
 - 1 -

Supplementary materials for Chromatin Accessibility

Prediction via Convolutional Long Short-Term Memory

Networks with k-mer Embedding

Xu Min1, Wanwen Zeng2, Ning Chen1, Ting Chen2,∗ and Rui Jiang2,∗

MOE Key Laboratory of Bioinformatics; Bioinformatics Division and Center for

Synthetic & Systems Biology, TNLIST; 1 Department of Computer Science and

Technology; State Key Lab of Intelligent Technology and Systems; 2 Department of

Automation; Tsinghua University, Beijing 100084, China.

* Corresponding author. Email: tingchen@tsinghua.edu.cn, ruijiang@tsinghua.edu.cn

 - 2 -

Supplementary Figures

A B

C D

Fig. S1 Relationship between k-mer distance and k-mer vector distance. To explore how
the distance between k-mers is related to the distance between k-mers themselves, we
compute the pairwise Euclidean distance and cosine distance of the 4096 k-mer vectors
trained on the MCF-7 dataset, as well as the pairwise Hamming distance and edit distance of
those 4096 k-mers themselves. There are totally 4096*4095/2=8386560 pairs of k-mers, and
the Hamming distance has only six possible values, i.e., [1, 2, 3, 4, 5, 6], while the edit
distance also has only six possible values, i.e., [1, 2, 3, 4, 5, 6]. We split all the 8386560 pairs
into six groups according to their k-mer distance, and then look into each group to see the
distribution of their corresponding k-mer vector distances as is shown in violin plot. In (A)
and (B), we use hamming distance as k-mer distance, while in (C) and (D) we use edit
distance instead. In (A) and (C), Euclidean distance is used as distance between k-mer vectors,
while in (B) and (D) cosine distance is used instead. We find that, consistently in four cases,
the mean distance between k-mer vectors is monotonically increasing with the distance
between k-mers.

 - 3 -

Fig. S2 k-mers counts in different parts of chromatin accessible regions. In order to
investigate whether those enriched motifs or k-mers have localization preference in chromatin
accessible regions, we split each chromatin accessible region into 10 equal parts, and count
the frequency of these top enriched k-mers in each part. In GM12878 dataset, we pick out the
top five enriched k-mers, including ‘tttttt’, ‘aaaaaa’, ‘cctccc’, ‘gggagg’, and ‘tgtgtg’, and look
at their counts in different parts of chromatin accessible regions. From our result, there is no
explicit evidence showing that enriched k-mers have location preference, e.g., prefer to locate
in middle regions, in chromatin accessible regions.

 - 4 -

Fig. S3 k-mer relative frequency in different groups of chromatin accessible regions. To
explore whether the occurrence of these k-mers has certain relationship with the openness of
the regions, we divide all these chromatin accessible regions according to their openness
percentile values, e.g. 0%, 20%, 40%, 60%, 80% and 100% percentiles, into 5 groups, and
count the relative abundance of these top enriched k-mers in each group of regions. The
relative abundance is defined as the k-mer frequency divided by the total number of k-mers.
In GM12878 dataset, the 0%, 20%, 40%, 60%, 80% and 100% percentiles of openness values
are 0.75, 3.47, 4.91, 6.83, 10.36, and 4231.13 respectively, and we use them as thresholds to
divide sequences into 5 groups, each of which has 24484 or 24485 sequences. We
demonstrate the relative frequency of the top five enriched k-mers, including ‘tttttt’, ‘aaaaaa’,
‘cctccc’, ‘gggagg’, and ‘tgtgtg’ in the five groups. We find that with the openness value
increasing, the relative frequency of the top two k-mers slowly decreases. We also find that k-
mer ‘gggagg’ is most enriched in the highly accessible regions, while ‘tgtgtg’ is least enriched
in the highly accessible regions.

 - 5 -

Supplementary Tables

Table S1 Data shape of each layer in our model. (rows, cols) means the dimension of the
data.

Layer Output shape
Embedding_1 (1000, 100)

Dropout_1 (1000, 100)
Convolution1d_1 (991, 100)
Maxpooling1d_1 (247, 100)

Dropout_2 (247, 100)
Convolution1d_2 (240, 100)
Maxpooling1d_2 (120, 100)

Dropout_3 (120, 100)
Convolution1d_3 (113, 80)
Maxpooling1d_3 (56, 80)

Dropout_4 (56, 80)
Lstm_1 (80)

Dropout_5 (80)
Dense_1 (20)

Dropout_6 (20)
Dense_2 (1)

 - 6 -

Table S2 10-fold cross validation for our method and DeepSEA on GM12878 dataset. To
further confirm the superiority of our model over DeepSEA, we carry out 10-fold cross
validation experiments for both our model and DeepSEA. We find that the average auROC
score for our method is 0.88146 and the standard deviation is 0.00434, while the average
auROC score for DeepSEA is 0.86149 which is obviously lower, and the standard deviation is
0.01223 which is obviously larger than ours. Concretely, we perform one-sided Wilcoxon
tests on the auROC and auPRC scores for the two methods against the alternative hypothesis
that our method produces larger values of a criterion, respectively. The p-value of Wilcoxon
test on auROC scores data is 0.0001028, choosing the alternative hypothesis that our auROC
is greater than that of DeepSEA. Similarly, the p-value in auPRC case is 0.000525 which is
also very small. In summary, through the 10-fold cross validation experiments, we are
confirmed that our method significantly outperforms DeepSEA, more accurately in the
auROC measure and also more stably. We also list 10-fold cross validation experiments on the
rest five datasets in Table S3-S7.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.88413 0.88222 0.86517 0.86039
1 0.87657 0.86888 0.84461 0.83446
2 0.88554 0.88233 0.85086 0.84685
3 0.87352 0.87033 0.87892 0.87752
4 0.87684 0.87284 0.87505 0.87359
5 0.88669 0.88299 0.87547 0.87374
6 0.88222 0.88032 0.85034 0.84833
7 0.88394 0.88214 0.86190 0.85996
8 0.88204 0.87998 0.85023 0.84630
9 0.88314 0.87782 0.86238 0.85921

Mean 0.88146 0.87798 0.86149 0.85804
Standard
Deviation 0.00434 0.00534 0.01223 0.01411

 - 7 -

Table S3 10-fold cross validation for our method and DeepSAE on K562 dataset.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.88224 0.87660 0.85593 0.85086
1 0.87792 0.86957 0.86642 0.85830
2 0.88121 0.87450 0.86016 0.85266
3 0.88084 0.87115 0.86756 0.85872
4 0.88050 0.87073 0.85775 0.84789
5 0.88320 0.87689 0.85834 0.85220
6 0.88207 0.87247 0.86904 0.85950
7 0.88152 0.87293 0.85390 0.84552
8 0.87731 0.86907 0.86332 0.85680
9 0.88108 0.87364 0.86095 0.85281

Mean 0.88079 0.87275 0.86134 0.85353
Standard
Deviation 0.00185 0.00271 0.00512 0.00474

Table S4 10-fold cross validation for our method and DeepSEA on MCF-7 dataset.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.92256 0.91827 0.92045 0.91655
1 0.92261 0.91885 0.91864 0.91501
2 0.92310 0.91981 0.91322 0.91029
3 0.92323 0.91812 0.91239 0.90748
4 0.91967 0.91305 0.92427 0.91892
5 0.92022 0.91626 0.91364 0.91049
6 0.91897 0.91425 0.91135 0.90723
7 0.92292 0.91973 0.91591 0.91179
8 0.92243 0.91903 0.92164 0.91827
9 0.91955 0.91410 0.92011 0.91440

Mean 0.92153 0.91715 0.91716 0.91304
Standard
Deviation 0.00170 0.00253 0.00445 0.00422

 - 8 -

Table S5 10-fold cross validation for our method and DeepSEA on HeLa-S3 dataset.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.89656 0.89189 0.88977 0.88889
1 0.90033 0.89830 0.87887 0.87820
2 0.90562 0.90325 0.89721 0.89719
3 0.89988 0.89924 0.89547 0.89579
4 0.90202 0.90054 0.88406 0.88671
5 0.90508 0.90493 0.90302 0.90409
6 0.89367 0.89019 0.89143 0.88966
7 0.89740 0.89833 0.88857 0.89169
8 0.90065 0.89727 0.88831 0.88611
9 0.89987 0.89758 0.88316 0.88285

Mean 0.90011 0.89815 0.88999 0.89012
Standard
Deviation 0.00366 0.00450 0.00718 0.00748

Table S6 10-fold cross validation for our method and DeepSEA on H1-hESC dataset.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.90997 0.89778 0.89428 0.88395
1 0.91445 0.90644 0.91316 0.90454
2 0.91120 0.89931 0.90743 0.89670
3 0.91175 0.90423 0.89696 0.88851
4 0.91666 0.90623 0.90339 0.89508
5 0.91418 0.90379 0.90060 0.89198
6 0.90938 0.89838 0.91040 0.90055
7 0.91096 0.90206 0.91322 0.90612
8 0.90986 0.89956 0.91489 0.90567
9 0.91327 0.90102 0.91279 0.90305

Mean 0.91217 0.90188 0.90671 0.89761
Standard
Deviation 0.00238 0.00318 0.00745 0.00769

 - 9 -

Table S7 10-fold cross validation for our method and DeepSEA on HepG2 dataset.

Fold
Our method DeepSEA

auROC auPRC auROC auPRC
0 0.87610 0.86651 0.84508 0.83649
1 0.87225 0.86469 0.86917 0.86186
2 0.87442 0.86584 0.86780 0.85924
3 0.87090 0.86339 0.86009 0.85425
4 0.86569 0.85517 0.84669 0.83882
5 0.87018 0.85954 0.82295 0.80928
6 0.87640 0.86905 0.86234 0.85481
7 0.87224 0.86194 0.86297 0.85190
8 0.87574 0.86916 0.86737 0.86019
9 0.87244 0.86406 0.87255 0.86522

Mean 0.87264 0.86393 0.85770 0.84921
Standard
Deviation 0.00328 0.00428 0.01524 0.01689

Table S8 Several runs with different random seeds of our model. We run the same model
several times with different random seeds on the GM12878 dataset to show the stability of
our model. We find that the mean auROC score for 10 runs of our model is 0.88070, with a
very small standard deviation 0.00166. We conclude that our model has stability in
performance.

run auROC score auPRC score
0 0.88136 0.87560
1 0.88292 0.87812
2 0.87898 0.87401
3 0.87954 0.87507
4 0.87781 0.87164
5 0.88301 0.87812
6 0.88004 0.87425
7 0.88092 0.87533
8 0.88157 0.87635
9 0.88087 0.87451

Mean 0.88070 0.87530
Standard
Deviation 0.00166 0.00194

 - 10 -

Table S9 k-mer pairs grouped by hamming distance. We compute the pairwise hamming
distance between 4096 k-mers. Since there are always 6 characters in one k-mer, the hamming
distance has only six possible values, i.e., [1, 2, 3, 4, 5, 6]. In each group, we look at the
distribution of their corresponding k-mer vector distances, namely Euclidean distance and
cosine distance, and for both we give the mean value with standard deviation shown in
brackets.

Hamming
distance 1 2 3 4 5 6

pairs 36,864 276,480 1,105,920 2,488,320 2,985,984 1,492,992
Euclidean
distance

4.5602
(0.6405)

5.6204
(0.6837)

6.0938
(0.5332)

6.3111
(0.5361)

6.4270
(0.5289)

6.4528
(0.5463)

Cosine
distance

0.5272
(0.1466)

0.7964
(0.1730)

0.9292
(0.1418)

0.9958
(0.1435)

1.0322
(0.1412)

1.0408
(0.1464)

Table S10 k-mer pairs grouped by edit distance. We compute the pairwise edit distance
between 4096 k-mers. Since there are always 6 characters in one k-mer, the edit distance has
only six possible values, i.e., [1, 2, 3, 4, 5, 6]. The difference in edit distance and Hamming
distance is that the former measure will align the strings before computing distance, so edit
distance will be no larger than Hamming distance. In each group, we look at the distribution
of their corresponding k-mer vector distances, namely Euclidean distance and cosine distance,
and for both we give the mean value with standard deviation shown in brackets.

Edit
distance 1 2 3 4 5 6

pairs 36,864 355,494 1,602,378 3,272,994 2,560,482 558,348
Euclidean
distance

4.5602
(0.6405)

5.6984
(0.6674)

6.1522
(0.5604)

6.3324
(0.5604)

6.4681
(0.4972)

6.5388
(0.5171)

Cosine
distance

0.5272
(0.1466)

0.8157
(0.1695)

0.9434
(0.1414)

1.0006
(0.1485)

1.0470
(0.1320)

1.0822
(0.1352)

 - 11 -

Table S11 Top 10 specific k-mers using k-mer rank as relative abundance. We here
attempt to find the most specific k-mers corresponding to each cell line. First, we define the
relative abundance of a k-mer as its rank according to frequency, which ranges from 0 to 4095.
The smaller the rank is, the more enriched the k-mer is in that cell line. Second, we compute
the relative abundance matrix for 4096 k-mers in 6 cell lines. Third, based on this matrix, we
consider to measure the k-mer specificity score. The more heterogeneous the relative
abundance is in six cell lines, the more specific the k-mer is. We simply compute the standard
deviation of the six relative abundances for each k-mer as its specificity score. We pick out the
top 10 k-mers with highest specificity scores, and give their ranks in each cell line and the
final specificity score in the last column. we can find that ‘atatat’ and ‘tatata’ are more
enriched in the first four cell lines than in H1-hESC and HepG2 cell lines, while the rest 8 k-
mers, such as ‘ccgcgg’ etc., are more enriched in H1-hESC and HepG2 cell lines

k-mer GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 Specificity
atatat 1783 567 1341 619 3510 2006 994.5

ccgcgg 1453 2834 2375 2805 466 686 961.3
cgcggg 1535 2860 2473 2856 522 753 956.1
tatata 2084 755 1641 888 3614 2235 955.7

cccgcg 1579 2869 2470 2836 536 742 950.6
cgcggc 1512 2848 2384 2806 486 745 946.3
gccgcg 1490 2812 2358 2756 470 737 934.4
gcgcgg 1253 2701 2216 2637 378 643 929.8
ccgccg 967 2564 1942 2574 323 480 929.7
cggcgc 1755 2944 2558 2919 591 949 929.4

Table S12 Top 10 specific k-mers using normalized frequency as relative abundance
(x1e-4). We again attempt to find the most specific k-mers corresponding to each cell line.
Different from Table S11, we define the relative abundance of a k-mer as its normalized
frequency, that is to say, every frequency number should be divided by the total number of k-
mers in that cell line. Note that for simplicity, all values in this table are shown in 1e-4 unit.

k-mer GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2 Specificity
aaaaaa 19.603 23.067 18.033 21.595 9.401 15.279 4.516

tttttt 19.608 22.470 17.736 21.482 9.657 15.031 4.330
cctccc 9.735 8.407 8.594 7.863 14.138 12.742 2.360
gggagg 9.648 8.424 8.611 7.964 14.183 12.534 2.320
ccctcc 7.518 6.454 6.607 6.062 12.177 10.438 2.289
ggaggg 7.581 6.501 6.616 6.210 12.259 10.415 2.277
ggcggg 5.808 3.700 4.288 3.894 9.246 7.626 2.063
cccgcc 5.728 3.648 4.236 3.821 9.164 7.570 2.057
aaaaat 7.431 8.967 7.399 9.515 3.517 5.430 2.046
attttt 7.393 9.015 7.432 9.459 3.476 5.503 2.045

 - 12 -

Table S13 auROC scores for different embedding strategies. To prove the efficacy of k-
mer embedding in our model, we propose anther two different embedding strategies. The
average auROC scores for three strategies, namely ‘-init -train’, ‘-init -notrain’, ‘-noinit’, are
0.8948, 0.8756, 0.8726, respectively. Our strategy ‘-init -train’ is 0.0192 higher than ‘-init -
notrain’, showing that embedding vectors should be updated during the supervised training,
since the initial k-mer embedding vectors are generated by unsupervised learning without
seeing any information of data labels. Our strategy is 0.0222 higher than ‘-noinit’, showing
that the k-mer embedding vectors are actually a good initialization and informative features
for classification. The strategy ‘-init -notrain’ is slightly higher than ‘-noinit’ also showing
that the unsupervised k-mer embedding vectors are informative and helpful for classification.

 GM12878 K562 MCF-7 HeLa-S3 H1-hESC HepG2
-init -train 0.8830 0.8809 0.9212 0.9016 0.9097 0.8722

-init -notrain 0.8638 0.8509 0.8998 0.8823 0.8986 0.8580
-noinit 0.8602 0.8545 0.8989 0.8806 0.8963 0.8452

Table S14 10-fold cross validation for three cases. To show the efficacy of the convolution
stage and the BLSTM stage in our model, we propose another two variant deep learning
architectures, one omitting the convolution stage and the other omitting the BLSTM stage. We
carry out 10-fold cross validation on the GM12878 dataset for three cases. We find that the
average auROC score for the three cases are 0.88146, 0.87926, 0.86797 respectively, showing
that the full model with both convolution stage and BLSTM stage reaches the best
performance.

Fold
full nolstm noconv

auROC auPRC auROC auPRC auROC auPRC
0 0.88413 0.88222 0.87791 0.87479 0.86452 0.85542
1 0.87657 0.86888 0.88087 0.87474 0.86327 0.85528
2 0.88554 0.88233 0.87884 0.87454 0.88142 0.87530
3 0.87352 0.87033 0.87834 0.87644 0.85834 0.84981
4 0.87684 0.87284 0.87943 0.87598 0.87461 0.86836
5 0.88669 0.88299 0.88150 0.87654 0.86644 0.85849
6 0.88222 0.88032 0.87764 0.87463 0.86981 0.86303
7 0.88394 0.88214 0.87969 0.87695 0.86233 0.85515
8 0.88204 0.87998 0.87736 0.87381 0.87560 0.87029
9 0.88314 0.87782 0.88101 0.87588 0.86336 0.85397

Mean 0.88146 0.87798 0.87926 0.87543 0.86797 0.86051
Standard
Deviation 0.00434 0.00534 0.00149 0.00105 0.00722 0.00834

 - 13 -

Table S15 Wilcoxon tests results. To measure the significance of difference between three
cases in Table S14, we perform one-sided Wilcoxon tests on the auROC and auPRC scores
between our full network and the two variant networks. The p-values all prefer the alternative
hypothesis that our full network has a higher auROC/auPRC score than the nolstm/noconv
variant network, although the p-values of the full model and the nolstm model seems marginal.

p-values auROC auPRC
full vs. nolstm 0.07157 0.07157
full vs. noconv 0.0002057 0.0001299

Table S16 Comparison between BLSTM and LSTM. To compare the difference between
BLSTM and LSTM, we modify the BLSTM layer into a standard LSTM layer in our network
and retrain the model on the GM12878 dataset. We report the performance of the two
networks, including auROC, auPRC, time for each epoch, number of epochs until
convergence, and total training time. We find that, substituting LSTM for BLSTM, auROC
only drops slightly while auPRC even shows a small increment, suggesting that BLSTM does
not bring significant improvement compared to the standard LSTM network. For the running
time, LSTM consumes less time for each epoch, but takes more epochs before convergence.
In summary, we can choose either BLSTM or LSTM in a practical application.

 auROC auPRC Time
(s/epoch) # epochs Total (h)

BLSTM 0.8830 0.8774 350 34 3.3
LSTM 0.8821 0.8778 334 40 3.7

