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Supplementary Material

The following is optional Supplementary Material (SM) that
provides additional information to substantiate the claims of the
paper. SM 1 provides details on the peptide-plane geometry assumptions
and how they are encoded as equality constraints on the backbone atom
coordinates. SM 2 provides a summary of the CATS algorithm. SM 3
provides a proof of Theorem 1. SM 4 discusses the computational
complexity of CATS. SM 5 provides details of the Taylor series
computation used in CATS. SM 6 provides details of the protein design
test cases described in Section 3.1. References cited below are given in the
References section of the main text.

1 Details of peptide plane geometry assumptions
As mentioned in Section 2.2, we assume (1) that peptide planes are rigid
bodies, and (2) that the N-C

↵

-C0 bond angle in each residue is fixed.
Crystal structures show that these assumptions are nearly correct (Lovell
et al., 2003). CATS could be extended to model slight perturbations to
these assumptions. But we will not do so here, since doing so would
produce only marginal changes in other atomic interactions. Moreover, the
extent of these changes depends on the balance between two completely
different types of energies—bond length and angle distortion penalties
versus small changes in other interaction energies like van der Waals
and electrostatic energies. It is not clear that current energy functions
have sufficient quantitative accuracy to make estimation of this balance
worthwhile. Our approach here is analogous to the usual approach taken
in continuously flexible protein design for sidechains (Desmet et al., 1992;
Leach and Lemon, 1998; Desmet et al., 2002; Georgiev et al., 2008b;
Gainza et al., 2012), which moves only the sidechain dihedrals while
fixing the bond lengths and angles.

Given that the peptide plane is rigid, the conformation of the entire
plane is determined by the coordinates of any three of its atoms. Thus, if
we determine the coordinates of the two alpha carbons and the nitrogen
atom in a peptide plane, the coordinates of any other backbone atoms will
be fixed in a basis defined by these three atoms. For each other backbone
atom n (the carbonyl carbon, oxygen, or amide hydrogen), we calculate
the coordinates of n in this basis from the starting structure, and then
use those coordinates whenever we move the alpha carbons and nitrogens
using CATS. We use coordinates from the starting structure instead of
idealized coordinates because we wish to include the original backbone
conformation in the CATS search space.

Even the alpha-carbon and nitrogen atoms cannot move entirely freely:
they have only two rather than six degrees of freedom per residue. We thus
add four additional constraints on atom-atom distances (Fig. S1). The
first three constraints reflect the need for the peptide plane to move only
as a rigid body. To enforce this, we fix the side lengths of the triangle
formed by the nitrogen and two alpha carbons in each peptide plane.
Because triangles whose side lengths are equal are congruent, the peptide
plane is restricted to rigid-body motions if and only if these three distance
constraints are enforced. Finally, to constrain the N-C

↵

-C0 bond angle, we
fix the dot product of the N-C

↵

and C
↵

-C0 bond vectors. Given peptide
plane geometry, the lengths of these two bonds are fixed, so our dot product
constraint fixes the angle. The imposed values of these distances and dot
product are taken from the original crystal structure. Again, this is done
to ensure the original backbone conformation is part of the search space.
Thus, these constraints, together with the linear formula for the other
backbone coordinates, ensures the N-C

↵

-C0 bond angle will not change
relative to the starting structure, while the peptide planes will only move
as rigid bodies relative to that structure.

There are four constrained quantities per residue: the squares of the
side lengths of the triangle of atoms defining each peptide plane, and the
dot product of the N-C

↵

and C
↵

-C0 bond vectors (see Fig. S1). Thus c

(see Eq. (3)) has four components per peptide plane, which are as follows:

||a(C
↵

, 1)� a(C
↵

, 2)||2 (5)

||a(C
↵

, 1)� a(N, 2)||2 (6)

||a(N, 2)� a(C
↵

, 2)||2 (7)

(a(C
↵

, 1)� a(N, 1)) · (a(C
↵

, 1)� a(C0
, 1)) (8)

where a(n, i) denotes the coordinates of atom n of residue i; without
loss of generality we set i = 1 for the first residue of the peptide plane.
For purposes of the last constraint (Eq. 8), the coordinates of the carbonyl
carbon C0 are expressed as a linear combination of the nitrogen and alpha-
carbon coordinates. Thus in the case that the peptide plane is not exactly
planar, we are actually constraining the projection of C0 into the plane of
the nitrogens and alpha carbons, which has essentially the same physical
effect but is much simpler mathematically.

2 Summary of algorithm
As discussed in Section 2.1, protein design algorithms like
iMinDEE (Gainza et al., 2012) and EPIC (Hallen et al., 2015) convert
the continuous degrees of freedom over which they search to all-atom
coordinates in order to evaluate energy as a function of the degrees of
freedom, and thus design for energetically optimal sequences. We present
here a summary of this conversion. The conversion function is called a(x)

in the text and is described primarily in Section 2.3.
Before beginning design, we perform initialization calculations, which

define the degrees of freedom. Let a
b0

be the initial backbone coordinates
of the molecule (e.g., from the crystal structure), and for a vector z of
coordinates let z(p, n) denote the coordinates in z of the atom named n

in peptide plane p (each peptide plane has two alpha carbons, which we
call C

↵1 and C
↵2). We initialize as follows:



i
i

“CATS” — 2017/3/19 — 20:35 — page 2 — #11 i
i

i
i

i
i

2 Hallen and Donald

Fig. S1. Geometry assumptions in a section of protein backbone. Each peptide plane moves as a rigid body. This condition is enforced by holding three distances constant (straight purple
arrows) and fixing the coordinates of C0 and backbone oxygens and hydrogens in the reference frame of the N and C↵ coordinates. We also hold the N-C↵-C0 angle constant (curved
arrow); both the distance and angle constraints are expressed as quadratic equalities in the N and C↵ coordinates (see SM 1 for details). These constrained quantities are invariant when
the backbone dihedrals are rotated (thus, as can be see in the left vs. right panels, they keep the same values). For example, the triangles formed by the straight purple arrows in the two
conformations are congruent.

y

0

 N-and-C
↵

-Coordinates(a
b0

)

// Now we express a
b0

as a function of y
0

, represented as coefficients
v

// Loop over all peptide planes containing flexible backbone atoms
for all p in FlexiblePeptidePlanes do
z

1

 a

b0

(p,N)� a

b0

(p,C
↵1)

z

2

 a

b0

(p,C
↵2)� a

b0

(p,C
↵1)

Q

p

 [z
1

, z

2

, z

1

⇥ z

2

] // make a basis for this peptide plane; ⇥
denotes cross product
for all n in C0, O, H do
v(p, n) Q

�1
p

a

b0

(p, n) // These coefficients will stay constant
// as N and C

↵

coords, and thus Q
p

, change
end for

end for

// Compute the linear coefficients to define our backbone degrees of
freedom
M

y

 nullspace(rc(y
0

)) //M
y

has orthonormal rows,
// which are orthogonal to the rows ofrc(y

0

)

// Compute the constraints
c

0

 c(y
0

) // see c definition in Eqs. (5)-(8)

// We now have everything we need to define f

// we now compute derivatives to find the series expansion of f�1

p  ComputeTaylorSeriesCoefficients(a
b0

, c

0

,v,M

y

) // See
Eq. (11)

Then a(x) is computed as follows, where x is the vector of values
of the continuous conformational degrees of freedom. The function a(x)

uses the coefficients v and p as parameters:

(x
b

,�)  x// unpack x into backbone degrees of freedom and
sidechain dihedrals
y p(x

b

) // compute nitrogen and alpha-carbon coordinates
// Now fill in the rest of y (other atoms’ coordinates)
for all p in FlexiblePeptidePlanes do

// compute other backbone coordinates
z

1

 y(p,N) � y(p,C
↵1) // y(p, n) denotes coordinates in y for

atom n in p

z

2

 y(p,C
↵2)� y(p,C

↵1)

Q

p

 [z
1

, z

2

, z

1

⇥ z

2

]) // make a basis for this peptide plane
for all n in C0, O, H do
y(p, n) Q

p

v(p, n) // compute coordinates of atom n in plane p
end for

end for

// Place idealized sidechains (see Hallen et al., 2013; Lovell et al., 2003)
in coordinates y
y PlaceIdealizedSidechains(y)
y RotateSidechains(y,�) // Apply the sidechain dihedral degrees of
freedom
Return y

3 Proof of Theorem 1
Theorem 1. Let D

b

denote the directional derivative in direction
b. If z(y) = M

z

y + v

z

is an affine function and c satisfies
|r(c(y

0

)T ) M

T

z

| 6= 0, then there exists an affine bijection between
Z = {x

b

2 R2k�6 |x
b

6= 0} and B = {b 2 R6k |b 6=
0, D

b

c(y
0

) = 0}.

Proof. Letting f = {c,x
b

} and J = rf(y
0

), consider the mapping
m where m(b) consists of the last 2k� 6 components of J ·b. From the
assumptions in the theorem, we have |J | 6= 0, i.e., the Jacobian of f(y

0

)

is nonsingular. Also J

�1 is well defined, which allows us to construct the
inverse mapping m

�1: for any x

b

2 Z, m�1(x
b

) = J

�1 · {0,x
b

}.
Thus both m and its inverse are affine.

For any x

b

2 Z,

D

m

�1(xb)c(y0

) = rc(y
0

) ·m�1(x
b

), (9)

which consists of the first 4k + 6 components of

J ·m�1(x
b

) = J · J�1 · {0,x
b

} = {0,x
b

}. (10)
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Thus the first 4k+6 components of Eq. (10) are 0, making Eq. (9) evaluate
to 0. Also, J�1 is nonsingular, so m

�1(x
b

) cannot be 0. Thus for any
x

b

2 Z, m�1(x
b

) 2 B.
For anyb 2 B, m(b) = 0would imply J ·b = 0, which contradicts

J being nonsingular. Thus for any b 2 B, m(b) 6= 0 and so m(b) 2 Z.
Therefore, m is an affine bijection between B and Z.

4 Computational complexity of CATS
In the worst case, the asymptotic complexity of CATS is the same as for
rigid-backbone design with the same sequence space. CATS and rigid-
backbone design (as performed with iMinDEE (Gainza et al., 2012), for
example) create an RC for each sidechain rotamer; the only difference
is that the CATS RC includes backbone degrees of freedom while the
iMinDEE RC does not. Suppose there are n mutable positions and q

rotamers per mutable position. The conformational space of the entire
system then consists of qn voxels, representing all possible combinations
of RCs at different residues. In the worst case (Pierce and Winfree, 2002;
Chazelle et al., 2004), the minimized energy (Eq. 2) must be computed
separately for each voxel, so both iMinDEE and CATS have worst-case
complexity O(qn).

In practice, pruning of RCs using dead-end elimination (Desmet
et al., 1992; Georgiev et al., 2008b; Gainza et al., 2012) and bounding
of the minimum energies of portions of conformational space as part
of A* search (Leach and Lemon, 1998; Georgiev et al., 2008b; Gainza
et al., 2012; Hallen et al., 2015) ensure that the vast majority of voxels
will not require their own energy minimization—neither in CATS nor in
iMinDEE. CATS has been implemented to use the EPIC algorithm as
part of its conformational search, which tightens energy bounds compared
to iMinDEE alone (Hallen et al., 2015). Nevertheless, energy bounds in
A*-based protein design (Leach and Lemon, 1998; Gainza et al., 2012;
Hallen et al., 2015) tend to become looser as more flexibility is added,
causing a greater number of energy minimizations to be performed. This
fact, together with the fact that each minimization takes longer when there
are more degrees of freedom, causes CATS designs to almost always take
longer than comparable rigid-backbone designs.

5 Constructing and validating the Taylor series
For each voxel, we construct a Taylor series to evaluate the inverse
mapping from Section 2.3, which we write as f�1({c,x

b

}) without loss
of generality. We need only evaluate this mapping for c = c

0

, that is, with
the constrained quantities kept at the values measured using the starting
structure (see Section 2.2). Hence, the Taylor series will be centered at
x

b

=0 and c at c
0

, and all terms in the series that contain a component of
c will be 0:

y = f

�1({c
0

,x

b

}) = y

0

+
@f

�1

@x

b

· x
b

+
1

2
x

b

· @
2
f

�1

@x

b

2
· x

b

+ ...

(11)

where derivatives are evaluated at the central conformation (x
b

= 0). To
evaluate these derivatives, we observe that the derivatives of f = {c, z}
with respect to the atomic coordinates y can be evaluated analytically
(since z and c are linear and quadratic functions of y respectively), and
the derivatives for the inverse mapping can be obtained from these. For
example, the derivatives @f

�1

@xb
are components of (rf)�1.

The error in the truncated Taylor series converges to 0 as we approach
the central conformation, as is always the case for Taylor series. But we
must determine how large we can make the voxel without significant error.
To do this, we start with a voxel whose range is [-1 Å,1 Å] for each
degree of freedom, sample x

b

randomly in the voxel (50 samples per

Fig. S2. Distribution of voxel size (range of allowed values for each degree of freedom,
in Å), selected as described in SM 5.

voxel), and evaluate the average error in the constrained dot products
and squared distances c(a

n

(x
b

)) calculated at these samples using the
truncated series (Eq. 11). If the error is too large, we reduce the allowed
range by a factor of 1.3 and repeat validation. This sampling process is
analogous to validation in machine learning, although the model we are
validating is the analytically-calculated Taylor series rather than a model
inferred from training data.

We use a fairly stringent criterion for the constraints (RMS error 
0.01 Å), but still typically obtain a voxel ⇠1 Å across (see SM 6 and
Fig. S2). Since we wish to choose voxels small enough to admit local
minimization, we believe that searches of larger portions of backbone
conformational space should split that space into multiple backbone
voxels (Roberts and Donald, 2015). Thus, in this study we consider it
sufficient to truncate the Taylor series at second order, though our code
supports up to a fourth-order series. Based on visualization of the voxels,
we believe that local minimization is a relatively good approximation for
global minimization for our voxels (see Fig. S3).
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4 Hallen and Donald

Fig. S3. Contour plots of energies with respect to continuous internal coordinates in the optimal voxel for the CATS design of VRC07 described in Section 3.2. Contours range from -220
kcal/mol (bluest) to -180 kcal/mol and greater (reddest); the deepest red regions thus denote steric clashes. Plots of energy with respect to pairs of degrees of freedom show that the voxel is
dominated by a single pronounced minimum, which local minimization will easily find. Degrees of freedom: (A) First CATS backbone coordinate (xb,1) versus second (xb,2); (B) xb,1

versus last CATS backbone coordinate (xb,4); (C) xb,1 versus �1 of Trp 427, chosen because it clashes with the mutated Trp 54 in the rigid-backbone model; (D) �1 versus �2 of Trp
427. CATS backbone coordinates are in Å; sidechain dihedrals are in degrees.

6 Details of test cases
Individual details of the test cases described in Section 3.1 are provided in
Tables S1-S3 and Fig. S4.

Energy improvements were significantly greater for designs (a, see
Section 3.1) than for minimizations (c): see Fig. 2A. This is expected, since
the crystal structure backbone is expected to be favorable for the wild-
type sequence and rotamers, but may need adjustment to accommodate
mutations and sidechain rotations. Similarly, the backbone RMSD between
the original and CATS-optimized backbones was greatest for designs
(Fig. 2B). CATS could handle and predict larger backbone shifts than
previous backbone-flexible protein design algorithms. RMSDs between
the original and DEEPer-optimized backbones were smaller than for CATS
in 94% of cases.

Additionally, the backbone motion identified by CATS was
significantly greater in loops than in ↵-helices or �-sheets: for designs,
0.21±0.02 Å RMSD in loops compared to 0.14±0.02 for helix and sheet

segments (and 0.19±0.03 for mixed segments). This is also expected, since
loops are more flexible in most proteins.
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Fig. S4. Energy improvement for CATS compared to rigid-backbone design (kcal/mol),
versus RMSD between CATS and original backbones (Å), in design (blue), sidechain
placement (red), and single-voxel minimization (green) test cases. As in Section 3.1, design
cases search a large sequence space, sidechain placements search the conformation space
of the the wild-type sequence, and single-voxel minimizations search the voxel around the
wild-type backbone and sidechain conformations.
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Table S1. Design test cases. n denotes the number of residues in the flexible
backbone segment, which can be in loop (Y), non-loop (N), or mixed (M)
secondary structure. Ec and Ed denote the improvements in minimum energy
for CATS and DEEPer runs respectively compared to rigid-backbone design.
DNF denotes that a run did not finish in the allotted time (six weeks; we do
not count these toward the 80 test cases), and F denotes failure of continuous
minimization as described in Hallen et al., 2016. RMSDc and RMSDd denote
the backbone RMSD (over the flexible backbone segment) between the optimal
conformations calculated by CATS and DEEPer respectively and the starting
backbone.w denotes the width of the voxel (the range over which each backbone
degree of freedom was allowed to vary). SD denotes sequence differences
between corresponding rigid-backbone (left) and CATS (right) designs.

Protein redesigned n PDB id Loop? E

c

E

d

RMSD
c

RMSD
d

w SD
Atx1 metallochaperone 7 1CC8 Y -1.71 -1.35 0.27 0.07 1.18
PA-I lectin 6 1L7L Y -3.97 -2.93 0.19 0.07 0.91 A!T, E!D
alpha-D-glucuronidase 5 1L8N Y -4.52 -1.88 0.14 0.05 0.91
Dachshund 8 1L8R Y -17.08 F 0.31 F 0.91
Cytochrome c 8 1M1Q Y -1.47 -0.53 0.17 0.06 0.91 S!T
Histidine triad protein 8 2CS7 Y -2.64 -1.57 0.22 0.05 1.18
Ponsin 7 2O9S Y -3.99 -2.68 0.20 0.05 0.70
Transcriptional regulator AhrC 6 2P5K Y -1.13 -0.45 0.27 0.04 0.70
Scytovirin 5 2QSK Y -0.30 -0.32 0.10 0.06 0.54
Hemolysin 9 2R2Z Y DNF -1.70 DNF 0.05 0.91
Bucandin 7 1F94 M -1.17 -0.13 0.26 0.02 1.18
Ferredoxin 9 1IQZ M F -2.78 F 0.06 1.18
gamma-glutamyl hydrolase 5 1L9X M -0.69 -0.59 0.09 0.05 0.70
Sulfite oxidase 7 1MJ4 M DNF -5.22 DNF 0.06 0.54
Dihydrofolate reductase 6 2RH2 M -3.27 -2.48 0.24 0.04 0.91 V!L, Y!W
Putative monooxygenase 7 2RIL M -2.63 -1.17 0.14 0.06 0.41
alpha-crystallin 6 2WJ5 M -1.68 -0.84 0.15 0.04 0.91
Cytochrome c555 7 2ZXY M -0.35 -0.34 0.20 0.03 0.91 D!E
High-potential iron-sulfur protein 6 3A38 M -6.83 -5.66 0.26 0.07 0.91 M!W
Scorpion toxin 7 1AHO N -1.43 -0.45 0.12 0.04 1.18
Cytochrome c553 6 1C75 N -0.91 0.03 0.16 0.10 0.70
Nonspecific lipid-transfer protein 6 1FK5 N -4.31 -1.80 0.20 0.11 0.91
Transcription factor IIF 7 1I27 N DNF -0.62 DNF 0.12 1.18
Fructose-6-phosphate aldolase 6 1L6W N -0.84 -0.83 0.12 0.09 1.18
Cephalosporin C deacetylase 8 1L7A N -5.47 -3.45 0.11 0.14 0.91
Phosphoserine phosphatase 7 1L7M N DNF -3.49 DNF 0.06 0.70
Granulysin 7 1L9L N -13.65 -9.75 0.19 0.12 1.18
Ferritin 5 1LB3 N -0.44 -0.14 0.06 0.05 1.18
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Table S2. Conformational search test cases for wild-type sequences. Columns
as in Table S1. The 28 backbone segments used in designs were also used for
wild-type conformational search and minimization test cases.

Protein redesigned n PDB id Loop? E

c

E

d

RMSD
c

RMSD
d

w

Atx1 metallochaperone 7 1CC8 Y -2.07 -1.51 0.16 0.06 1.18
PA-I lectin 6 1L7L Y -0.67 -0.45 0.14 0.06 0.91
alpha-D-glucuronidase 5 1L8N Y -1.71 -1.00 0.07 0.04 0.91
Dachshund 8 1L8R Y -20.30 F 0.34 F 0.91
Cytochrome c 8 1M1Q Y -1.72 0.43 0.12 0.05 0.91
Histidine triad protein 8 2CS7 Y -3.01 -1.86 0.21 0.06 1.18
Ponsin 7 2O9S Y -4.02 -2.02 0.34 0.06 0.70
Transcriptional regulator AhrC 6 2P5K Y -1.13 -0.45 0.27 0.04 0.70
Scytovirin 5 2QSK Y -0.22 -0.27 0.08 0.07 0.54
Hemolysin 9 2R2Z Y -3.23 -1.73 0.27 0.05 0.91
Bucandin 7 1F94 M -0.60 -0.22 0.10 0.04 1.18
Ferredoxin 9 1IQZ M -5.48 -3.23 0.21 0.06 1.18
gamma-glutamyl hydrolase 5 1L9X M -1.60 -0.53 0.10 0.05 0.70
Sulfite oxidase 7 1MJ4 M -3.59 -3.20 0.27 0.06 0.54
Dihydrofolate reductase 6 2RH2 M -0.72 -0.88 0.09 0.04 0.91
Putative monooxygenase 7 2RIL M -1.87 -0.71 0.17 0.05 0.41
alpha-crystallin 6 2WJ5 M -1.64 -0.29 0.17 0.02 0.91
Cytochrome c555 7 2ZXY M -0.44 -0.63 0.10 0.03 0.91
High-potential iron-sulfur protein 6 3A38 M -1.80 -0.85 0.16 0.06 0.91
Scorpion toxin 7 1AHO N -7.45 -3.10 0.19 0.04 1.18
Cytochrome c553 6 1C75 N -0.42 0.05 0.11 0.02 0.70
Nonspecific lipid-transfer protein 6 1FK5 N -4.57 -1.71 0.22 0.11 0.91
Transcription factor IIF 7 1I27 N -3.14 -2.10 0.21 0.10 1.18
Fructose-6-phosphate aldolase 6 1L6W N -0.49 -0.60 0.09 0.09 1.18
Cephalosporin C deacetylase 8 1L7A N -7.23 -4.43 0.15 0.14 0.91
Phosphoserine phosphatase 7 1L7M N -3.01 -0.47 0.27 0.03 0.70
Granulysin 7 1L9L N -0.76 -0.32 0.10 0.07 1.18
Ferritin 5 1LB3 N -0.91 -1.24 0.07 0.11 1.18
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Table S3. Single-voxel minimization test cases. Columns as in Table S1.

Protein redesigned n PDB id Loop? E

c

E

d

RMSD
c

RMSD
d

w

Atx1 metallochaperone 7 1CC8 Y -0.48 -0.15 0.11 0.03 1.18
PA-I lectin 6 1L7L Y -0.48 -0.12 0.15 0.03 0.91
alpha-D-glucuronidase 5 1L8N Y -0.20 -0.80 0.05 0.02 0.91
Dachshund 8 1L8R Y -9.10 -1.02 0.36 0.06 0.91
Cytochrome c 8 1M1Q Y -0.97 -0.70 0.13 0.04 0.91
Histidine triad protein 8 2CS7 Y -1.60 -1.08 0.20 0.05 1.18
Ponsin 7 2O9S Y -1.64 -0.87 0.17 0.05 0.70
Transcriptional regulator AhrC 6 2P5K Y -0.92 -0.46 0.32 0.04 0.70
Scytovirin 5 2QSK Y -0.30 -0.34 0.09 0.06 0.54
Hemolysin 9 2R2Z Y -1.21 -0.77 0.12 0.05 0.91
Bucandin 7 1F94 M -0.39 -0.15 0.06 0.02 1.18
Ferredoxin 9 1IQZ M -1.74 -0.40 0.13 0.05 1.18
gamma-glutamyl hydrolase 5 1L9X M -0.42 -0.92 0.06 0.05 0.70
Sulfite oxidase 7 1MJ4 M -0.41 -0.40 0.06 0.05 0.54
Dihydrofolate reductase 6 2RH2 M -0.49 0.32 0.16 0.04 0.91
Putative monooxygenase 7 2RIL M -1.69 -1.11 0.12 0.04 0.41
alpha-crystallin 6 2WJ5 M -0.86 -0.16 0.12 0.03 0.91
Cytochrome c555 7 2ZXY M -0.38 -0.10 0.11 0.02 0.91
High-potential iron-sulfur protein 6 3A38 M -0.94 -0.25 0.13 0.05 0.91
Scorpion toxin 7 1AHO N -1.48 0.32 0.12 0.04 1.18
Cytochrome c553 6 1C75 N -0.17 0.00 0.10 0.01 0.70
Nonspecific lipid-transfer protein 6 1FK5 N -0.53 -0.45 0.12 0.10 0.91
Transcription factor IIF 7 1I27 N -1.52 -0.69 0.19 0.12 1.18
Fructose-6-phosphate aldolase 6 1L6W N -0.29 -0.41 0.07 0.07 1.18
Cephalosporin C deacetylase 8 1L7A N -3.48 -1.93 0.11 0.10 0.91
Phosphoserine phosphatase 7 1L7M N -1.34 -0.27 0.15 0.03 0.70
Granulysin 7 1L9L N -0.46 -0.38 0.07 0.08 1.18
Ferritin 5 1LB3 N -0.91 -1.48 0.09 0.12 1.18


