
A Novel Data Structure to Support Ultra-fast
Taxonomic Classification of Metagenomic

Sequences with k-mer Signatures
Supplementary materials

1 Proof of Theorem 1
Bipartite graph G = (U,V,E) satisfies |U | = ma, |V | = mb, E ⊂ U ×V . Each edge
(ui,v j) ∈ E represents a k-mer s, ha(s) = i and hb(s) = j. Since ha and hb are uni-
form random hash functions, these edges can be considered as randomly and uniformly
chosen from all possible edges in U×V with probability |E|

|U ||V | =
n

mamb
.

Consider a cycle in G, suppose the length of the cycle is 2t. This cycle is equivalent
to a list of 2t edges: (ui1,v j1), (v j1,ui2), (ui2,v j2), · · · , (uit ,v jt), (v jt ,ui1). These 2t
edges are uniquely decided by a list of 2t nodes u1,v1,u2,v2, · · · ,ut ,vt . The number of
such cycles that possibly exist in G is(

ma

t

)(
mb

t

)
,

Here,
(a

b

)
= a!

b!(a−b)! . And each of these cycles exists with probability (n
mamb

)2t

Apply the conclusion presented in (Botelho et al., 2012) (Page 3), we know that
when n√

mamb
< 1−O(1√

mamb
), which is always satisfied because mamb ≥ 1.33n2, the

number of cycles with length 2t converges a Poission distribution with parameter λt ,
and

λt = (
n

mamb
)2t

(
ma

t

)(
mb

t

)
Let c = n√

mamb
, note that t� ma,t� mb, then we have

lim
t→∞

2tλt

c2t = 1

Hence the total number of cycles in G converges a Possion distribution with param-
eter λ , where

λ =
∞

∑
t=1

λt =−
1
2

ln(1− c2)

1

2 Approaches of tuning pt

p(t) denotes the probability of an alien query returns t for an l-Othello. Once l-Othello
is constructed, the p(t) values can be accordingly computed. In Othello, there are two
array of l-bit integers, namely A and B. We are able to modify the values in A and B
without affecting any of the query results on the l-Othello. We describe two possible
approaches as follows.

• Note that there are some elements in A and B, these elements do not correspond
to any k-mers. Hence, we can assign any l-bit integer value to each of them, so
that the occurrence frequency of each element are balanced.

• For any connected component of the bipartite graph G, we can execute a XOR

operation on all of its elements in A and B. That is select any l-bit integer x and
replace all A[i] values in the connected component by A[i]⊕x and replace all B[j]
values by B[j]⊕ x simultaneously. As long as for each connected components of
G the corresponding values are all simultaneously replaced, this operation does
not affect any τ(s) values.

In practice, we can always tune the values so that p(t) is of the same order of magnitude
for all t, and all of them are approximately 2−l .

3 Proof of Theorem 2
We analyze the confidence of a K-mer window as follows. For a window of k-mers,
let w be the length of the window. Suppose the query result for these K-mers are
τ(s1),τ(s2), · · · ,τ(sw). For a particular level of the taxonomy tree, suppose that these
k-mer belongs to taxon t, then τ(s1),τ(s2), · · · ,τ(sw) ∈ St , where St is the set of the IDs
of the nodes in the taxonomy subtree with the root t.

For consecutive w k-mers, let Gt be the event that this window of length w is from
the taxon with ID t, without any sequence error. Let Qt be the event that the query
results of these k-mers belongs to St , namely τ(s1),τ(s2), · · · ,τ(sw) ∈ St .

For a particular window of k-mers, let w be the length of the window, (i.e., there are
k+w−1 bases in this window.

Let Gt be the event that this window is actually from taxon t. We assume there
is no sequencing error, hence, when Gt the query results for these w k-mers satisfy
τ(s1),τ(s2), · · · ,τ(sw)∈ St . We use notation Qt to describe the event that τ(s1),τ(s2), · · · ,τ(sw)∈
St .

Now the problem is that if we observe event Qt , we may indicate two reasons ex-
clusively. (1) Qt happens as a result of Gt . (2) Note that for alien k-mers τ may return
any integer, Qt happens as a result of the query result of w alien k-mers. We use the

2

probability P(Gt |Qt) to describe how confident we are, about that this window is from
taxon t.

As described, when Gt happens, Qt also happens. Hence P(Qt |Gt) = 1.
We estimate the value of P(Gt |Qt) as follow.

P(Gt |Qt) =
P(Qt |Gt)P(Gt)

P(Qt |Gt)P(Gt)+P(Qt |Gt)P(Gt)
=

P(Gt)

P(Gt)+P(Qt |Gt)P(Gt)
(1)

Let qt be the abundance of the window from taxon t. i.e., for a particular sample,
randomly select one window of length w among all windows in all reads from this
sample, the probability that this window is actually from taxon t. Hence P(Gt) = qt .

The value P(Qt |Gt) is estimated as follow.
Gt means that this window is not from taxon t. Gt indicates either one of the fol-

lowing sub-events: (1) Cother: In this particular level of taxonomy tree, the window is
from one other taxon t ′, which means the query results τ(s1),τ(s2), · · · ,τ(sw) ∈ St ′ for
a t ′ 6= t. Note that St ′ ∩St = /0, this indicates P(Qt |Cother) = 0. (2) Calien: This window is
an alien of the taxonomy tree. Let ct = P(Calien|Gt), then 0 < ct < 1.

P(Qt |Gt) = P(Qt |Cother)P(Cother|Gt)+P(Qt |Calien)P(Calien|Gt) = P(Qt |Calien)ct (2)

As discussed in Section 2.2.3,

P(Qt |Calien) = q(t)w (3)

Combine Equation (1) (2) (3), we have

P(Gt |Qt) =
qt

qt + p(t)wct
(4)

Note that, qt > 0 and 0 < p(t)� 1. Hence P(Gt |Qt)→ 1 as t→∞. This is to say when
w increases, P(Gt |Qt) also grows, and we can be more confident that when a query
result shows that a window belongs to some taxon t, it reflects the fact that this window
is actually from this taxon t. In other words, a longer window is more likely to come
from this taxon than a shorter one.

Note that qt

qt +(p(t))wct
>

qt

qt +(p(t))w

.
We use a threshold value λ , when P(Gt |Qt)> 1−λ , we accept, which is equivalent

to:

w > logp(t)
λqt

(1−λ)
∼ logp(t)λqt

3

Here, the value of qt can not be directly measured. However, for any actually detected
taxon, we are sure that qt ≥ 1

M , where M is the total number of reads in the dataset.
Hence we use the following threshold to decide the length of accepted windows.

w > logp(t)
λ

(1−λ)M
∼ logp(t)

λ

M

Note that we can always use the l-Othello to compute the value of p(t). Thus,
given λ (λ = 0.001 by default), for each taxon, we can pre-compute the minimum size
threshold for K-mer window. Only the K-mer windows which are not shorter than its
associated minimum window size will be accepted for final assignment determination.

4 Implementation of MetaOthello
Jellyfish is used to collect all distinct k-mers from the designated reference genome
database. For each K-mer, we counted its frequencies among all taxa at each taxonomic
rank and also stores the first taxon it appears in. And a K-mer will be assigned to a
taxon-specific K-mer set if it exists and only exists in that taxon for that taxonomic
level, and its frequency is larger than 1 at the next level.

l-Othello will be built given the set of k-mers and their associated taxon IDs.
During the classification of the sequencing reads, l-Othello will be loaded into the

memory first. Read will be classified one at a time sequentially. In the case of paired-
end reads, information from both ends will be combined as one score when selecting
the best assignment.

5 Results of count-based MetaOthello
To investigate how the window-based approach helps MetaOthello in sequencing read
classification, we implemented and ran a count-based version MetaOthello on the se-
quencing datasets used in section 3.1 and 3.2. Figure 1 shows the correlation of species-
specific k-mer signatures with classification accuracy for both window-based MetaOthello
and count-based MetaOthello. Clearly, using both 20-mers and 31-mers, the window-
based implementation exhibits higher accuracy. Table 1 presents the results (read as-
signment precision, sensitivity, and F-score) of count-based MetaOthello. Compared
with the results of the default window-based MetaOthello in section 3.2, significant
decreases on precision can be easily found for count-based MetaOthello.

4

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Species−specific k−mer proportion

R
ea

d
cl

as
si

fic
at

io
n

ac
cu

ra
cy

Window−based
Count−based

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Species−specific k−mer proportion

R
ea

d
cl

as
si

fic
at

io
n

ac
cu

ra
cy

Window−based
Count−based

(a) 20mer (b) 31mer

Figure 1: Correlation of species-specific k-mer proportion with classification accuracy
for window-based MetaOthello and count-based MetaOthello when k=20 (A) and k=30
(B).

5

Phylum Genus Species
Prec / Sens / F-score Prec / Sens / F-score Prec / Sens / F-score

20mer 95.7 / 95.1 / .954 96.8 / 91.4 / .940 81.5 / 68.4 / .744
HiSeq 25mer 94.8 / 93.7 / .943 97.8 / 89.9 / .937 83.3 / 68.1 / .749

31mer 93.7 / 91.8 / .927 97.7 / 86.8 / .919 84.7 / 67.0 / .748
20mer 98.3 / 97.8 / .980 95.6 / 91.2 / .933 91.2 / 77.6 / .838

MiSeq 25mer 98.1 / 95.3 / .967 96.3 / 90.3 / .932 92.0 / 77.3 / .840
31mer 97.9 / 92.6 / .951 96.8 / 88.6 / .925 92.8 / 76.2 / .837
20mer 98.6 / 98.6 / .986 98.7 / 94.7 / .967 98.3 / 83.1 / .901

SimBA5 25mer 97.5 / 97.4 / .976 98.7 / 93.0 / .958 98.6 / 81.7 / .893
31mer 93.9 / 93.0 / .935 98.3 / 86.4 / .920 98.5 / 75.7 / .856

Table 1: Count-based MetaOthello read assignment precision, sensitivity, and F-score.

6 Results of Kaiju using the indices built on the two
other options of source databases

In section 3.2, to conduct the comparative studies in a fair manner, we ran Kaiju using
the same source database as the other three tools (MetaOthello, Kraken, and Clark).
We notice that in Kaiju’s manual (https://github.com/bioinformatics-centre/
kaiju/blob/master/README.md), there two additional recommended databases (nr
and proGenomes). To investigate how the choice of source database affects its per-
formance, we further ran Kaiju using both of the two databases. As reported in Table
2, though some improvements are achieved (sensitivities at the phylum/genus level on
HiSeq/MiSeq data), its performance is still far behind that of MetaOthello, Kraken, and
Clark.

Phylum Genus Species
Prec / Sens / F-score Prec / Sens / F-score Prec / Sens / F-score

HiSeq Kaiju nr 99.5 / 86.4 / .925 98.9 / 77.9 / .872 89.4 / 16.3 / .275
Kaiju
proGenomes

99.3 / 83.6 / .908 97.5 / 77.0 / .861 81.1 / 41.7 / .551

MiSeq Kaiju nr 99.4 / 91.6 / .953 97.5 / 65.2 / .781 89.8 / 21.5 / .346
Kaiju
proGenomes

98.2 / 87.8 / .927 93.2 / 71.5 / .809 85.1 / 53.8 / .660

SimBA5Kaiju nr 99.1 / 79.5 / .882 96.8 / 62.7 / .761 92.6 / 36.2 / .520
Kaiju
proGenomes

99.2 / 78.3 / .875 96.0 / 65.5 / .778 86.5 / 46.1 / .601

Table 2: Kaiju read assignment precision, sensitivity, and F-score using the indices built
on the two other options of source databases.

6

References
Botelho, F. C., Wormald, N., and Ziviani, N. (2012). Cores of random r-partite hypergraphs. Information Processing Letters, 112(8-9), 314–319.

Cunha, M. S., Esposito, D. L. A., et al. (2016). First Complete Genome Sequence of Zika Virus (Flaviviridae, Flavivirus) from an Autochthonous
Transmission in Brazil. Genome announcements, 4(2), 2015–2016.

EMBL-EBI webserver (2017). EMBL-EBI webserver. https://www.ebi.ac.uk/Tools/sss/ncbiblast/nucleotide.html. Accessed:2017-
01-31.

Sardi, S. I., Somasekar, S., Naccache, S. N., et al. (2016). Coinfections of zika and chikungunya viruses in bahia, Brazil, identified by metagenomic
next-generation sequencing. Journal of Clinical Microbiology, 54(9), 2348–2353.

Wikipedia (2016). 2015-16 Zika virus epidemic. https://en.wikipedia.org/wiki/2015-16 Zika virus epidemic.

7

