Enc. (I) and Enc. (II). For all methods, the target
FWER was set to ↵ = 0.05. All experiments were performed with n = 500 samples and l = 100, 000 markers. All
tests were averaged over 200 iterations.

False detection proportion and FWER in window-based burden tests: Figures S16 (non-overlapping
windows) and S17 (sliding windows) show in the y-axis an evaluation of two di↵erent metrics for the burden tests:
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(a) the proportion of confounded regions falsely discovered and (b) the FWER. The x-axis represents the strength
of the association p

s

between the associated regions – true and confounded – and the phenotype. In Figures S16(a)
and S17(a), all conditional tests succeed in not discovering the confounded genomic regions while FAIS-�2, which
does not condition on confounders, reports them. Figures S16(b) and S17(b) show that almost all tests ensure a
good control of the FWER; in particular FastCMH has a FWER below the threshold ↵ = 0.05.

Figure S16: A comparison between burden tests with non-overlapping windows, FAIS-�2 and FastCMH: (a)
proportion of confounded regions falsely detected (false detection proportion) and of (b) the FWER for FastCMH
and for the burden tests. The value of w is the length of the windows in the burden tests and varies between 2
and 10.

Figure S17: A comparison between burden tests with sliding windows, FAIS-�2 and FastCMH: (a) proportion of
confounded regions falsely detected (false detection proportion) and of (b) the FWER for FastCMH and for the
burden tests. The value of w is the length of the windows in the burden tests and varies between 2 and 10.

Influence of the length of the associated genomic regions on the results of window-based burden
tests: We performed an additional set of experiments to evaluate the impact of the length ` of the associated
genomic regions on the statistical power of the burden tests with non-overlapping and sliding windows.

Figure S18 shows how ` strongly impacts the power of the burden tests with non-overlapping windows of size
w. We observe that, except in some rare configurations of parameters (w = `), FastCMH outperforms the burden
tests in all settings, independently of the lengths of the window and of the associated region. In the simulations,
the case w = ` is very beneficial to the burden tests using non-overlapping windows, in particular in the setup we
chose where each associated genomic region is perfectly aligned with one tested window. In this setting, the non-
overlapping windows achieve a similar power to that of FastCMH. However, FastCMH has better power in all other
situations, for example when the length of the associated region does not match exactly the length of the tested
windows (Figure S18) or if the tested window is not perfectly aligned with the associated region. In particular,
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the statistical power of the burden tests drop when |`�w| increases. In practice, neither the location of the truly
associated genomic regions nor their length are known a priori. Thus, di↵erent tests with non-overlapping windows
of di↵erent length have to be performed, leading to a loss of power as the Bonferroni correction becomes larger.

Figure S19 shows how the length ` of the associated genomic regions has an impact in the power of the burden
tests with sliding windows of size w. FastCMH clearly outperforms the burden tests in all settings, independently of
w and `. For a fixed window-size w, the statistical power of the burden tests vary with the length of the associated
region `. Indeed, for each length of the associated region, it partially or fully overlaps with several windows. The
distribution of the partial or full overlaps of the tested windows with respect to the associated region, depends on:
a) the stride (inc) between two consecutive windows, b) the length of the associated region ` and c) the size of
the windows w. These three factors strongly influence the power of the window-based tests. For example, if the
window is large compared to the size of the associated region w > ` (cases w = 6 with ` = 2 and ` = 4), the power
of the tests has a dramatic drop as the window is composed of irrelevant markers that contaminate the signal with
noise. If w ⌧ ` (cases w = 2 with ` = 10 and ` = 12 and case w = 4 with ` = 12), the windows do not contain
enough of the truly associated markers to be significantly associated with the phenotype and the burden tests also
perform poorly in these cases. The power of the burden tests with sliding windows increases when the overlapping
windows are both small enough to only include associated markers and large enough to include a large fraction of
the signal, so that the region can be detected (case w = 2 with ` = 4 and case w = 4 with ` = 6).

Figure S18: Comparisons of statistical power for FastCMH and burden tests with non-overlapping windows, for
di↵erent lengths w of the windows and of the truly associated genomic region `. The thick curve indicates the
average of the statistical power across all burden tests for all genomic regions lengths ` 2 [2, 4, 6, 8, 10, 12, 14]. The
thin dashed curves represent the power of the burden tests for each length of the associated region separately.

Figure S19: Comparisons of statistical power for FastCMH and burden tests with sliding windows, for di↵erent
lengths w of the windows and of the truly associated genomic region `. Two starting positions of two neighboring
windows are separated by inc = 1 marker. The thick curve indicates the average of the statistical power across all
burden tests for all genomic regions lengths ` 2 [2, 4, 6, 8, 10, 12, 14]. The thin dashed curves represent the power
of the burden tests for each length of the associated region separately.

To conclude, we want to stress the fact that burden tests with window-based approaches are very sensitive
to inaccuracies due to incomplete or erroneous coverage of the associated regions by the windows. Contrary to
this, FastCMH successfully circumvents the problem by testing all possible lengths/starting positions of (testable)
genomic regions. This fits better the reality of genome-wide association studies, which in practice are often
exploratory and little is known about the size and the position of associated genomic regions. The experiments
presented above confirm the e↵ectiveness of our method FastCMH when compared to window-based burden tests
in settings when little is known about the ground truth.

Gene-based burden tests This section provides additional details of the gene-based burden tests that are briefly
mentioned in Section 4.1.2 of the manuscript. Here we present simulations to compare FastCMH with burden tests
models that only test predefined regions of interest. For our simulations, we use the encodings described in Section
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S1.5, i.e. Enc.(I) and Enc.(II). Additionally, our method is compared against the two baseline methods FAIS-�2

and BonfCMH. The target FWER was set to 0.05 for all approaches. On the y-axis of Figures S20, S21 and S22
we show the evaluation of three statistical metrics: 1) the power, 2) the proportion of confounded regions falsely
detected and 3) the FWER, respectively. The x-axis represents the strength of the association ⇢ between each of
the two associated regions and the phenotype. We have p

s

= ⇢
con

.
Results were averaged over 200 iterations. Burden tests give di↵erent results in all seven settings (described

in Table S1, Section S1.5.1), because they ignore markers outside genomic windows; this is not the case for the
two Tarone-based algorithms nor for BonfCMH. In Figure S20, we observe that the burden tests have a higher
power in case (g) than FastCMH and FAIS-�2 because exactly all the markers of the associated genomic region are
combined in the tested window, while FastCMH performs better in all the other settings. Enc. (II) is slightly more
favorable to the burden tests as it sums the single signals, instead of taking the maximum as in Enc. (I), making
the combination more robust to noise. Regarding the probability of detecting the confounded genomic region,
shown in Figure S21, all conditional tests, except for FAIS-�2 that does not condition on confounders, succeed in
ignoring the confounded regions. Finally, in Figure S22, we observe that all the Tarone-based methods (FastCMH
and FAIS-�2) ensure a slightly better control of the FWER than the burden tests do.

Figure S20: Evaluation of the power as a function of the strength of the signal p
s

for FastCMH, FAIS-�2, BonfCMH
and the burden tests. (i) and (ii) refer to when the encodings Enc.(I) and Enc.(II) are used for the burden
tests respectively. The labels (a) to (g) refer to the seven parameter settings in burden tests (see Table S1 in
Section S1.5.1), which describe di↵erent windows sizes and levels of overlap between the windows of the burden
tests and the associated region. The power of burden tests in cases (a), (b) and (c) is close to 0.
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Figure S21: Evaluation of proportion of confounded regions falsely detected as a function of the strength of the
association of the confounded interval ⇢

con

for FastCMH, FAIS-�2 , BonfCMH and the burden tests. (i) and (ii)
refer to when the encodings Enc.(I) and Enc.(II) are used for the burden tests respectively. The labels (a) to (g)
refer to the seven parameter settings in burden tests (see Table S1 in Section S1.5.1), which describe di↵erent
windows sizes and levels of overlap between the windows of the burden tests and the associated region. None of
the methods, except for FAIS-�2, retrieve the confounded genomic region.

Figure S22: Evaluation of the FWER as a function of the strength of the signal p
s

for FastCMH, FAIS-�2, BonfCMH
and the burden tests. (i) and (ii) refer to when the encodings Enc.(I) and Enc.(II) are used for the burden tests
respectively. The labels (d) and (g) refer to two of the seven parameter settings in burden tests (see Table S1 in
Section S1.5.1), which describe di↵erent windows sizes and levels of overlap between the windows of the burden
tests and the associated region. For the sake of clarity, only two burden tests cases are shown, cases (d) and (g).
However, the FWER variations for the other burden tests were similar.

In summary, gene-based burden tests exhibit low power and appear to be ine�cient at finding genomic regions
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that are not almost identical to predefined regions of interest. In contrast, FastCMH retrieves associated genomic
regions with high power, without the need for predefined biological knowledge to guide the search, while also
correcting for confounders.

When combining the simulation results presented for window-based burden tests in addition to the results on
gene-based burden tests, it appears that FastCMH has superior performance in exploratory genome-wide association
studies.

S3.1.6 Testability of genomic regions with respect to their length

As explained in the main manuscript, our definition of meta-marker combined with Tarone’s definition of testability,
imply that larger genomic regions are less likely to be testable. However, how this dependence exactly manifests
strongly depends on factors such as the sample size, the distribution of minor allele frequencies and the amount of
linkage disequilibrium between markers.

In this section, we show both the total number and proportion of testable genomic regions as a function of
region length for two representative settings of our simulation experiments: (I) a synthetic dataset with no linkage
disequilibrium, following the data generation model used for the experiments in the main manuscript as described
in Section S2.1.1 and (II) a synthetic dataset with blockwise linkage disequilibrium, following the data generation
model described in Section S2.1.2 with ⇢

ld

2 {0.25, 0.375, 0.5}.
In Figures S23-S26, one can observe that, as expected, both the total number and proportion of genomic regions

that are testable decreases as the region size increases. Moreover, there exists a maximum e↵ective region size
beyond which all genomic regions are untestable. However, factors such as the existence of linkage disequilibrium
can greatly alter the distribution of testable genomic regions: the larger the amount of linkage disequilibrium is, the
more genomic regions will be testable and the larger they will be. Indeed, in the case of no linkage disequilibrium,
shown in Figure S23, no genomic region with more than 10 markers was testable. In contrast, Figures S24-S26
illustrate how with blockwise linkage disequilibrium, genomic regions with hundreds of markers might be testable.
More precisely, with ⇢

ld

= 0.25, the maximum e↵ective region size is approximately 100, a value which is roughly
doubled for ⇢

ld

= 0.5.

(a) (b)

Figure S23: Scenario (I): Model without linkage disequilibrium, as described in Section S2.1.1. (a) Total number
of testable genomic regions. (b) Proportion of testable genomic regions.
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(a) (b)

Figure S24: Scenario (II): Model with blockwise linkage disequilibrium (⇢
ld

= 0.25) as described in Section S2.1.2.
(a) Total number of testable genomic regions. (b) Proportion of testable genomic regions.

(a) (b)

Figure S25: Scenario (II): Model with blockwise linkage disequilibrium (⇢
ld

= 0.375) as described in Sec-
tion S2.1.2. (a) Total number of testable genomic regions. (b) Proportion of testable genomic regions.

S28



(a) (b)

Figure S26: Scenario (II): Model with blockwise linkage disequilibrium (⇢
ld

= 0.5) as described in Section S2.1.2.
(a) Total number of testable genomic regions. (b) Proportion of testable genomic regions.

S3.1.7 Comparing FastCMH and FastCMH-FDR

This simulation study mirrors that in Section 4.1.1 and Figure 2 in the main paper. For ⇢s = ⇢con 2 [0.1, 0.9],
Figure S27(a) shows that FastCMH-FDR has slightly higher power than FastCMH, while Figure S27(b) shows that
both methods have similar resistance to detecting confounded regions (unlike FAIS-�2 in Figure 2 in the main
paper), although FastCMH is slightly better.

However, the increase in power for FastCMH-FDR comes at a cost; Figure S27(c) shows the proportion of times
that each method will detect at least one false positive (a region which is neither a truly significant region, nor
a confounded region), and it can be seen that FastCMH-FDR will often detect a false positive, while FastCMH will
detect a false positive in less 5% of the trials. In fact, we should expect this result for FastCMH, since it controls
the Family-wise Error Rate at threshold ↵, and in this simulation we have used ↵ = 0.05.

On the other hand, one might be concerned with the regularity with which FastCMH-FDR finds a false positive.
But this is simply down to the di↵erence between a procedure which controls the FDR and a procedure which
controls the FWER; a procedure controlling the FDR will control the proportion of false discoveries (false positives)
at a threshold ↵, i.e. a proportion less than ↵ of discoveries will be false, while a procedure controlling the FWER
will ensure that there will be at least one false discovery in at most ↵ trials. The two procedures are simply
controlling di↵erent criteria, and it is up to the practitioner to decide which criterion should be controlled.

Note that there are no runtime comparison figures, because FastCHM and FastCMH-FDR run in practically
the same amount of time. The main computational e↵ort comes from the determination of Tarone’s adjusted
significance threshold, and this step is common to both methods (Line 1 of Algorithms 1 and 1⇤). The FWER
procedure (FastCHM) and the FDR procedure (FastCMH-FDR), shown respectively in Line 2 of Algorithms 1 and
1⇤, are of practically the same complexity, although the FDR procedure requires a sorting procedure. If there are
T = |R

T

(�
tar

)| testable intervals, then the FWER procedure of FastCHM is O(T ), while the FDR procedure of
FastCMH-FDR is O(T log T ).

Also note that it is possible to modify FastCMH-FDR to FastCMH-FDRDep, which uses e↵ in Equation (3) instead
of ↵ in order to try and account for any positive regression dependence. However, the results for FastCMH-FDRDep
are not included because, for these parameter settings, they are the practically the same as for FastCMH-FDR.

S3.1.8 Fine-grained population structure correction

In this section, we further study the ability of FastCMH to correct for population structure when a discretized
version of the top principal components of the empirical kinship matrix is used to represent population structure
as a categorical covariate with k categories or discretization levels.

To this end, we simulated a dataset that mimics the population structure and degree of confounding of the
COPDGene study following the approach described in Song et al. (2015), which we summarize here for convenience.

A genotype matrix G 2 {0, 1}n⇥l was generated by sampling the j-th SNP for the i-th individual g
i

[j] as an
independent Bernouilli random variable with corresponding minor allele frequence F

i,j

. The n⇥l matrix F of minor
allele frequencies was obtained as F = S� + f . In that expression, S 2 Rn⇥2 is a matrix containing as columns
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Figure S27: (a) A comparison of the power of FastCMH and FastCMH-FDR for detecting significant regions as
⇢s = ⇢con varies. The parameters are chosen, similar to Figure 2 in the main paper, to be n = 500, l = 105, p1 =
0.3, k = 2, ⇢s = ⇢con 2 [0.1, 0.9], and 100 trials are used. Besides the in the significant regions, the noise parameter
– the probability of a bit being randomly changed – is 0.05. (b) The proportion of confounded significant regions
falsely detected by each of the algorithms. The parameters have the same values as for (a). (c) The actual Family-
wise error rate of FastCMH and FastCMH-FDR, where the FWER and FDR thresholds are both set to ↵ = 0.05.
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the top two principal components of the empirical kinship matrix of the COPDGene study, normalized so that
each column takes values in the range [0, 1]; � 2 R2⇥l was sampled as �

l,j

⇠ Uniform(0, 0.45) for l 2 {1, 2}; and
f = 0.05 sets the minimum minor allele frequency in the dataset. The number of individuals n was determined by
the number of samples in the COPDGene study, leading to n = 7, 993. The number of SNPs was set to l = 100, 000,
as was done in Song et al. (2015). As a result of this generation process, the population structure in the synthetic
genotype matrix G resembles that of the COPDGene study.

To generate a synthetic case/control phenotype that is confounded by population structure, we followed a
procedure based on the generation of confounded quantitative traits in Song et al. (2015). More precisely, k-
means was used to cluster the individuals into k⇤ = 8 disjoint clusters based on the normalized top two principal
components of the original COPDGene study, i.e. the columns of S. Next, for each resulting cluster, synthetic
case/control labels y

i

were sampled independently for each individual in the cluster as a Bernouilli random variable
with success probability equal to the estimated proportion of individuals in the cluster being cases in the original
COPDGene study. As a result, the degree of confounding in the synthetic phenotype due to population structure
is comparable to that of the original COPDGene study. No true associations between any group of SNPs and the
phenotype were included in the generation process. Thus, any findings reported correspond to false positives.

When this simulated dataset is analyzed using FAIS-�2, 8, 501 significant genomic regions are falsely reported
as associated due to its inability to correct for population structure. The resulting genomic inflation was very high,
resembling the high-level of inflation in the original COPDGene study (� = 23.031).

In practice, we would only have access to G, hence using the columns of S to represent the structure of
the dataset would be over-optimistic. Consequently, to correct for population structure using FastCMH, we first
computed the top two principal components of the empirical kinship matrix corresponding to G. Note that while
those will resemble the original principal components used to generate the synthetic phenotype, i.e. the columns
of S, they will not be identical due to sampling variation. To quantize the top two principal components as
a categorical covariate with k categories, we employed k-means clustering and set the value of the categorical
covariate for each individual to equal the index of the cluster to which the individual is assigned. Again, in
practice we would not know what the true number of subpopulations k⇤ a↵ecting the phenotype is. Thus, we
applied k-means with di↵erent values of k in the range J2, 15K to analyze the ability of FastCMH to retrieve k⇤ and
to study its robustness to misspecification in the value of k.

Remarkably, FastCMH reported no false positives for any of the 14 di↵erent values of k employed in the experi-
ment. Unsurprisingly, the minimum genomic inflation � was attained when k = 8 = k⇤ was used as a parameter,
leading to � = 1.018. However, our results also showed that FastCMH is robust to misspecification of k: only
the extreme case k = 2 led to residual inflation (� = 1.230). All other values of k in the range J3, 15K led to a
satisfactory reduction in genomic inflation, with the resulting � ranging between 1.018 (k = 8) and 1.022 (k = 6).

While our results in simulated data illustrate that FastCMH can drastically reduce genomic inflation due to
complex population structure despite the unconventional need to represent the real-valued principal components
of the empirical kinship matrix as a categorical covariate, they also showed that the number of categories k is an
important parameter that needs to be considered carefully. While FastCMH is designed to handle large values of k
in a computationally e�cient manner, the sample size can act as a practical limiting factor to the maximum value
of k that can be employed. As a consequence, when the sample size is very small, the necessity to use a small
value of k might cause some subpopulations to be merged and lead to some residual genomic inflation remaining
in the output of FastCMH.
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S3.2 Results for COPDGene

S3.2.1 Fine-grained population structure correction

As described in Section S2.4, our main experiments for the COPDGene study defined the categorical covariate used
by FastCMH to correct for confounding by combining ethnicity and height bins. While that lead to an enormous
decrease in the inflation factor (� = 16.70 before correction, � = 1.048 after), it is worth illustrating the possibility
of capturing population structure more finely than ethnicity represents. In order to do so, we followed the same
approach we employed for analyzing the A. thaliana datasets. Firstly, we learn a low-dimensional embedding for
each individual, given in our case by the top three principal components of the empirical kinship matrix. Next,
we discretize the resulting embedding using k-means. The category for each individual is given by the ID of the
cluster they are assigned to.

We applied that procedure for values of k in the range k 2 J2, 10K. We observed the following: (i) regardless of
the value of k, this approach retrieves the same three significant genomic regions as the approach described in the
main manuscript; (ii) using k = 2 is virtually identical to using ethnicity as the covariate, leading to � = 1.048;
(iii) the lowest genomic inflation factor was achieved for k 2 {3, 6, 7, 8, 9, 10}, leading to � ranging between 1.011
(k = 8) and 1.016 (k = 3). All those points together illustrate that many values of k in FastCMH might lead to
satisfactory performance, showing a certain robustness to the choice of parameters.

(a) (b)

Figure S28: Embedding of all 7,993 samples in the COPDGene study according to the two principal components
of the kinship matrix: (a) Individuals colored according to ethnicity. (b) Individuals colored according to the
category assigned by k-means clustering (k = 3) on the three principal components of the kinship matrix.

In Figure S28 we show a 2D embedding of the individuals using the top two principal components of the
kinship matrix, colored according to ethnicity (a), and the categories obtained using k-kmeans with k = 3 (b).
In essence, k-means splits the non-Hispanic White individuals into two subclusters, hinting at the possibility of
residual population structure within the two original subgroups. The resulting QQ-plot is depicted in Figure S29.
As it can be seen, this fine-grained definition of the covariate results in slightly better agreement with the expected
distribution of p-values, consistent with the decrease in genomic inflation.
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Figure S29: QQ-plot for the p-values of all testable genomic regions obtained with FastCMH (red) and FAIS-�2

(blue) for the COPDGene study. The categorical covariate was obtained by applying k-means clustering with
k = 3 on the top three principal components of the kinship matrix.

Influence of the number of principal components used to represent population structure
A popular approach to account for population structure is to include the top p principal components of the
empirical kinship matrix as additional covariate factors in a regression model (Price et al., 2006). Increasing the
number p of top principal components used as covariates generally leads to better population structure correction.
However, beyond a certain value of p, the reduction in inflation due to including additional principal components as
covariates becomes marginal. This leads to a natural way to select the value of parameter p. When using principal
components of the kinship matrix to represent population structure, FastCMH requires an additional parameter
k representing the number of categories in which the resulting p-dimensional embeddings for each individual are
discretized. Intuitively, the number p of principal components controls the amount of information about the
population structure that is included in the model prior to discretization, while the number of categories for the
covariate k controls how finely that information is represented in the categorical covariate.

While the experiments described above used p = 3, chosen according to the criterion just described, in the
remaining of this section we explore the robustness of FastCMH to the joint e↵ect of parameters p and k. To
that end, we analyzed the resulting genomic inflation in the COPDGene study after applying FastCMH using a
categorical covariate obtained by discretizing the top p principal components of the empirical kinship matrix into
k categories using unweighted k-means. The parameters p and k were both varied independently in the range
J2, 10K, resulting in 81 di↵erent experiments each corresponding to a di↵erent combination of values for p and k.

The results shown in Figure S30 illustrate that many di↵erent choices for p and k lead to a satisfactory reduction
of genomic inflation. In particular: (I) the median genomic inflation across all 81 parameter combinations is
� = 1.020; (II) for any fixed value of the number p of top principal components in the range J2, 10K, the best
performing choice of the number k of categories achieves � in the range [1.009, 1.020]; (III) for any fixed value
of the number k of categories in the range J3, 10K, the best performing choice of the number p of top principal
components achieves � in the range [1.009, 1.014]; and (IV) for k = 2 categories, any choice of the number p
of principal components in the range J2, 10K recovers the original ethnicity, leading to a genomic inflation of
� = 1.048. Most interestingly, 88.89% of all 72 parameter combinations with k � 3 categories achieved better
population structure correction than using ethnicity alone. Reassuringly, the three significantly associated genomic
regions found in the original analysis remain significant for all 81 parameter combinations in this new analysis.
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Figure S30: Genomic inflation � after applying FastCMH to the COPDGene study for di↵erent values of p, the
number of top principal components of the empirical kinship matrix included in the analysis, and k, the number
of categories of the covariate. Both parameters were varied independently in the range J2, 10K.

Most combinations of p and k lead to a considerable reduction in genomic inflation and, for any given fixed
choice of p or k, there exists at least one value of the other parameter that leads to near-optimal performance.
However, Figure S30 shows that FastCMH is not entirely insensitive to the choice of parameters, with a minority
of parameter combinations leading to a suboptimal reduction in genomic inflation (e.g. � = 1.086 for p = 6 and
k = 9). Thus, if one wishes to use FastCMH to correct for population structure using principal components of the
empirical kinship matrix, it is recommended to explore multiple combinations of p and k for better performance.

More generally, these experiments illustrate that the way real-valued covariates are discretized into a categorical
covariate for use in FastCMH might have an influence in the ability of our approach to reduce genomic inflation. In
particular, in cases for which the number of real-valued covariate factors to correct for is large, such as when one
wishes to include a large number p of principal components of the empirical kinship matrix as covariate factors,
it might become di�cult to find an appropriate discretization of the set of continuous covariates using clustering
algorithms as simple as unweighted k-means. Therefore, exploring more sophisticated ways to represent a set of
real-valued covariates as a categorical variable is a relevant topic for future work that might eventually lead to
improved performance in FastCMH.

S3.2.2 Impact of the number of categories for the covariates on the runtime

Figure S31 illustrates how the number k of categories for the covariate a↵ects the runtime in the COPDGene
study. The covariates were defined as in Section S2.4. However, varying values of k were obtained by changing the
number of categories in which the covariate “height” was discretized. It is clear from the figure that the search
space pruning algorithm is very e�cient in terms of running time. This is in contrast to a naive implementation
of Tarone’s trick for CMH, whose runtime scales exponentially with k.
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Figure S31: Runtime of FastCMH and a naive implementation of Tarone’s trick for the CMH test in the
COPDGene study.

S3.2.3 Significant genomic regions

The three trait-related and statistically significant genomic regions reported by FastCMH overlap with the (CHRNA5-
CHRNA3-CHRNB4) nicotinic acetylcholine receptor gene cluster. Each region and the SNPs within it are listed
in Table S4. Some of the SNPs (e.g. rs6495306) have actually been reported to lack evidence of association with
COPD in a GWAS dataset (Qiu et al., 2011). Of course, our results do not contradict these previous studies but
show the potential of our method to uncover genomic regions that are associated to a phenotype of interest for
which traditional GWASs lack the statistical power to detect.

The table shows the p-values attained by the region as well as the p-values of each individual SNP, computed
as a single SNP association test. This is to highlight that even when individual SNPs have a weak association to
the phenotype, their cumulative e↵ect within a region can attain statistical significance.

Table S4: Details of the statistically significant genomic regions reported by FastCMH and of the SNPs contained
in them.

Genomic region Gene overlap
p-values FastCMH

region single SNP
chr15 78863472–78865893 CHRNA5 2.03e-10

rs667282 9.06e-08
rs6495306 4.60e-02

chr15 78907656–78909480 CHRNA3 4.54e-10
rs6495308 3.55e-05
rs12443170 2.96e-03
rs3743074 4.30e-02

chr15 78917399–78928264 CHRNB4 1.41e-10
rs1948 1.00e-02
rs950776 6.18e-02
rs12441088 1.70e-05

Corrected significance threshold for:

• all testable intervals: 7.26e-09

• all testable single SNPs: 8.12e-08

S3.2.4 Analysis of individual cohorts vs. merged dataset with both cohorts

We decided to evaluate the following two scenarios:
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• run FAIS-�2 individually on the African American (AA) cohort and non-Hispanic whites (NHW) cohort.

• run FastCMH on the merged dataset of AA+NHW. This is the analysis that was conducted in the main paper.

The genomic inflation factor evaluated on the p-values of all testable regions of FAIS-�2 is very low and
essentially equal to that attained by FastCMH on the merged dataset. This serves as additional evidence that: i)
the most important confounding factor in this dataset is the “population ID” and ii) FastCMH correctly corrects
the inflation.

When FAIS-�2 was run individually on each population, no regions were found for AA and only one region was
found for NHW. Thus, if we had computed the significant intervals as the intersection of those reported on each
dataset individually, nothing would have been found. Even if we had taken the union instead of the intersection,
only one significant interval would have been found. The p-values for each of the three significant intervals reported
by FastCMH on the entire dataset are shown in Table S5.

Table S5: Comparison of FAIS-�2 when run individually on the African American (AA) and non-Hispanic white
(NHW) populations. The three genomic regions are the ones reported by FastCMH and discussed in the main
paper.

Genomic region
FAIS-�2 FastCMH

AA NHW AA+NHW
chr15 78863472–78865893 7.52e-5 6.12e-7 2.22e-10
chr15 78907656–78909480 1.08e-1 5.88e-10 3.25e-10
chr15 78917399–78928264 5.82e-4 5.89e-8 1.77e-4

The significance thresholds are:

• for AA = 8.14e-9

• for NHW = 8.71e-9

• for AA+NHW (merged) = 7.25e-9

S3.2.5 Burden tests

For the COPDGene study, when performing the gene-based burden tests as described Section S1.5.2, none of the
three genes (CHRNA5-CHRNA3-CHRNB4) found by FastCMH were significant using any of the burden tests. When
taking the smallest p-value across all burden tests performed, only CHRNB4 was close to significance (p-value 5.72e-
6) while CHRNA5 and CHRNA3 had p-values 0.24 and 0.41, respectively. While each of the three significantly
associated genomic regions found by FastCMH overlaps with one gene in the cluster (CHRNA5-CHRNA3-CHRNB4),
the significant regions do not span the entire gene. Burden tests, which do not consider sub-regions, include too
many markers in the test, diluting the signal among noise and missing the association. In contrast, gene-based
burden tests identified the gene ZRANB3 as significant, with the smallest p-value across all burden tests being
1.56e-6. FastCMH assigns the genomic region corresponding to ZRANB3 a very similar p-value, 2.31e-6. However,
ZRANB3 is not significantly associated for FastCMH because it uses a more stringent significance threshold. This
behavior is to be expected, as there are many more testable genomic regions (⇡ 7 · 106) than genes (⇡ 1.7 · 103) in
the COPDGene dataset.

When the window-based burden tests were conducted on the two window sizes used to partition the genome
(500 kilobases and 1 megabase) as described Section S1.5.2, the results coincided with the findings of the gene-based
tests (i.e., overlap with the gene ZRANB3). For 500 kb windows, only the region chr2:136,018,946:136,518,946
is found when the encoding is (I). Likewise, for 1 megabase windows, the region chr2:136,018,810:137,018,810 is
found when the encoding used is (II).

S3.2.6 Testability of genomic regions with respect to their length

In this section, we show the total number and proportion of genomic regions that were testable in the COPDGene
study. As it can be seen from Figure S32, the largest testable genomic regions contained approximately 120
markers, with most regions having 20 markers or less.
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(a) (b)

Figure S32: COPDGene study: (a) Total number of testable genomic regions. (b) Proportion of testable genomic
regions.

S3.2.7 Comparing FastCMH and FastCMH-FDR

To see how FastCMH-FDR compares with FastCMH in practice, we ran two versions of FastCMH-FDR on the
COPDGene data set: (i) FastCMH-FDR, which uses the original version of FDR Benjamini and Hochberg (1995b),
which does not take any dependence into account, and (ii) FastCMH-FDRDep, which uses the version of FDR that
takes positive regression dependence into account Benjamini and Yekutieli (2001) (see Section S1.4 and Equa-
tion (3)).

Now, recall that FastCMH finds 3 significant regions while FAIS-�2 finds 88, 403 significant regions. FastCMH-FDRDep
discovers the same 3 significant regions as FastCMH. However, FastCMH-FDR finds 70 regions.

The reason that FastCMH-FDR discovers additional regions is that the FDR procedure allows regions with p-
values as high as 2.09e-5 to be declared significant. On the other hand, the adjusted threshold of FastCMH is
7.25e-9, so only regions with p-values smaller than 7.25e-9 can be declared significant by FastCMH. Figure S27
shows that while FastCMH-FDR has higher power than FastCMH (Figure S27(a)), it comes at the cost of a high
FWER, while FastCMH preserves the FWER at level ↵ = 0.05.

Amongst the 70 regions discovered by FastCMH-FDR are two regions which overlap with the ZRANB3 gene.
Recall from Section S3.2.5 that the burden test discovered a significant region which overlapped with ZRANB3.
So, although FastCMH did not find this genetic region which was declared to be significant by the burden test,
FastCMH-FDR did find this region.
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S3.3 Results for Arabidopsis thaliana

S3.3.1 Additional QQ-plots

The QQ-plots shown in Figures S33–S35 correspond to the datasets avrB, avrRphB and avrPpm1 respectively. In
all cases, FastCMH considerably decreases the level of inflation present in the results, compared to those obtained
with its predecessor FAIS.

Figure S33: QQ-plot for the p-values of all testable genomic regions of the avrB dataset, for both FastCMH (red)
and FAIS-�2 (blue) algorithms.

Figure S34: QQ-plot for the p-values of all testable genomic regions of the avrRphB dataset, for both FastCMH

(red) and FAIS-�2 (blue) algorithms.

S3.3.2 Significant genomic regions

The most significant genomic regions found by FastCMH in A. thaliana are shown in Table S6.
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Figure S35: QQ-plot for the p-values of all testable genomic regions of the avrRpm1 dataset, for both FastCMH

(red) and FAIS-�2 (blue) algorithms.

Table S6: Details of the most statistically significant genomic regions reported by FastCMH. Underlined SNPs
are contained in genes (including markers at a distance smaller than 10 kb). The SNP notation in the format:
Chr4 2398754 indicates a SNP located on the 4th chromosome at the position 2398754.

SNPs in the significant genomic region Gene overlap p-values FastCMH

avrB
. Chr3 2225653 - Chr3 2225893 NA 3.15e-13
. Chr3 2221399 - Chr3 2222856 AT3G07020 1.61e-10
. Chr3 2227817 AT3G07040 1.69e-10
. Chr3 2288913 - Chr3 2289178 - Chr3 2289559 AT3G07195 5.34e-10
avrRpm1
. Chr3 2225653 - Chr3 2225893 NA 3.00e-13
. Chr3 2227817 AT3G07040 1.15e-11
. Chr3 2310055 - Chr3 2311035 - Chr3 2311574 AT3G07260 6.90e-11
avrPphB
. Chr1 4146714 AT1G12220 1.87e-13
. Chr1 4143163 AT1G12210 1.87e-13
. Chr1 4141624 AT1G12210 1.17e-12
. Chr1 4139802 - Chr1 4140044 AT1G12200 2.43e-12
LES
. Chr4 8297892 AT4G14400 1.37e-09
. Chr5 6485290 NA 7.39e-09
. Chr4 8307440 - Chr4 8307761 - Chr4 8307910 -
Chr4 8308076 - Chr4 8308306 - Chr4 8308768 - Chr4 8308977 AT4G14440 2.25e-08

LY
. Chr5 18925351 AT5G46640 1.27e-08

S3.3.3 Burden Tests

In Table S8, we synthesize the results obtained with the di↵erent versions of the gene-based burden tests and
for FastCMH. For all gene-based burden tests, the significance threshold is obtained using Bonferroni’s correction,
resulting in a value of 2.15e-06. When comparing the results of FastCMH with those of the gene-based burden
tests, if multiple intervals that were deemed significantly associated by FastCMH overlap with a gene, the p-value
chosen is the smallest one. Table S7 displays all the genomic inflation factors across gene-based burden tests and
FastCMH. We note that across all phenotypes and burden tests, dummy - (II) and PCs - (II) burden tests always
display the highest genomic inflation factors and a higher number of significant genes. For the three phenotypes,
avrB, avrRpm1 and avrPphB, we note that FastCMH retrieves more significant genes and genomic regions than
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the gene-based burden tests although the genomic inflation is in the same range. For LES and LY, the genomic
inflation factors for FastCMH and CMH are the smallest across all and, as a consequence, those two tests retrieve
less significant genomic regions or genes. These results show that the two methods are complementary regarding
gene discovery. However, FastCMH is also able to find SNPs or genomic regions that are not inside genes, as
partially shown by Table S6. In total, out of all SNPs found by FastCMH, 45% are not inside genes. Moreover,
33% of significant genomic regions found by FastCMH are partially outside genes and 9% are fully outside genes.
The variability across burden tests and the complementarity of FastCMH is also illustrated in Figure S36.

When the window-based burden tests were conducted on the two window sizes used to partition the genome (500
kilobases and 1 megabase), we only find hits with the encoding Enc.(II) and with three phenotypes out of five. For
phenotype LY, the region ’Chr1:9,000,019:9,500,019’ is significant for the window size 500kb; for phenotype avrB,
the regions ’Chr1:5,000,006:6,000,006’ and ’Chr5:1,000,002:2,000,002’ are significant for the window 1000kb size
and the region ’Chr1:9’000’019:9’500’019’ is significant for the window size 500kb; for the phenotype avrRpm1, the
region ’Chr1:5,500,012:6,000,012’ is significant for the window size 500kb and the region ’Chr1:5,000,006:6,000,006’
is significant for the window size 1000kb. We notice that the results of the gene-based burden tests are complemen-
tary to the ones obtained by FastCMH and by the gene-based tests, which shows again that burden tests’ results
have a large variability that depends on the definition of the genomic regions being tested and on the encodings.

4

1

2

19 + 3

8

10

3

Enc. (I)

Enc. (II)

FastCMH

Figure S36: Venn diagram for the genes found by the gene-based burden tests and/or FastCMH. Keys for the
legend: Enc.(I) represents the union between all the gene-based burden tests that use encoding (I) as described
in Section S1.5 encode the meta-marker with an OR (including CMH) ; Enc. (II) represents the union of all the
gene-based burden tests that use encoding (II) for the meta-marker (see Section S1.5); FastCMH considers both:
genes and intervals fully outside genes (in italic) that are only retrieved by FastCMH. We note that this figure is
conservative as we are taking the union of gene-based burden tests as comparison partners.

Table S7: Genomic inflation factors for all gene-based burden tests and for FastCMH across all phenotypes. Note
that for FastCMH, the genomic inflation factor is calculated using p-values for testable genomic regions only, leading
to an inflated genomic inflation factor. Keys to abbreviations: dummy indicates that the covariates are coded as
k dummy indicator variables, PCs means that we chose the three first principal components of the kinship matrix
as covariates, (I) and (II) correspond to the encodings described in Section S1.5. Finally, CMH corresponds to the
gene-based burden test using the CMH test applied to encoding (I) for each gene.

Phenotype FastCMH
Burden tests

dummy - (I) dummy - (II) PCs - (I) PCs - (II) CMH
avrB 1.17 1.12 1.22 1.07 1.17 1.05
avrRpm1 1.13 1.13 1.24 1.07 1.15 1.03
avrPphB 1.22 1.41 1.62 1.15 1.27 1.12
LES 1.21 1.43 1.68 1.23 1.43 1.16
LY 1.30 1.44 1.63 1.44 1.63 1.20
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Table S8: The statistically significant genomic regions reported by the di↵erent gene-based burden tests (resp.
FastCMH) and the corresponding gene (resp. genomic region) p-values when significant. A — indicates that the gene
is not significant for the given test. In bold, we indicate genes that are found by FastCMH. Keys to abbreviations:
dummy indicates that the covariates are coded as k dummy indicator variables, PCs means that we chose the three
first principal components of the kinship matrix as covariates, (I) and (II) correspond to the encodings described
in Section S1.5. Finally, CMH corresponds to the burden test using the CMH test applied to encoding (I) for each
gene.

Significant gene Number of SNPs FastCMH
Burden tests and p-values

dummy - (I) dummy - (II) PCs - (I) PCs - (II) CMH
avrB
. AT3G07050 10 1.66e-09 — 1.01e-06 — 1.76e-07 —
. AT3G07195 4 5.34e-10 1.23e-10 6.45e-10 2.01e-11 1.78e-10 2.77e-10
. AT3G07010 10 5.24e-09 1.44e-06 — — — —
. AT3G07020 — 1.61e-10 — — — — —
. AT3G07040 — 1.69e-10 — — — — —
. AT3G07060 — 3.58e-09 — — — — —
. AT3G07070 — 3.58e-09 — — — — —
. AT3G07260 — 6.68e-10 — — — — —
. AT3G07330 — 2.12e-09 — — — — —
avrRpm1
. AT3G07050 10 6.42e-10 — 4.04e-07 — 8.75e-08 —
. AT3G07195 4 5.06e-10 4.04e-10 1.07-10 5.11e-11 1.39e-11 5.07e-10
. AT3G07005 10 — 7.20e-07 7.20e-07 — — —
. AT3G07020 — 1.81e-10 — — — — —
. AT3G07040 — 1.15e-11 — — — — —
. AT3G07060 — 6.26e-09 — — — — —
. AT3G07070 — 6.26e-09 — — — — —
. AT3G07200 — 1.77e-08 — — — — —
. AT3G07250 — 1.77e-08 — — — — —
. AT3G07260 — 6.90e-11 — — — — —
. AT3G07330 — 7.5e-09 — — — — —
avrPphB
. AT1G12210 9 1.87e-13 1.67e-06 1.18e-15 6.02e-08 7.94e-20 —
. AT1G12220 3 1.87e-13 3.92e-14 6.18e-16 3.25e-17 2.43e-19 6.12e-13
. AT1G12230 3 — 7.78e-14 3.83e-15 2.76e-14 1.57e-16 3.19e-12
. AT5G11340 5 — — — — 8.91e-07 —
. AT5G11350 3 — 1.08e-06 — 4.77e-08 1.58e-07 9.94e-07
. AT1G12170 5 — — — 7.89e-07 — —
. AT1G12200 — 2.43e-12 — — — — —
. AT1G12190 — 7.95e-09 — — — — —
LES
. AT3G06120 3 — — 2.01e-07 — — —
. AT4G28890 7 — 4.38e-07 4.28e-07 1.77e-07 1.77e-07 —
. AT4G14410 9 — — — — 2.74e-07 —
. AT1G34420 3 — — — — 1.87e-06 —
. AT1G08500 2 — — — 1.28e-07 1.28e-07 —
. AT5G45780 6 — — — 3.99e-07 2.45e-07 —
. AT3G18535 5 — — — — — 1.25e-06
. AT4G39955 7 — — — — — 4.36e-07
. AT4G14440 — 2.25e-08 — — — — —
. AT4G14400 — 1.37e-09 — — — — —
LY
. AT1G34420 3 — — 1.21e-07 — — —
. AT2G38995 8 — — 1.63e-06 — — —
. AT3G61480 5 — 1.57e-06 1.57e-06 — — —
. AT5G46660 5 — — 1.99e-06 — 5.06e-07 —
. AT5G49620 1 — 1.61e-06 1.61e-06 — — —
. AT5G45780 6 — — — — 1.49e-06 —
. AT1G08500 2 — — — 3.36e-08 3.36e-08 —
. AT2G18120 3 — — 2.08e-07 1.87e-06 — —
. AT5G46640 — 1.27e-08 — — — — —S41



S3.3.4 Testability of genomic regions with respect to their length

In this section, we show the total number and proportion of genomic regions that were testable for all five Arabidop-
sis thaliana datasets. In Figures S37-S41, we observe the same trend as in our synthetic datasets (see Section S3.1.6)
and the COPDGene study (see Section S3.2.6): both the total number and the proportion of testable genomic
regions decrease with the number of markers in the region for all five A. thaliana datasets. However, compared
to the results in the COPDGene study, the proportion of testable genomic regions if significantly smaller in A.
thaliana, even for regions with relatively few markers. This behavior is a direct consequence of the sample size: the
COPDGene study dataset contains 7, 993 individuals, whereas the number of samples available in the A. thaliana
datasets is much smaller, oscillating between 84 and 95.

(a) (b)

Figure S37: A. thaliana, avrB phenotype: (a) Total number of testable genomic regions. (b) Proportion of
testable genomic regions.

(a) (b)

Figure S38: A. thaliana, avrRpm1 phenotype: (a) Total number of testable genomic regions. (b) Proportion of
testable genomic regions.
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(a) (b)

Figure S39: A. thaliana, avrPphB phenotype: (a) Total number of testable genomic regions. (b) Proportion of
testable genomic regions.

(a) (b)

Figure S40: A. thaliana, LES phenotype: (a) Total number of testable genomic regions. (b) Proportion of
testable genomic regions.
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(a) (b)

Figure S41: A. thaliana, LY phenotype: (a) Total number of testable genomic regions. (b) Proportion of testable
genomic regions.
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S4 The R package fastcmh

An R package fastcmh implementing the FastCMH algorithm is available on The Comprehensive R Archive Network
at https://CRAN.R-project.org/package=fastcmh. The core of the algorithm is written in C++. The FDR
extension described in Section S1.4 is implemented in the package.

S4.1 Installation in R

To install the R package fastcmh, open an R session and use the following command:

> install.packages("fastcmh", dependencies=TRUE)

This installs fastcmh along with its two main dependencies (Rcpp and bindata). In fact, a few other packages will
also be installed, if they are not installed already (R6, Rcpp, bindata, crayon, digest, e1071, fastcmh, magrittr,
mvtnorm, praise, testthat).

Note that the line above installs the packages to the default library folder for R; the location of this folder
depends on the system and user settings.

The whole installation, depending on the internet speed, should take under one minute. Since the package is
on CRAN, the installation will work for Windows, Mac and Linux.

S4.2 A short demo

After installation, in order to quickly see an example of fastcmh in action, there is a short demo which can be
called via the commands:

> library(fastcmh)

> demofastcmh()

In order to see FastCMH in action, the user is prompted to press the Enter key to move onto the next step(s).

S4.3 Running FastCMH

After installing fastcmh (see Section S4.1), in an R session load the package using

> library("fastcmh")

Then, assuming that the data, label and covariate files are in the folder /path/to/mydata/, and the files are
named data.txt, label.txt and cov.txt, respectively, then the command would be:

> mylist <- runfastcmh("/path/to/mydata", alpha=0.05)

where the significance threshold ↵ = 0.05 is used. There are many additional parameters that can be set, e.g.
doFDR=TRUE, but the reader is referred to the documentation (see Section S4.4) for more information.

If the default file names have not been used — e.g. mydata.txt, mylabel.txt and mycov.txt, respectively,
have been used — then this is no problem; simply specify the file names as in:

> mylist <- runfastcmh("/path/to/mydata", data="mydata.txt",

label="mylabel.txt", cov="mycov.txt",

alpha=0.05)

The output is the list mylist, and mylist$sig is a dataframe of the significant intervals (after filtering) with
start indicating the starting point of the intervals, end the endpoint of the intervals and pvalue the p-value of
the interval. See the package documentation for more details on the format of the output mylist.

S4.4 Documentation for fastcmh

While inside an R session, for quick access to all the information on any method (e.g. runfastcmh), check the
fastcmh documentation with the command

> ?runfastcmh

in order to see more information on all the input/output parameters.
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