
Supplement to “Modelling haplotypes with respect to

reference cohort variation graphs”

Yohei Rosen, Jordan Eizenga and Benedict Paten
UC Santa Cruz Genomics Institute,

University of California Santa Cruz, Santa Cruz, CA 95064, USA

March 22, 2017

1 Appendix A: An O(n·m) implementation of the rectangular
decomposition construction

Suppose that we wish to find subhaplotypes embedded in the graph which are consistent with a
query sequence h of nodes. In brief, in the gPBWT, indexing information for haplotypes is stored
in such a manner that this can be achieved by calling a function StartSearchAtNode(Node) on
the first node of h, which returns a search interval gPBWTInt of a form analogous to the search
interval of a Burrows–Wheeler Transform based index of sequences. This search interval is extended
by calling an operation Extend(gPBWTInt,Node) to extend this search with each additional node
in h. Finally, this search interval can be converted into a count of matching subhaplotypes using
a function Count(gPBWTInt). It is shown by Novak et al. (2016) that StartSearchAtNode,
Extend and Count all admit O(1) implementations.

It is evident that this search process yields a function CountHaplotypeMatches(h) which is
O(n) in the length |h| of h in nodes. Let h1h2h3 . . . h|h|−1h|h| denote the node sequence of h. Using

CountHaplotypeMatches we can identify the set A of nodes in h such that either Ja−1
a 6= Ja−1

a−1
or Iaa 6= 0 in O(n) independent length-2 subhaplotype count queries:

Algorithm 1 Identifying A, the set of “relevant” nodes

1: function BuildA(h,B[])
2: A← [1]
3: htprev ← |B[h1]|
4: for i = 2, . . . , |h| do
5: htnew ← |B[hi]|
6: J i−1

i ← CountHaplotypeMatches(hi−1hi)
7: if J i−1

i < htnew or htprev > htnew then
8: Append(A, i)

9: htprev ← htnew

Given that we have constructed A, we can determine the rest of the rectangular decomposition
and all of the J-values according to the following algorithm:

1

Algorithm 2 Building the J ’s and Acurr’s

1: function BuildJs(h,B[])
2: J1

1 ← |B[h1]|
3: A1

curr ← 1
4: for i ∈ A do
5: Ai

curr ← []
6: if |B[hi]| > J i

i then
7: Append(Ai

curr, i)
8: Si ← StartSearch(hi)

9: for j ∈ Ai−1
curr do

10: Sj ← Extend(Sj , hi)
11: if Count(Sj) 6= 0 then

12: Jj
i ← Count(Sj)

13: Append(Ai
curr, j)

14: else
15: break

2 Appendix B: Arithmetic for derivation of Equation 6

Here we lay out the arithmetic to derive Equation (6) of section 2.3, which is used in our iterative
computation of likelihood of a haplotype h with respect to a population reference cohort H embedded
in a variation graph G. The reasoning is straighforward but involves many subcases which require
care.

2.1 Notation

Definition 1. A haplotype is a sequence of nodes n1 → · · · → n|h| in a variation graph. The
base sequence of a haplotype is the sequence of DNA bases spelled by its node labels. A haplotype
subinterval is a contiguous subsequence of a haplotype. A haplotype base sequence subinterval is
analogously defined. Denote by |h| the length of a haplotype base sequence in base pairs.

Definition 2. Haplotypes h, h′ are consistent if |h| = |h′| and ni = n′i ∀i.

Definition 3. A mosaic of haplotypes x consistent with h is a vector 〈x(i)〉 of subintervals of base
sequences of haplotypes in H whose concatenation is consistent with the base sequence of h. The
recombination count R(x) is one less than the number of elements in 〈x(i)〉. NB: defining these in
terms of base sequence rather than node subintervals permits recombination within nodes. Recall
Figure 2 from the main text.

Definition 4. χ(h) is the set of all mosaics x consistent with h. χ(h)R is the subset with R(x) = R.
χ(h)[, g] is the subset whose final subinterval is a subinterval of g. χ(h)[g,] is that with initial
subinterval a subinterval of g. |χ(h)| is the number of elements in χ(h).

2.2 Arithmetic shortcuts

Lemma 1. There exists a partition of h into subintervals h1, h2, . . . , hn such that if a haplotype
g ∈ H has a subinterval consistent with a subinterval of hi then it has a subinterval consistent with
all of hi.

Proof. It is straightforward to verify that the intervals between successive nodes in the set A de-
scribed in the main text produce such a partition of h.

2

This is important because we will show that it is simple to calculate |χ(hi)| within any interval
with this property.

The following is a more notationally precise statement of Lemma 1 from the main text:

Lemma 2. For any b ∈ A, a ≤ b, given that f and g are members of the same equivalence class Sa
b

of haplotypes, the haplotype mosaics χR(h[0,b])[, f] and χR(h[0,b])[, g] consistent with the subinterval
h[0,b] and ending with subintervals of f and g are in bijective correspondence.

Proof. We assume that g 6= f else this is trivial. Consider any mosaic x in χR(h[0,b])[, f]. Given
x = 〈x1, x2, . . . , xR+1〉, let j = max{i ∈ 1, . . . , R such that xi is not a subinterval of g or f}. We
will construct a mosaic y = 〈y1, y2, . . . , yR+1〉 such that for all i ≤ j, yi = xi, and for all i > j, yi is
the subinterval of the same length as xi but derived from the opposite haplotype of the pair f, g.

The concatenation y1y2 · · · yR+1 is consistent with h[0,b] since given that both f, g ∈ Sa
b , the first

node of yj+1 must be at or after a. Therefore clearly yi ∈ χR(h[0,b])[, g] since its final subinterval
corresponds to g. The inherent invertibility of this transformation proves that it is a bijection.

g1
g2

g1
g2



g1
g2

g1
g2



Figure 1: Visual proof of the above lemma by explicit construction of the bijection involved

Lemma 3. Suppose that hi is a subinterval of h such that if a haplotype g ∈ H has a subinterval
consistent with a subinterval of hi then it has a subinterval consistent with all of hi. Then suppose
that f1, f2, g ∈ H, and all have subintervals consistent with all of hi. Then for all R < |hi| there is
a bijection between χ(hi)[f1, g] and χ(hi)[f2, g].

Proof. The proof imitates that of the previous lemma.

2.3 The case of a single simple interval hi

Suppose that hi is an interval of the form in Lemma 2, ` base pairs in in length, and has subintervals
of ht haplotypes of H consistent with it. Consider f, g ∈ H such that both have subintervals
consistent with hi. Suppose that we wish to calculate, for some R < `, the number |χR(h)[, g]|
of mosaics consistent with hi having R recombinations and ending with haplotype g. To calculate
|χ(hi)| within an interval of the form above, we need only calculate

1. |χR(hi)[g, g]|, the number of paths both beginning on and ending on g and

2. |χR(hi)[f, g]|, the number of paths beginning on f 6= g and ending on g, which, by lemma 4,
is the same for all such f .

Consider R = `− 1. It is clear that∑
j

|χR(hi)[j, g]| = (ht− 1)R (1)

3

Lemma 4 tells us that all haplotypes f 6= g are equivalent for the purposes of enumeration,
therefore we write ¬g to denote any arbitrary representative f 6= g. There are ht−1 such haplotypes.

|χR(hi)[g, g]|+ (ht− 1)|χR(hi)[¬g, g]| = (ht− 1)R (2)

We begin by calculating |χR(hi)[¬g, g]|. Consider first ` = R + 1 = 1, for which, given the lack
of possible recombinations, |χR(hi)[¬g, g]| = 0. For ` = R + 1 = 2, any x ∈ χR(hi)[¬g, g] must
at its second node visit a haplotype which is neither g nor the ¬g under consideration, therefore
|χR(hi)[¬g, g]| = (ht − 2). Suppose now that, for arbitrary ` = R, we know |χR(hi)[¬g, g]|. Then,
counting the (ht− 1) possible haplotypes before finally recombining to g shows us that

|χR+1(hi)[g, g]| = (ht− 1)|χR(hi)[¬g, g]| (3)

By (2), we know that

|χR+1(hi)[¬g, g]| = (ht− 1)R − |χR+1(hi)[g, g]|
(ht− 1)

Which by (3) implies

|χR+1(hi)[¬g, g]| = (ht− 1)R − (ht− 1)|χR(hi)[¬g, g]|
(ht− 1)

=⇒ |χR+1(hi)[¬g, g]| = (ht− 1)R−1 − |χR(hi)[¬g, g]| (4)

Using (4) as the induction step with base case ` = R+ 1 = 2 we find that ∀` = R+ 1 ≥ 2

|χR(hi)[¬g, g]| = (ht− 1)R−1 + (−1)R

ht

We now relax the restriction that R = `. For given R < ` each subset of nodes at which
recombinations happen will define an additional set of possible recombinations. Counting all possible
such subsets

|χR(hi)[¬g, g]| =
(
`− 1

R

)
(ht− 1)R−1 + (−1)R

ht

and

|χR(hi)[g, g]| = (ht− 1)|χR(hi)[¬g, g]|

.

2.4 Extending a computation for a prefix by a simple subinterval hi

To extend our ability to calculate |χ(h)| beyond the single interval hi, suppose we have a partition
{h1, h2, . . . , hn} of h into subintervals of the form in Lemma 2. Let b ∈ A such that b is a node
on the boundary of such an interval, let h[0,b−1] be the prefix of h formed by concatenation of the
subintervals preceding node b, and let h[b−1,b] be the subinterval beginning with node b.

Suppose now that we have calculated each |χR(h[0,b−1])[, f]| and now wish to calculate these
values up to b, the node in A succeeding b − 1. By Lemma 2, the intervening sequence h[b−1,b] is
of the form for which we have just calculated |χR(h)[g, g]| and |χR(h)[¬g, g]|. We divide this into
cases.

Case 1 : Suppose that f has no subinterval consistent with h[b,b+1], that is, f ∈ Sa
b−1 for some a

but f /∈ Sa
b . Then any mosaic extending any mosaic in χR(h[0,b])[, f] must recombine. Since f /∈ Sa

b ,

there are ht := Jb
b possible haplotypes to which this recombination at b−1→ b may occur. Let ` be

4

the length (in base pairs) of the interval b− 1 to b, then ∀R′ < `(b) we have previously calculated in
(2) that

|χR′(h[b−1,b])[, g]| =
(
`− 1

R′

)
(ht− 1)R

′−1

and therefore, where we write χR(h[0,b−1])[, f] � χR′(h[b−1,b])[, g] for the set of mosaics formed by
continuing mosaics in χR(h[0,b−1])[, f] such that they recombine between h[0,b−1] and h[b−1,b] and
end with a subinterval of g,

|χR(h[0,b−1])[, f]� χR′(h[b−1,b])[, g]| = |χR(h[0,b−1])[, f]|
(
`− 1

R′

)
(ht− 1)R

′−1 (5)

Case 2 : Suppose now that we know |χR(h[0,b−1])[, f]|, and f ∈ Sa
b for some a, that is, f does

have a subinterval consistent with h[b−1,b]
There are two subcases: either there is, or there is not a recombination between the last base

in h[0,b−1] and the subsequent base at the beginning of h[b−1,b]. Suppose that there is not. In this

case, where we write χR(h[0,b−1])[, f]	 χR′(h[b−1,b])[, g] for the set of mosaics formed by continuing
mosaics in χR(h[0,b−1])[, f] such that they do not recombine between h[0,b−1] and h[b−1,b] and such
that they do end with a subinterval of g,

|χR(h[0,b−1])[, f]	 χR′(h[b−1,b])[, g]| = |χR(h[0,b−1])[, f]||χR′(h[b−1,b])[f, g]| (6)

such that if f 6= g

|χR(h[0,b−1])[, f]	 χR′(h[b−1,b])[, g]| = |χR(h[0,b−1])[, f]||χR′(h[b−1,b])[¬g, g]| (7)

else

|χR(h[0,b−1])[, f]	 χR′(h[b−1,b])[, g]| = |χR(h[0,b−1])[, f]||χR′(h[b−1,b])[g, g]| (8)

The other subcase is that there is a recombination between the last base in h[0,b−1] and the
subsequent base at the beginning of h[b−1,b]. In this case if f 6= g,

|χR(h[0,b−1])[, f]� χR′(h[b−1,b])[, g]| = |χR(h[0,b−1])[, f]� χR′(h[b−1,b])[g, g]| +∑
f ′ 6=f,g

|χR(h[0,b−1])[, f]� χR′(h[b−1,b])[f, g]| (9)

= |χR(h[0,b−1])[, f]||χR′(h[b−1,b])[g, g]|| +

(ht− 2)|χR(h[0,b−1])[, f]||χR′(h[b−1,b])[¬g, g]|︸ ︷︷ ︸
by Lemma 4

(10)

else

|χR(h[0,b−1])[, f]� χR′(h[b−1,b])[, g]| = (ht− 1)|χR(h[0,b−1])[, f]||χR′(h[b−1,b])[¬g, g]| (11)

2.5 Deriving the Formula for P (h|G,H)

Suppose that we have calculated |χ(h[0,b−1])[, f]| for all f and now wish to calculate |χ(h[0,b])[, g]|
for some g ∈ Sa

b , for some a ≤ b.

5

Note that as defined in the main text, Rb−1(a) = |χ(h[0,b−1])[, f]| for the a such that f ∈ Sa
b .

This means this calculatiuon will in fact give us the formula with which to calculate
−→
Rb given

−−−→
Rb−1.

Let us write Rb(f) for Rb(a) such that f ∈ Sa
b .

Accounting for all prefixes in χ(h[0,b−1]) which can produce mosaics in χ(h[0,b])[, g], then

|χ(h[0,b])[, g]| =
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)|χR1(h[0,b−1])	 χR2(h[b−1,b])[, g]| +∑
R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2+1)|χR1(h[0,b−1])� χR2(h[b−1,b])[, g]|

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

(
ρ(R1+R2)|χR1(h[0,b−1])	 χR2(h[b−1,b])[, g]| +

ρ(R1+R2+1)|χR1(h[0,b−1])� χR2(h[b−1,b])[, g]|
)

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)

(∑
a<b

∑
f∈Sa

b
f 6=g

|χR1(h[0,b−1])[, f]	 χR2(h[b−1,b])[f, g]|

+ |χR1(h[0,b−1])[, g]	 χR2(h[b−1,b])[g, g]|

+ ρ
(
|χR1(h[0,b−1])[, g]� χR2(h[b−1,b])[, g]|

+
∑
a<b

∑
f∈Sa

b
f 6=g

|χR1(h[0,b−1])[, f]� χR2(h[b−1,b])[, g]|

+
∑
a<b

∑
f /∈Sa

b

|χR1(h[0,b−1])[, f]� χR2(h[b−1,b])[, g]|
))

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)

(∑
a<b

∑
f∈Sa

b
f 6=g

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[¬g, g]|︸ ︷︷ ︸
by (7)

+ |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[g, g]|︸ ︷︷ ︸
by (8)

+ ρ
(
|χR1(h[0,b−1])[, g]|(ht− 1)|χR2(h[b−1,b])[¬g, g]|︸ ︷︷ ︸

by(11)

+
∑
a<b

∑
f∈Sa

b
f 6=g

|χR1(h[0,b−1])[, f]|
(
|χR2(h[b−1,b])[g, g]|+ (ht− 2)|χR2(h[b−1,b])[¬g, g]|

)︸ ︷︷ ︸
by (10)

+
∑
a<b

∑
f /∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[, g]|
))

6

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)

(∑
a<b

∑
f∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[¬g, g]| − |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[¬g, g]|

+ |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[g, g]|

+ ρ
(
|χR1(h[0,b−1])[, g]|

(
|χR2(h[b−1,b])[, g]| − |χR2(h[b−1,b])[g, g]|

)
+
∑
a<b

∑
f∈Sa

b
f 6=g

|χR1(h[0,b−1])[, f]|
(
|χR2(h[b−1,b])[, g]| − |χR2(h[b−1,b])[¬g, g]|

)

+
∑
a<b

∑
f /∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[, g]|
))

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)

(∑
a<b

∑
f∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[¬g, g]| − |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[¬g, g]|

+ |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[g, g]|

+ ρ
(∑

a<b

∑
f∈Sa

b

|χR1(h[0,b−1])[, f]|
(
|χR2(h[b−1,b])[, g]| − |χR2(h[b−1,b])[¬g, g]|

)
+ |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[¬g, g]| − |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[g, g]|

+
∑
a<b

∑
f /∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[, g]|
))

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2)

((
1− ρ

)(∑
a<b

∑
f∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[¬g, g]|

− |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[¬g, g]|+ |χR1(h[0,b−1])[, g]||χR2(h[b−1,b])[g, g]|
)

+ ρ
∑
a<b

∑
f∈Sa

b−1

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[, g]|

)

Letting

RRSame =
∑

R2<|h[b−1,b]|

ρR2 |χR2(h[b−1,b])[g, g]|,

RRDiff =
∑

R2<|h[b−1,b]|

ρR2 |χR2(h[b−1,b])[¬g, g]|

(And we note that RRSame and RRDiff do not actually depend on choice of g)

7

=
∑

R1<|h[0,b−1]|

ρR1

((
1− ρ

)(∑
a<b

∑
f∈Sa

b

|χR1(h[0,b−1])[, f]|RRDiff

− |χR1(h[0,b−1])[, g]|RRDiff + |χR1(h[0,b−1])[, g]|RRSame
)

+
∑

R2<|h[b−1,b]|

ρ(R2+1)
∑
a<b

∑
f∈Sa

b−1

|χR1(h[0,b−1])[, f]|
(
|h[b−1,b]| − 1

R2

)
(ht− 1)R2︸ ︷︷ ︸

by (1)

)

Noting that ∑
R1<|h[0,b−1]|

ρR1 |χR1(h[0,b−1])[, f]| = Rb−1(f)

Letting:

S1 :=
∑
a<b

∑
f∈Sa

b

Rb−1(f)

S2 :=
∑
a<b

∑
f /∈Sa

b

Rb−1(f)

then the above is equal to

(
1− ρ

)(
S1RRDiff −Rb(g)

(
RRDiff −RRSame

))
+
(
S1 + S2

) ∑
R2<|h[b−1,b]|

ρ(R2+1)

(
`(b)− 1

R2

)
(ht− 1)R2

For g ∈ Sb
b , the calculation is similar:

|χ(h[0,b])[, g]| =
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2+1)|χR1(h[0,b−1])� χR2(h[b−1,b])[, g]|

=
∑

R1<|h[0,b−1]|
R2<|h[b−1,b]|

ρ(R1+R2+1)

(∑
f∈Sa

b

|χR1(h[0,b−1])[, f]||χR2(h[b−1,b])[, g]|
)

=
(
S1 + S2

) ∑
R2<|h[b−1,b]|

ρ(R2+1)

((
|h[b−1,b]| − 1

R2

)
(ht− 1)R2

)

We can simplify the sums above by writing

RRS(ht, `) :=
∑
R2<`

ρR2

((
`− 1

R2

)
(ht− 1)R2

)

=

(
1 + (ht− 1)ρ

)`−1

(12)

Given a second definition

8

RRT (`) := (1− ρ)`−1 (13)

we can actually write

RRSame−RRDiff = RRT (|h[b−1,b]|)

RRDiff =
RRS(ht, |h[b−1,b]|)−RRT (|h[b−1,b]|)

ht

and so finally, we can write our formula for Rb(g) in a compact form as

Rb(g) =


(1− ρ)

(
S1

RRS(ht,|h[b−1,b]|)−RRT (|h[b−1,b]|)
ht +Rb−1(g)RRT (|h[b−1,b]|)

)
+ ρ
(
S1 + S2

)
RRS(ht, |h[b−1,b]|) if g /∈ Sb

b

ρ
(
S1 + S2

)
RRS(ht, |h[b−1,b]|) if g ∈ Sb

b

which gives us equation 6 of the main text.

9

