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Dataset Construction

Datasets of nonredundant, cDNA-verified transcripts were created from GenBank release 118

(Sept., 2000) using the GENOA genome annotation script (unpublished data). Briefly, GENOA

extracts all available genomic and cDNA sequence data for a given organism from GenBank,

and masks repetitive elements with RepeatMasker (A. Smit and P. Green, personal

communication).  BLASTN (1) is then used to identify cDNA/genomic pairs with significant

blocks of identity. Such pairs are then aligned by using the spliced alignment algorithm

MRNAVSGEN (unpublished work), which produces GenBank format annotation of the inferred

exon and intron locations.  The MRNAVSGEN algorithm is similar in concept to the SIM4 program

(2), but is designed specifically for aligning cDNAs rather than expressed sequence tags.  The

GENOA script then resolves genomic sequences aligning to multiple cDNAs into separate regions

containing single genes and checks overlapping alignments for evidence of alternative splicing.

Finally, a nonredundant set was created by using BLASTP comparison of the encoded peptides.

Because our goal here was to study constitutive splicing, transcripts found to be alternatively

spliced were not used.  For human, the Refseq collection of full-length cDNAs was used.  For all

other organisms except yeast, all GenBank cDNAs were used. In yeast, a comprehensive survey

of intron-containing genes in yeast has recently been carried out (3), so we used this manually

curated set for yeast rather than using the output of the GENOA script.  This set of transcripts was

downloaded from the websites (http://www.cse.ucsc.edu/research/compbio/yeast_introns) and

(http://genome-www.stanford.edu/Saccharomyces). Intronless transcripts produced by GENOA in

human were not considered because many of these are likely to represent pseudogenes.

Splice Site Statistics

We observed significant statistical dependencies between nucleotides at adjacent positions in

both the 5’ and 3’ splice signals of all organisms considered in this study, except yeast for which

too few introns were available to assess such dependence.  Specifically, using consensus

indicator chi-square analysis (as in ref. 4), significant dependencies (p < 0.001) were observed



between all pairs of adjacent positions from (-20,-19) to (-5,-4) in the 3’ss of all four

multicellular organisms.  The nature of these dependencies was in many cases a bias toward pairs

of adjacent pyrimidine nucleotides, likely reflecting a preferred 3’ splice signal composition

involving a tract of consecutive pyrimidine nucleotides at somewhat variable location relative to

the 3’ splice junction.  In 5’ splice signals, significant dependencies were observed between

positions (-2, -1) and (+5, +6) relative to the 5’ splice junction in all four organisms, and at

certain other pairs of positions that differed between organisms.  The nature of the (-2, -1) effect

is a slightly increased frequency of G at position –1 when the –2 base is A (both consensus

nucleotides at the respective positions).  The (+5, +6) effect is an increased frequency of T

(consensus) at +6 when the +5 base is G (also consensus).  Both of these effects have been

observed previously in human 5’ splice signals and can be interpreted in terms of the

thermodynamics of RNA duplex formation between U1 small nuclear RNA and the 5’ss and/or

U6 small nuclear RNA and the 5’ss in the case of the (+5,+6) interaction (5).  As expected,

identification of introns was more accurate by using I1M splice site models than WMMs in all

organisms studied (data not shown).

Monte Carlo Simulations

The purpose of the Monte Carlo simulations illustrated in Fig. 3 was to determine how much

information, in a relative entropy sense, the splice signal motifs would need to contain to

accurately determine the locations of short introns in transcripts from each organism. One way to

accomplish this objective would be to steadily add biased nucleotides to the existing splice signal

motifs (e.g., adding additional pyrimidine nucleotides to the pyrimidine tracts of introns) and

then to measure the accuracy of short intron identification after each additional base. In practice,

we used a slightly different procedure which puts the problem into a somewhat more general

context and accomplishes the same goal.

For each organism, a set of artificial transcript sequences with the same lengths as the

original transcripts was generated at random from a uniform nucleotide distribution (<0.25, 0.25,

0.25, 0.25> for the frequencies of A, C, G, and T, respectively). Next, a pair of artificial splice

site motif WMMs, each of length 17 bases, was generated.  The length 17 is similar to the

lengths of real splice signal motifs and is long enough to generate motifs of high relative entropy.



Each artificial splice site motif was created by randomly selecting 17 frequency vectors from the

set of 99 frequency vectors, <0.01, 0.33, 0.33, 0.33>, <0.02, 0.3266, 0.3266, 0.3266 >, <0.03,

0.3233, 0.3233, 0.3233 >, … <0.99, 0.0033, 0.0033, 0.0033>. Fusing these 17 frequency vectors

generates a WMM.  Such models were constructed for both the 5’ss and 3’ss and then these

models were used to generate random splice signal sequences that were inserted at the exact

locations of the original splice junctions of short introns in each transcript.  Next, a simple splice

site pair model (PAIRSCAN) was used to predict the short intron locations by using the artificial

splice signal WMM models. The accuracy achieved by PAIRSCAN was then recorded, together

with the sum of the relative entropies of the two splice signal motifs used, relative to a uniform

background nucleotide distribution (<0.25, 0.25, 0.25, 0.25>). In this way, the exact length and

exon-intron structure of each transcript was preserved, but the information content of the splice

signal motifs was varied over a large range.  Although the RelEnt of a motif is clearly very

strongly related to its ability to specify intron locations (as seen in Fig. 3), the degree of

degeneracy of the WMM (as measured by the RelEnt per position) also affects the results

slightly.  For example, slightly different results are obtained when using 12-bit splice signal

motifs with 2 bits per position than with longer but more degenerate 12-bit motifs containing 1

bit per position because of the greater variability in splice site scores in the latter case.

Gibbs Sampling

Branch site motifs were identified by searching for 7-nt motifs in branch region sequences 15 to

45 nucleotides upstream of the 3’ss by using the Gibbs sampling software (6) downloaded from

the ftp site at the National Center for Biotechnology Information (ftp://ftp.ncbi.nlm.nih.gov). We

assumed that all possible branch sites would contain a canonical branch adenosine at position 6

of the 7-mer motif. Thus, sequence positions that did not overlap any 7-mer with adenosine at

position 6 were masked (replaced by Ns) to increase the signal-to-noise ratio.  For example, the

sequence TTTTTTTTACTAACTTTTTTTTATTTT would be replaced with the sequence

NNNTTTTTACTAACNNNTTTTTATNNN. The Gibbs motif sampler was run repeatedly on

the masked sequences, varying the expected count parameter from 10% of the total number of

sequences to 100%. A motif that satisfied the two criteria of being consistently generated by

Gibbs sampling and showing significant complementarity to U2 small nuclear RNA was



observed in all organisms except C. elegans, where the motif generated most commonly by the

Gibbs sampler showed little complementarity to U2 small nuclear RNA (Fig. 2B). For each

organism, a representative motif generated by the Gibbs sampler was chosen and used to

generate a WMM. In S. cerevisiae, the branch signal is known to be longer and is commonly

located further upstream of the 3’ss. Therefore, the procedure was modified to search for an 11-

mer motif in branch region sequences 15 to 200 nt upstream of the 3’ss.

Intron Composition Models

Let   
5r 

N =< 1
5N , 2

5N ,..., 1024
5N > represent the counts of the 1,024 possible pentanucleotides in all the

introns from a given organism.  For example, listing the pentamers in alphabetical order, 1
5N  is

the count of the pentamer AAAAA, 2
5N the count of AAAAC, etc. The count vectors for

tetramers, triplets, doublets and nucleotides (  
4r 

N , 3r 
N , 2r 

N , 1r 
N ) are defined analogously.  The

pentamer frequency vector is then defined as 5r 
f =< 1

5f , 2
5f ,..., 1024

5f >  where i
5f = i

5N / ′ L , and ′ L  is

the total number of pentamers in all of the introns (sum of intron lengths less four times the

number of introns), and similarly for   
4r 

f ,   
3r 

f , etc.  Let   
5r g ,   

4r g ,   
3r g ,… be the corresponding oligomer

frequencies measured in transcripts as a whole (i.e. including exons).  Now let

  
5r 

n =< 1
5n , 2

5n ,..., 1024
5n > represent the pentamer count vector of a particular intron I , so 2

5n  is the

number of occurrences of the pentamer AAAAC in that particular intron, for example.

Similarly, let   4r 
n  represent the vector of tetramer counts in the intron,   3r 

n the vector of triplet

counts, etc. In calculating the pentamer count vector, pentamers that overlap the 5’ or 3’ splice

signal or branch signal motifs of the intron are excluded. In calculating the tetramer count vector,

tetramers that overlap or fall within one base of the 5’ss, 3’ss or branch signal are excluded.  For

the triplet count vector, triplets that overlap or fall within two bases of the 5’ss, 3’ss or branch

signal are excluded, and so forth (this convention simplifies the notation below). The intron

composition score of an intron I  is then defined as: s(I ) = i
5n 2log ( i

5f / i
5g )

i∑ − j
4n 2log ( j

4f / j
4g )

j∑ ,

where the first sum is taken over all 1,024 possible pentamers and the second sum is over all 256

tetramers.  Subtracting the second sum effectively corrects for the over counting of tetramers

overlapped by adjacent pentamers.  When intron oligomer counts are defined as described above,

this score is equivalent to the log-odds ratio of a homogeneous fourth-order Markov model of



intron composition over a homogeneous fourth-order Markov model of transcript composition.

The notation used above can be more easily generalized to models that score only a subset of the

1,024 pentamers (as in Fig. 5) than can standard Markov chain notation.  For example, suppose

that we only want to assign scores to two pentamers, AATTG and TTGCC.  The intron score for

this model is then defined as:

′ s (I ) = AATTG
5n 2log ( AATTG

5f / AATTG
5g )+ TTGCC

5n 2log ( TTGCC
5f / TTGCC

5g ) − TT ′ G 
3n 2log ( TTG

3f / TTG
3g ) where TT ′ G 

3n

is the number of occurrences of the triplet TTG that occur at overlaps between the scored

pentamers (i.e., in heptamers AATTGCC), which is a natural generalization of the Markov

formula to models involving subsets of oligomers only.  The intron score for other subsets is

defined analogously, always subtracting terms corresponding to the oligomers (of size 1, 2, 3 or

4), which are generated by overlaps of scored pentamers.

Using INTRONSCAN for Gene Finding

INTRONSCAN was run on a sample of Drosophila genomic sequences using the 5’ss, 3’ss, branch

and intron length models and a score cutoff of 16.25 bits. Given the frequency with which

INTRONSCAN predicts short introns in Drosophila genomic sequences, a cluster of 4 or more

predicted short introns within 1 kb is expected to occur only rarely in the genome (approximately

once per 166 kb), if the predicted introns were randomly distributed. Such intron clusters are

often associated with genes, as illustrated in Fig. 6.
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