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Supplementary Figures 
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Fig. S1 Relationship between k-mer distance and k-mer vector distance. To explore how 
the distance between k-mers is related to the distance between k-mers themselves, we 
compute the pairwise Euclidean distance and cosine distance of the 4096 k-mer vectors 
trained on the MCF-7 dataset, as well as the pairwise Hamming distance and edit distance of 
those 4096 k-mers themselves. There are totally 4096*4095/2=8386560 pairs of k-mers, and 
the Hamming distance has only six possible values, i.e., [1, 2, 3, 4, 5, 6], while the edit 
distance also has only six possible values, i.e., [1, 2, 3, 4, 5, 6]. We split all the 8386560 pairs 
into six groups according to their k-mer distance, and then look into each group to see the 
distribution of their corresponding k-mer vector distances as is shown in violin plot. In (A) 
and (B), we use hamming distance as k-mer distance, while in (C) and (D) we use edit 
distance instead. In (A) and (C), Euclidean distance is used as distance between k-mer vectors, 
while in (B) and (D) cosine distance is used instead. We find that, consistently in four cases, 
the mean distance between k-mer vectors is monotonically increasing with the distance 
between k-mers. 
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Fig. S2 k-mers counts in different parts of chromatin accessible regions. In order to 
investigate whether those enriched motifs or k-mers have localization preference in chromatin 
accessible regions, we split each chromatin accessible region into 10 equal parts, and count 
the frequency of these top enriched k-mers in each part. In GM12878 dataset, we pick out the 
top five enriched k-mers, including ‘tttttt’, ‘aaaaaa’, ‘cctccc’, ‘gggagg’, and ‘tgtgtg’, and look 
at their counts in different parts of chromatin accessible regions. From our result, there is no 
explicit evidence showing that enriched k-mers have location preference, e.g., prefer to locate 
in middle regions, in chromatin accessible regions. 
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Fig. S3 k-mer relative frequency in different groups of chromatin accessible regions. To 
explore whether the occurrence of these k-mers has certain relationship with the openness of 
the regions, we divide all these chromatin accessible regions according to their openness 
percentile values, e.g. 0%, 20%, 40%, 60%, 80% and 100% percentiles, into 5 groups, and 
count the relative abundance of these top enriched k-mers in each group of regions. The 
relative abundance is defined as the k-mer frequency divided by the total number of k-mers. 
In GM12878 dataset, the 0%, 20%, 40%, 60%, 80% and 100% percentiles of openness values 
are 0.75, 3.47, 4.91, 6.83, 10.36, and 4231.13 respectively, and we use them as thresholds to 
divide sequences into 5 groups, each of which has 24484 or 24485 sequences. We 
demonstrate the relative frequency of the top five enriched k-mers, including ‘tttttt’, ‘aaaaaa’, 
‘cctccc’, ‘gggagg’, and ‘tgtgtg’ in the five groups. We find that with the openness value 
increasing, the relative frequency of the top two k-mers slowly decreases. We also find that k-
mer ‘gggagg’ is most enriched in the highly accessible regions, while ‘tgtgtg’ is least enriched 
in the highly accessible regions. 
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Supplementary Tables 

Table S1 Data shape of each layer in our model. (rows, cols) means the dimension of the 
data. 

Layer Output shape 
Embedding_1 (1000, 100) 

Dropout_1 (1000, 100) 
Convolution1d_1 (991, 100) 
Maxpooling1d_1 (247, 100) 

Dropout_2 (247, 100) 
Convolution1d_2 (240, 100) 
Maxpooling1d_2 (120, 100) 

Dropout_3 (120, 100) 
Convolution1d_3 (113, 80) 
Maxpooling1d_3 (56, 80) 

Dropout_4 (56, 80) 
Lstm_1 (80) 

Dropout_5 (80) 
Dense_1 (20) 

Dropout_6 (20) 
Dense_2 (1) 
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Table S2 10-fold cross validation for our method and DeepSEA on GM12878 dataset. To 
further confirm the superiority of our model over DeepSEA, we carry out 10-fold cross 
validation experiments for both our model and DeepSEA. We find that the average auROC 
score for our method is 0.88146 and the standard deviation is 0.00434, while the average 
auROC score for DeepSEA is 0.86149 which is obviously lower, and the standard deviation is 
0.01223 which is obviously larger than ours. Concretely, we perform one-sided Wilcoxon 
tests on the auROC and auPRC scores for the two methods against the alternative hypothesis 
that our method produces larger values of a criterion, respectively. The p-value of Wilcoxon 
test on auROC scores data is 0.0001028, choosing the alternative hypothesis that our auROC 
is greater than that of DeepSEA. Similarly, the p-value in auPRC case is 0.000525 which is 
also very small. In summary, through the 10-fold cross validation experiments, we are 
confirmed that our method significantly outperforms DeepSEA, more accurately in the 
auROC measure and also more stably. We also list 10-fold cross validation experiments on the 
rest five datasets in Table S3-S7. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.88413 0.88222 0.86517 0.86039 
1 0.87657 0.86888 0.84461 0.83446 
2 0.88554 0.88233 0.85086 0.84685 
3 0.87352 0.87033 0.87892 0.87752 
4 0.87684 0.87284 0.87505 0.87359 
5 0.88669 0.88299 0.87547 0.87374 
6 0.88222 0.88032 0.85034 0.84833 
7 0.88394 0.88214 0.86190 0.85996 
8 0.88204 0.87998 0.85023 0.84630 
9 0.88314 0.87782 0.86238 0.85921 

Mean 0.88146 0.87798 0.86149 0.85804 
Standard 
Deviation 0.00434 0.00534 0.01223 0.01411 
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Table S3 10-fold cross validation for our method and DeepSAE on K562 dataset. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.88224 0.87660 0.85593 0.85086 
1 0.87792 0.86957 0.86642 0.85830 
2 0.88121 0.87450 0.86016 0.85266 
3 0.88084 0.87115 0.86756 0.85872 
4 0.88050 0.87073 0.85775 0.84789 
5 0.88320 0.87689 0.85834 0.85220 
6 0.88207 0.87247 0.86904 0.85950 
7 0.88152 0.87293 0.85390 0.84552 
8 0.87731 0.86907 0.86332 0.85680 
9 0.88108 0.87364 0.86095 0.85281 

Mean 0.88079 0.87275 0.86134 0.85353 
Standard 
Deviation 0.00185 0.00271 0.00512 0.00474 

 

Table S4 10-fold cross validation for our method and DeepSEA on MCF-7 dataset. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.92256 0.91827 0.92045 0.91655 
1 0.92261 0.91885 0.91864 0.91501 
2 0.92310 0.91981 0.91322 0.91029 
3 0.92323 0.91812 0.91239 0.90748 
4 0.91967 0.91305 0.92427 0.91892 
5 0.92022 0.91626 0.91364 0.91049 
6 0.91897 0.91425 0.91135 0.90723 
7 0.92292 0.91973 0.91591 0.91179 
8 0.92243 0.91903 0.92164 0.91827 
9 0.91955 0.91410 0.92011 0.91440 

Mean 0.92153 0.91715 0.91716 0.91304 
Standard 
Deviation 0.00170 0.00253 0.00445 0.00422 
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Table S5 10-fold cross validation for our method and DeepSEA on HeLa-S3 dataset. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.89656 0.89189 0.88977 0.88889 
1 0.90033 0.89830 0.87887 0.87820 
2 0.90562 0.90325 0.89721 0.89719 
3 0.89988 0.89924 0.89547 0.89579 
4 0.90202 0.90054 0.88406 0.88671 
5 0.90508 0.90493 0.90302 0.90409 
6 0.89367 0.89019 0.89143 0.88966 
7 0.89740 0.89833 0.88857 0.89169 
8 0.90065 0.89727 0.88831 0.88611 
9 0.89987 0.89758 0.88316 0.88285 

Mean 0.90011 0.89815 0.88999 0.89012 
Standard 
Deviation 0.00366 0.00450 0.00718 0.00748 

 

Table S6 10-fold cross validation for our method and DeepSEA on H1-hESC dataset. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.90997 0.89778 0.89428 0.88395 
1 0.91445 0.90644 0.91316 0.90454 
2 0.91120 0.89931 0.90743 0.89670 
3 0.91175 0.90423 0.89696 0.88851 
4 0.91666 0.90623 0.90339 0.89508 
5 0.91418 0.90379 0.90060 0.89198 
6 0.90938 0.89838 0.91040 0.90055 
7 0.91096 0.90206 0.91322 0.90612 
8 0.90986 0.89956 0.91489 0.90567 
9 0.91327 0.90102 0.91279 0.90305 

Mean 0.91217 0.90188 0.90671 0.89761 
Standard 
Deviation 0.00238 0.00318 0.00745 0.00769 
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Table S7 10-fold cross validation for our method and DeepSEA on HepG2 dataset. 

Fold 
Our method DeepSEA 

auROC auPRC auROC auPRC 
0 0.87610 0.86651 0.84508 0.83649 
1 0.87225 0.86469 0.86917 0.86186 
2 0.87442 0.86584 0.86780 0.85924 
3 0.87090 0.86339 0.86009 0.85425 
4 0.86569 0.85517 0.84669 0.83882 
5 0.87018 0.85954 0.82295 0.80928 
6 0.87640 0.86905 0.86234 0.85481 
7 0.87224 0.86194 0.86297 0.85190 
8 0.87574 0.86916 0.86737 0.86019 
9 0.87244 0.86406 0.87255 0.86522 

Mean 0.87264 0.86393 0.85770 0.84921 
Standard 
Deviation 0.00328 0.00428 0.01524 0.01689 

 

Table S8 Several runs with different random seeds of our model. We run the same model 
several times with different random seeds on the GM12878 dataset to show the stability of 
our model. We find that the mean auROC score for 10 runs of our model is 0.88070, with a 
very small standard deviation 0.00166. We conclude that our model has stability in 
performance. 

run auROC score auPRC score 
0 0.88136 0.87560 
1 0.88292 0.87812 
2 0.87898 0.87401 
3 0.87954 0.87507 
4 0.87781 0.87164 
5 0.88301 0.87812 
6 0.88004 0.87425 
7 0.88092 0.87533 
8 0.88157 0.87635 
9 0.88087 0.87451 

Mean 0.88070 0.87530 
Standard 
Deviation 0.00166 0.00194 
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Table S9 k-mer pairs grouped by hamming distance. We compute the pairwise hamming 
distance between 4096 k-mers. Since there are always 6 characters in one k-mer, the hamming 
distance has only six possible values, i.e., [1, 2, 3, 4, 5, 6]. In each group, we look at the 
distribution of their corresponding k-mer vector distances, namely Euclidean distance and 
cosine distance, and for both we give the mean value with standard deviation shown in 
brackets. 

Hamming 
distance 1 2 3 4 5 6 

# pairs 36,864 276,480 1,105,920 2,488,320 2,985,984 1,492,992 
Euclidean 
distance 

4.5602 
(0.6405) 

5.6204 
(0.6837) 

6.0938 
(0.5332) 

6.3111 
(0.5361) 

6.4270 
(0.5289) 

6.4528 
(0.5463) 

Cosine 
distance 

0.5272 
(0.1466) 

0.7964 
(0.1730) 

0.9292 
(0.1418) 

0.9958 
(0.1435) 

1.0322 
(0.1412) 

1.0408 
(0.1464) 

 

Table S10 k-mer pairs grouped by edit distance. We compute the pairwise edit distance 
between 4096 k-mers. Since there are always 6 characters in one k-mer, the edit distance has 
only six possible values, i.e., [1, 2, 3, 4, 5, 6]. The difference in edit distance and Hamming 
distance is that the former measure will align the strings before computing distance, so edit 
distance will be no larger than Hamming distance. In each group, we look at the distribution 
of their corresponding k-mer vector distances, namely Euclidean distance and cosine distance, 
and for both we give the mean value with standard deviation shown in brackets. 

Edit 
distance 1 2 3 4 5 6 

# pairs 36,864 355,494 1,602,378 3,272,994 2,560,482 558,348 
Euclidean 
distance 

4.5602 
(0.6405) 

5.6984 
(0.6674) 

6.1522 
(0.5604) 

6.3324 
(0.5604) 

6.4681 
(0.4972) 

6.5388 
(0.5171) 

Cosine 
distance 

0.5272 
(0.1466) 

0.8157 
(0.1695) 

0.9434 
(0.1414) 

1.0006 
(0.1485) 

1.0470 
(0.1320) 

1.0822 
(0.1352) 
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Table S11 Top 10 specific k-mers using k-mer rank as relative abundance. We here 
attempt to find the most specific k-mers corresponding to each cell line. First, we define the 
relative abundance of a k-mer as its rank according to frequency, which ranges from 0 to 4095. 
The smaller the rank is, the more enriched the k-mer is in that cell line. Second, we compute 
the relative abundance matrix for 4096 k-mers in 6 cell lines. Third, based on this matrix, we 
consider to measure the k-mer specificity score. The more heterogeneous the relative 
abundance is in six cell lines, the more specific the k-mer is. We simply compute the standard 
deviation of the six relative abundances for each k-mer as its specificity score. We pick out the 
top 10 k-mers with highest specificity scores, and give their ranks in each cell line and the 
final specificity score in the last column. we can find that ‘atatat’ and ‘tatata’ are more 
enriched in the first four cell lines than in H1-hESC and HepG2 cell lines, while the rest 8 k-
mers, such as ‘ccgcgg’ etc., are more enriched in H1-hESC and HepG2 cell lines 

k-mer GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 Specificity 
atatat 1783 567 1341 619 3510 2006 994.5 

ccgcgg 1453 2834 2375 2805 466 686 961.3 
cgcggg 1535 2860 2473 2856 522 753 956.1 
tatata 2084 755 1641 888 3614 2235 955.7 

cccgcg 1579 2869 2470 2836 536 742 950.6 
cgcggc 1512 2848 2384 2806 486 745 946.3 
gccgcg 1490 2812 2358 2756 470 737 934.4 
gcgcgg 1253 2701 2216 2637 378 643 929.8 
ccgccg 967 2564 1942 2574 323 480 929.7 
cggcgc 1755 2944 2558 2919 591 949 929.4 

 

Table S12 Top 10 specific k-mers using normalized frequency as relative abundance 
(x1e-4). We again attempt to find the most specific k-mers corresponding to each cell line. 
Different from Table S11, we define the relative abundance of a k-mer as its normalized 
frequency, that is to say, every frequency number should be divided by the total number of k-
mers in that cell line. Note that for simplicity, all values in this table are shown in 1e-4 unit. 

k-mer GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 Specificity 
aaaaaa 19.603 23.067 18.033 21.595 9.401 15.279 4.516 

tttttt 19.608 22.470 17.736 21.482 9.657 15.031 4.330 
cctccc 9.735 8.407 8.594 7.863 14.138 12.742 2.360 
gggagg 9.648 8.424 8.611 7.964 14.183 12.534 2.320 
ccctcc 7.518 6.454 6.607 6.062 12.177 10.438 2.289 
ggaggg 7.581 6.501 6.616 6.210 12.259 10.415 2.277 
ggcggg 5.808 3.700 4.288 3.894 9.246 7.626 2.063 
cccgcc 5.728 3.648 4.236 3.821 9.164 7.570 2.057 
aaaaat 7.431 8.967 7.399 9.515 3.517 5.430 2.046 
attttt 7.393 9.015 7.432 9.459 3.476 5.503 2.045 
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Table S13 auROC scores for different embedding strategies. To prove the efficacy of k-
mer embedding in our model, we propose anther two different embedding strategies. The 
average auROC scores for three strategies, namely ‘-init -train’, ‘-init -notrain’, ‘-noinit’, are 
0.8948, 0.8756, 0.8726, respectively. Our strategy ‘-init -train’ is 0.0192 higher than ‘-init -
notrain’, showing that embedding vectors should be updated during the supervised training, 
since the initial k-mer embedding vectors are generated by unsupervised learning without 
seeing any information of data labels. Our strategy is 0.0222 higher than ‘-noinit’, showing 
that the k-mer embedding vectors are actually a good initialization and informative features 
for classification. The strategy ‘-init -notrain’ is slightly higher than ‘-noinit’ also showing 
that the unsupervised k-mer embedding vectors are informative and helpful for classification. 

 GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 
-init -train 0.8830 0.8809 0.9212 0.9016 0.9097 0.8722 

-init -notrain 0.8638 0.8509 0.8998 0.8823 0.8986 0.8580 
-noinit 0.8602 0.8545 0.8989 0.8806 0.8963 0.8452 

 

Table S14 10-fold cross validation for three cases. To show the efficacy of the convolution 
stage and the BLSTM stage in our model, we propose another two variant deep learning 
architectures, one omitting the convolution stage and the other omitting the BLSTM stage. We 
carry out 10-fold cross validation on the GM12878 dataset for three cases. We find that the 
average auROC score for the three cases are 0.88146, 0.87926, 0.86797 respectively, showing 
that the full model with both convolution stage and BLSTM stage reaches the best 
performance.  

Fold 
full nolstm noconv 

auROC auPRC auROC auPRC auROC auPRC 
0 0.88413 0.88222 0.87791 0.87479 0.86452 0.85542 
1 0.87657 0.86888 0.88087 0.87474 0.86327 0.85528 
2 0.88554 0.88233 0.87884 0.87454 0.88142 0.87530 
3 0.87352 0.87033 0.87834 0.87644 0.85834 0.84981 
4 0.87684 0.87284 0.87943 0.87598 0.87461 0.86836 
5 0.88669 0.88299 0.88150 0.87654 0.86644 0.85849 
6 0.88222 0.88032 0.87764 0.87463 0.86981 0.86303 
7 0.88394 0.88214 0.87969 0.87695 0.86233 0.85515 
8 0.88204 0.87998 0.87736 0.87381 0.87560 0.87029 
9 0.88314 0.87782 0.88101 0.87588 0.86336 0.85397 

Mean 0.88146 0.87798 0.87926 0.87543 0.86797 0.86051 
Standard 
Deviation 0.00434 0.00534 0.00149 0.00105 0.00722 0.00834 
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Table S15 Wilcoxon tests results. To measure the significance of difference between three 
cases in Table S14, we perform one-sided Wilcoxon tests on the auROC and auPRC scores 
between our full network and the two variant networks. The p-values all prefer the alternative 
hypothesis that our full network has a higher auROC/auPRC score than the nolstm/noconv 
variant network, although the p-values of the full model and the nolstm model seems marginal. 

p-values auROC  auPRC 
full vs. nolstm 0.07157 0.07157 
full vs. noconv 0.0002057 0.0001299 

 

Table S16 Comparison between BLSTM and LSTM. To compare the difference between 
BLSTM and LSTM, we modify the BLSTM layer into a standard LSTM layer in our network 
and retrain the model on the GM12878 dataset. We report the performance of the two 
networks, including auROC, auPRC, time for each epoch, number of epochs until 
convergence, and total training time. We find that, substituting LSTM for BLSTM, auROC 
only drops slightly while auPRC even shows a small increment, suggesting that BLSTM does 
not bring significant improvement compared to the standard LSTM network. For the running 
time, LSTM consumes less time for each epoch, but takes more epochs before convergence. 
In summary, we can choose either BLSTM or LSTM in a practical application. 

 auROC auPRC Time 
(s/epoch) # epochs Total (h) 

BLSTM 0.8830 0.8774 350 34 3.3 
LSTM 0.8821 0.8778 334 40 3.7 

 


