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Supplementary Figure S1: Power measures for the evaluated methods under various
proportions of differentially methylated sites. All results are averaged over 10 simulated
data sets.
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Supplementary Figure S2: The detection power of MALAX-1g and two additional
evaluated methods under simulated data sets with no DM sites. The additional meth-
ods are GEE (based on CARAT) and PQL (based on GMMAT), as described in the
supplementary note. All results are averaged over 10 simulated data sets.
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2 Experiments with Additional Methods

We evaluated two additional methods for generalized linear mixed model (GLMM) ap-
proximation. Both methods were recently proposed for case-control association studies,
but can be readily adapted to work with count-bases responses instead of binary re-
sponses.

The first method is based on the penalized quasi likelihood algorithm, as implemented
in the GMMAT package [1]. This method is similar to the Laplace approximation but
applies additional approximations, which results in faster computations at the cost of
reduced accuracy.

The second method uses a generalized estimating equations (GEE) approach, as imple-
mented in the CARAT package [2]. This method only models the first two moments
of the model likelihood. We used a modified version of CARAT that was adapted to
use a binomial instead of a binary response. We evaluated both a standard version and
a version with an additional dispersion parameter, as described in [2]; both versions
yielded effectively the same results.

GMMAT and CARAT were evaluated in a setting with no differentially methylated
(DM) sites, which was the easiest setting in our experiments. Consequently, both meth-
ods used one variance component associated with a genetic similarity matrix, along
with one variance component associated with the identity matrix, which can account
for independent over-dispersion. The results demonstrate that MALAX-1g substantially
outperformed both methods (Supplementary Figure S2). We therefore did not consider
these methods in the remainder of the experiments. We note that we also evaluated
versions of these approaches that use beta-binomial instead of binomial responses, but
these versions were less accurate than the binomial ones.

3 Gradient Computation

The gradient of the approximate log likelihood described in the main text is required
both for approximating the Hessian and for the maximum likelihood estimation proce-
dure. Here we derive the gradient computation in detail. We first explicitly write the
approximate log likelihood as follows:

logP
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where B , GA. We denote the three terms on the right hand side of the above equation
as L1, L2 and L3, respectively. Note that the quantitiesG andm in L1 depend explicitly
on the model parameters, but l̂ andA also implicitly depend on these parameters, where
the dependence of A is mediated entirely through its dependence on l̂. We therefore
divide the partial derivative according to each parameter θ (which can represent variance
components or fixed effects) into its explicit and implicit components, by using the chain
rule as follows:

∂logP
(
yj | x,W , rj

)
∂θ

= ∂L1
∂θ
|explicit +

n∑
i=1

∂logP
(
yj | x,W , rj

)
∂l̂i

∂l̂i
∂θ
. (2)

2



We first derive the explicit components:
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Here,C is the matrix of covariates for the entire sample (the matrixW with an appended
column x), and γ =

[
αT β

]T
is the vector of all fixed effects.

To derive the implicit components, we first note that ∂(L1+L2)
∂l |l=l̂ = 0 by definition. We

therefore only need to compute ∂log|B|
∂l̂i

∂l̂i
∂θ . To derive log |B| , we first explicitly write

the negative Hessian A as follows:
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Using this explicit notation, ∂log|B|
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is given by:
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where ∂B
∂l̂i

is a matrix of element-wise partial derivatives.

Finally, ∂l̂i∂θ can be derived by using the fact that l̂ = G∇
(
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) )
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explained in the main text. Therefore, for every parameter θ we have:
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where the partial derivatives over matrices and vectors are computed element-wise.
Writing these gradients explicitly for the model parameters, we have:
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where Ck is the kth column of C.

A careful analysis reveals that the only matrix that needs to be inverted is B [3]. This
is also the matrix whose determinant needs to be evaluated in the likelihood evaluation.
Both quantities can be readily evaluated given the Cholesky decomposition of B, whose
computation scales cubically with the sample size. Hence, gradient computation incurs
only a minor additional computational overhead over the likelihood approximation.
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4 Data Simulations

The simulations procedure consisted of several stages: Genotype simulations, covariates
simulations, cell-type simulations, phenotype simulation, methylation simulations and
observed reads simulations. We describe each stage in turn.

4.1 Genome simulations

We simulated population structure via the Balding-Nichols model [4], wherein allele
frequencies in the range [0.05, 0.5] were randomly drawn for an ancestral population,
and frequencies for several subpopulations were drawn from a Beta distribution with
parameters f (1− FST ) /FST and (1− f) (1− FST ) /FST , where f is the minor allele
frequency in the ancestral population.

Next, we generated a mixture vectorM i for every individual i from a symmetric Dirich-
let distribution with a concentration parameter 0.25, such that

∑
uM

i
u = 1, and u

iterates over subpopulations. Finally, 60,000 SNPs were generated for every individual
assuming Hardy-Weinberg equilibrium by sampling every SNP j of individual i from
Bin(2, pij), where pij =

∑
uM

i
uf

j
u , and f ju is the MAF of SNP j in population u.

4.2 Covariate simulations

A vector of covariates for every individual i, Ci, was generated by sampling each entry
from a standard normal distribution, and adding an additional entry with the value 1.0
as an intercept.

4.3 Cell-type simulations

A vector of cell-types for every individual i, T i, was generated from a non-symmetric
Dirichlet distribution with concentration parameters 1.33 , 0.93 , 4.299, 2.696, 16.344.
These values were fitted using estimated cell type proportions for the GSE42861 dataset
[5], a 450K array data set. Specifically, we obtained cell proportion estimates of five cell
types (granulocytes, monocytes, B cells, NK cells, T cells) using the default implemen-
tation available in the minfi package [6], defined and assembled for the 450K array [7]
based on the approach suggested by [8] and a 450K reference data set [9].

4.4 Phenotype simulation

To generate a phenotype, we first sampled effect sizes for the factors affecting the phe-
notype. Specifically, we sampled an effect size γsnp

l ∼ N (0, σ2
snp) for every causal SNP

l, an effect size γpop
u ∼ N (0, σ2

pop) for every subpopulation u (intended to model shared
environmental factors within the subpopulations), and an effect size γcell

h ∼ N (0, σ2
cell)

for every cell-type h.
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Afterwards, the phenotype yi for every individual i was generated as follows:

yi = +
∑

l∈Causal
silγ

snp
l +

∑
j

mi
uγ

pop
u +

∑
h

tihγ
cell
h + εi, (8)

where sil, mi
u and tih are the lth causal SNP, uth subpopulation ancestry fraction and hth

cell-type fraction of individual i, respectively, εi ∼ N (0, σ2
ε ) is an environmental effect

for individual i where σ2
ε guarantees that the phenotype variance is 1.0, and l iterates

over indices of causal SNPs only. All effects were normalized to have a zero mean and
unit variance.

4.5 Methylation simulation

Methylation levels πij for every site j of every individual i were generated as follows:
First, either 0%, 25% or 50% of the sites were randomly selected to be differentially
methylated. Next, for every site j we generated effect sizes for the factors affecting
the methylation. Specifically, we sampled an effect size δj,covar

k ∼ N (0, ν2,j
covar) for every

covariate k and site j, an effect size δj,snp
l ∼ N (0, ν2,j

snp) for every causal SNP l and site
j, an effect size δj,pop

u ∼ N (0, ν2,j
pop) for every subpopulation u and site j (intended to

model shared environmental factors within the subpopulations), an effect size δj,cell
h ∼

N (0, ν2,j
cell) for every cell-type h and site j, and an effect size δj,pheno ∼ N (0, ν2,j

pheno) for
the phenotype. We also generated an environmental effect eij ∼ N (0, ν2,j

env) for every site
j of individual i.

Next, we generated logit
(
πi,hj

)
for every cell type h of site j of individual i as follows:

logit
(
πi,hj

)
=
∑
k

cikδ
k,covar
k +

∑
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silδ
j,snp
l +

∑
u

mi
uδ
j,pop
u + δj,cell

h + yiδj,pheno + eij .

(9)

In the next step, the methylation level of every cell type h of site j of individual i, πi,hj ,
was computed as πi,hj = 1/

(
1 + exp

(
−logit

(
πi,hj

)))
. Finally, a combined methylation

level πij for every individual i of every site j was computed via:

πij =
∑
h

tihπ
i,h
j . (10)

4.6 Observed reads simulation

To simulate observed reads, we first sampled a total number of reads rij for every site
j of individual i from a negative Binomial distribution with parameters n = 1.135515,
p = 0.047623. These values were fitted from the distribution of total number of reads of
the Baboons data studied in the original MACAU paper [10].

Afterwards, an observed number of reads yij for every site j of individual i was sampled
from Bin(rij , πij).
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4.7 Default parameters

Unless otherwise stated, the default parameters used in the simulations are the following:
Each data set consisted of 200 individuals, 3 covariates (including an intercept), 60,000
SNPs, 500 causal SNPs, 10,000 non-causal sites and 500 causal sites. The ancestry of
every individual was a mixture of four different populations, sampled from a symmetric
Dirichlet distribution with concentration parameter of 0.25. Additionally, every indi-
vidual contained a mixture of 5 cell types, sampled from a Dirichlet distribution with
parameters 1.33 , 0.93 , 4.299, 2.696, 16.344.

The default effect variances were the following: σ2
snp = 0.25 / #SNPs, σ2

pop = 0.025 /
#populations, σ2

cell = 0.25 / #cell-types, ν2,j
covar = 0.01 / #covariates, ν2,j

snp = 1 / #SNPs,
ν2,j

pop = 0.1 / #populations, ν2,j
pheno = 0.025, ν2,j

env = 0.1, ν2,j
cell = 5.0.
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