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S1 Data interpolation

The EKF is a linearized approximation of the Kalman filter that, in some conditions, may
lose the stability properties of the linear Kalman filter. That is, divergence may occur along
the dynamic processing of data. One way to favor stability is to operate suitable corrections
in-between very sparse measurement times. For especially critical data sets, we implement
this option by interpolation of the data in-between measurement points, in a way that
reflects common-sense prior expectations about the biological dynamics. Given a species i
(biomass or metabolite concentration), consider measurement times tj and tj+1 from Ti, and
corresponding measurements yi(tj) and yi(tj+1), and measurement error standard deviations
σi(tj) and σi(tj+1). Consider an interpolation time point t ∈ (tj , tj+1). We introduce a
fictitious, linearly interpolated measurement at t, i.e.

yi(t) = yi(tj) +
yi(tj+1)− yi(tj)

tj+1 − tj
(t− tj).

Correspondingly, we introduce a measurement uncertainty σi(t) that is similar to the stan-
dard deviations of the nearest measurements, but reflects the fact that increasing time
distance from these points introduces increasing uncertainty about the relevance of yi(t). In
particular, for an inflation factor δ, we define the uncertainty of y(t) as

σi(t) = σ∗i (t) + (δ − 1) · σ̄i ·
2 ·min(t− tj , tj+1 − t)

tj+1 − tj
,

where σ∗i (t) is the linear interpolation of σi(tj) and σi(tj+1) at t, and σ̄i is their mean value.
Thus, for any σi(tj) and σi(tj+1), the resulting function σi(t) is a continuous, piecewise
affine interpolation. In particular, if σi(tj) = σi(tj+1) = σ̄i, then σi(t) reaches its largest
value, equal to δ · σ̄i, at the mid-time between tj and tj+1. This definition reflects the typical
experimental choice of sparser sampling in periods of slow metabolic changes. Indeed, the
rate of increase of σi(t) away from the closest data point is set to be a function of the time
distance from the next measurement, i.e. sparser data points correspond to presumably
slower fluctuations of the quantities observed. A grid of interpolation times t in-between
data points for the new measurements can be chosen by a similar rationale. For an integer
oversampling factor of choice S, we consider interpolation at times tk = tj+k·(tj+1−tj)/(S−
1), with k = 1, . . . , S − 1, i.e. S − 1 uniformly spaced data points are introduced. In this
way, for varying j, experimental periods with more frequent measurements are maintained
as such in the augmented (interpolated) data set.

For the sake of EKS convergence, this strategy was not needed in the validation example
and in the first application of the main text, whereas it was used to process the data from
the second application.
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S2 Additional estimation results

S2.1 Simulation of diauxic shift experiment
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Figure S1: Measurements (circles) from the simulation of a diauxic growth experiment,
and their 95% confidence intervals (blue band). The parameters used in the simulation
are (b̄, c̄1, c̄2) = (0.05, 1, 0.02), (µ̄, µ) = (0.0231, 0.0012), (r̄1, r̄2, r2) = (0.01, 0.005, 0.001),
(σb, σc1 , σc2) = (0.02, 0.02, 0.01), T = 5, m = 33 (see main text for the meaning of the sym-
bols). Switching times T1 and T2 are implicitly determined by this choice of the parameters.
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Figure S2: Smoother (solid red) and filter (dashed red) rate estimates in the simulated
diauxic growth experiment. Smoother estimates and switching periods (in-between vertical
blue lines) are as in Fig. 3 of main text.
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S2.2 Simulation of fed-batch experiment

The rate estimation method presented in the paper was also tested on simulated data for a
typical fed-batch scenario, where a substrate is added to the culture medium at a time Tadd
in the course of the experiment. As discussed in the main text, this sudden concentration
change is not explicitly accounted for in our model. Yet we show here that our method also
applies to this scenario.
Fed-batch data was simulated for an experiment comprising a primary and a secondary
substrate, as shown in Fig. S3. From time 0 to Tadd, Eqs (1)–(2) were used for simulation,
starting from b(0) = b− (initial biomass), c1(0) = c−1 (initial concentration of primary
substrate), and c2(0) = 0 (initial concentration of secondary substrate), with b− and c−1
positive constants. Rates were defined as follows. For g(t) = max{c1(t)− c̄1,0, 0},

µ(t) = µ̄ · g(t),

r1(t) =

{
−r̄1,0 − r̄1,1µ(t), if c1(t) > 0,

0, otherwise,

r2(t) =


r̄2,1 · g(t), if c1(t) > 0,

−r̄2,2 if c1(t) = 0 and c2(t) > 0,

0 otherwise,

where c̄1,0, r̄1,0, r̄1,1, r̄2,1 and r̄2,2 are all positive constants. Thus, growth on the primary
substrate and simultaneous excretion of the secondary substrate occur at rates proportional
to g(t) = c1(t)− c̄1,0, until c1(t) falls below threshold c1,0. This is followed by the sole con-
sumption of the primary substrate until exhaustion. At this point, the secondary substrate
is consumed at a constant rate until (possible) exhaustion. At time t = Tadd, the addition
of primary substrate into the medium is simulated by resetting c1(t) to a positive constant
c+1 and letting b(t) and c2(t) unaltered. The system is then simulated from the new state at
time Tadd until a final time Tmax, in accordance with the same dynamical equations. Mea-
surements of b(t), c1(t), and c2(t) are collected at unequally spaced time points in between
0 and Tmax, corrupted by random measurement errors with standard deviations σb, σc1 and
σc2 . The values of all parameters used in the simulation are given in the caption of Fig. S3.
The different phases of utilization or excretion of the two substrates are apparent, as well
as the concentration peak corresponding to the addition of primary substrate.

The rate estimation method developed in the main text is then applied to these data,
without any knowledge of the specific rate equations. Estimation results are reported in
Fig. S4 together with the true (simulated) rates that generated the data. First of all, it
is apparent from Fig. 4(a) that the estimation method provides a detailed account of the
observed biomass and concentration profiles, including the sudden change in c1(t) at time
Tadd = 50h, even if the latter does not lie within the scope of the model expressed by Eqs.
(1)–(2) of the main text. Moreover, from Fig. 4(b), the estimates of µ(t), r1(t) and r2(t)
are in excellent agreement with the true rate profiles.
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Figure S3: Measurements (circles) from the simulation of a fed-batch experiment, and
their 95% confidence intervals (blue band). The parameters used in the simulation
are (Tadd, Tmax) = (50, 70), (µ̄, c̄1,0, r̄1,0, r̄1,1, r̄2,1, r̄2,2) = (0.002, 50, 0.1, 30, 0.002, 0.05),
(b−, c−1 , c

+
1 ) = (1, 500, 150), (σb, σc1 , σc2) = (0.1, 5, 0.1). Time is in hours, biomass and

concentrations are in arbitrary units (AU).
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Figure S4: Estimation of exchange rates by applying the EKS method to a data set ob-
tained by simulating a fed-batch experiment. (a) Simulated data (circles), switching period
(in-between vertical blue lines) encompassing exhaustion and subsequent addition of pri-
mary substrate, and EKS estimates of biomass and concentration profiles with their 95%
credibility intervals (red curves and bands, respectively). Switching period was manually
adjusted so as to include Tadd. Smoothing factors γ◦ = (0.011, 0.284, 0.017) were set to 5
times the automatically detected values, whereas the γ∞ were left unchanged to the detected
values (2.18, 56.83, 3.50). (b) EKS rate estimates for the tuning above, with 95% credibility
intervals (red curves and bands, respectively), and simulated rate profiles (dashed black
lines). 7



S2.3 Diauxic growth in E. coli
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Figure S5: Measurements from diauxic growth on glucose and acetate of E. coli (circles and
blue dots), and their confidence intervals (size conveyed by the blue shaded bands).
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Figure S6: Estimates of rates in E. coli diauxic growth experiment, as obtained by cross-
validated splining and differentiation (solid red lines).
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Figure S7: Estimation results for diauxic growth on glucose and acetate of E. coli by the fully
automated procedure. (a) Data (circles) from Morin et al. (2016) and EKS estimates with
credibility intervals (solid curve and shaded band) of biomass and concentration profiles. (b)
EKS rate estimates and credibility intervals (red curve and shaded band). The smoothing
parameters found for biomass, glucose, and acetate are γ◦1 = 0.675, γ◦2 = 5.5842, and
γ◦3 = 8.4025, respectively.
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S2.4 Fed-batch experiments on L. lactis
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Figure S8: Data from fed-batch experiments with L. lactis. Measurements (circles) are
interpolated (blue dots) with S = 10, i.e. 9 interpolation points in-between measurements,
and measurement error inflating factor δ = 5. Shaded blue bands denote confidence intervals
on measurements and interpolations.
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S3 Experimental procedures

Diauxic growth of the E. coli strain K12-MG1655 has been described previously in Morin
et al. (2016). The other strain used in this study is Lactococcus lactis ssp. lactis IL1403. L.
lactis bacteria were grown in fed-batch culture in semi-synthetic medium containing yeast
extract (Sigma-Aldrich) 10 g/L, KH2PO4 9 g/L, K2HPO4 7.5 g/L, MgSO4,7H20 0.2 g/L,
MnSO4,H20 0.05 g/L and an initial concentration of glucose of 56 mM. Glucose was added
after 50 h, 73 h, and 96 h of culture at the following respective concentrations: 60, 100 and
100 mM.

Cultures were performed at 30◦C in a 2L-fermentor (Sartorius, Germany) under air
atmosphere with an agitation speed of 250 rpm. The pH was maintained at 6.0 by automatic
addition of KOH 10 N.

Bacterial growth was estimated using a Biochrom Libra S4 spectrophotometer at 580 nm
(for L. lactis, 1 OD unit is equivalent to 0.3 g/L). The bioreactor was inoculated with
exponential phase cells from pre-cultures grown in the same medium at an initial OD580 of
0.04.

The concentrations of glucose and fermentation products (lactic acid and acetate) were
measured in culture supernatants every 30 minutes by high-performance liquid chromatog-
raphy with a 1200 series system (Agilent Technologies, Waldbronn, Germany) as previously
described (Cocaign-Bousquet and Lindley, 1995). Briefly, an HPX87H+ Bio-Rad column
was kept at a temperature of 48C with H2SO4 (5 mM) as the eluent at a flow rate of 0.5 mL
min−1. Dual detection was performed by a refractometer and UV analyses.

S4 Metabolic flux analysis

The genome-scale model and constraints used in this study are described in Morin et al.
(2016). The model is a slightly modified version of the genome-scale reconstruction iAF1260-
flux2 of E. coli (Feist et al., 2007). We ran metabolic flux analyses with the COBRAv2
toolbox with GLPK as the linear programming solver (Schellenberger et al., 2011), following
the procedure described in (Morin et al., 2016). Basically, we determined the intracellular
distribution of fluxes consistent with the estimated rates (either the smoothing spline or the
EKS estimates), at 7 minutes before the glucose exhaustion, when the smoothing spline and
EKS estimates are most different. The optimization problem to solve consists in minimizing
the discrepancy between the measured and predicted specific rates, namely the growth rate,
the glucose uptake rate and the acetate excretion rate. The minimization is followed by a flux
variability analysis (Mahadevan and Schilling, 2003) in order to assess the robustness of the
optimal solutions. The lower and upper bounds of the fluxes consistent with the exchange
and growth rates are plotted for 15 reactions of carbon central metabolism in Fig. S9.
The reactions, as named in the iAF1260-flux2 reconstruction, are from different metabolic
pathways: glycolysis (PGI, PFK, ENO, PYK), pentose-phosphate pathway (G6PDH2r,
TKT2, RPI), glycogenolysis (PGMT), Krebs cycle and anaplerotic reactions (MDH, CS,
PPCK, PPC), and acetate metabolism (PTAr).
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Figure S9: Size of flux intervals obtained by flux variability analysis for the optimal solutions
for 15 selected reactions in carbon central metabolism using the smoothing spline (grey) and
EKS (red) estimates.
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We verified the accuracy of predicted fluxes by comparing their mean value to measured
intracellular fluxes in a continuous culture of E. coli growing on glucose at a dilution rate
of 0.2 h−1 (Zhao et al., 2004). The comparison was performed for reactions in the carbon
central metabolism for which direct measurements are available: EXglc, PGI, G6PDH2r,
PGMT, GAPD, PYK, PDH, PPC, MDH, TKT1, and TKT2. The results are plotted in
Fig. S10, and show an excellent correspondence between predicted and measured fluxes.
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Figure S10: Comparison of predicted and measured intracellular fluxes for eleven reactions
in carbon central metabolism (EXglc, PGI, G6PDH2r, PGMT, GAPD, PYK, PDH, PPC,
MDH, TKT1, and TKT2) of E. coli. Fluxes are given relative to the specific glucose con-
sumption rate.
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S5 Model extensions

The model of Eqs (1)-(2) in the main text is based on the assumption that the only changes
in the concentration ci are due to the uptake and excretion rates, and thus applies to batch
growth. The model can be easily generalized to the case of the inflow or outflow of mass in
the bioreactor. The following modeling scheme, adapted from (Bastin and Dochain, 1990),
takes into account these generalizations:

ḃ(t) = (µ(t)− din)b(t), (S1)

ċi(t) = ri(t)b(t) + dincin,i − dinci(t)− gi(t), i = 1, . . . , n, (S2)

V̇ = (din − dout)V, (S3)

where b [gDW·L−1] is the biomass concentration in the medium in the bioreactor, ci [g
L−1] the concentration of metabolite i in the medium and in the effluent, cin,i [g L−1] the
concentration of metabolite i in the influent, V [L] the volume of the medium, din = Fin/V
[h−1] the inflow rate (with Fin [L h−1] the influent flow rate), dout = Fout/V [h−1] the outflow
rate (with Fout [L h−1] the effluent flow rate), gi(t) the (time-varying) rate of outflow of
metabolite i in gaseous form or its rate of degradation in the medium.

Notice that Eqs (1)-(2) in the main text are obtained for dout = din = gi(t) = 0. This
corresponds to cultivation in batch mode, without escape of metabolites in gaseous form
or extracellular degradation. In case that dout = din = d > 0, with d the dilution rate,
the bioreactor operates in continuous mode. Notice that in batch and continuous mode it
holds that V̇ = 0, so that this variable can be omitted from the model. When dout = 0 and
din > 0, the bioreactor operates in fed-batch mode. In this case, the volume of the medium
is not constant.

The extended Kalman smoothing method developed in the main text applies to each
of these three cases, with an automated tuning phase that should be adapted to the new
form of the model. In particular, the smoothing profiles γ(t) (see main text) can equally
be defined in terms of pre-estimates of the unknown rate profiles, but the latter should be
determined algebraically from spline interpolations of the data (main text Section 3.3.1) in
the light of the new form of the dynamic model equations.
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S6 Description of estimation code

S6.1 Overview

The estimation method described in the main text, comprising data-driven tuning of the
EKS and the EKS itself, has been implemented in Matlab (developed on releases R2014a/R2016a).
The software takes as input a structure data containing measurements Y1, . . . ,Yn+1 and
corresponding measurement times T1, . . . ,Tn+1, time-invariant or time-dependent measure-
ment error levels σ1, . . . , σn+1, as well as metabolite names and unit labels for visualization
purposes. Based on this, it first performs switch detection and determines smoothing pro-
files and initial state statistics as described in Sec. 3.3 of the main text (internal parameters
L = 10, D = 1, J = 3), and then runs the estimation algorithm of main text Sec. 3.2. In ac-
cordance with the main text model (1)-(2), the smoother equations are fixed by the number
of metabolites n, which is determined from the data themselves. By default, the procedure
returns a structure results with the estimates of the augmented state z (including x̂ and
rate estimates û) at all measurement times T , its estimation error covariance matrix P
(including Px and Pu) at the same times, as well as the pre-fitting results x̃ and ũ. In a
structure settings, it also returns the EKS settings (i.e., γ◦i , γ∞i , switching periods, etc.)
automatically determined at the tuning stage. These output settings can be inspected and
modified by the user, and fed back into a subsequent call of the routine as an additional
input accompanying the data structure. Alternatively, all or part of these settings can be
directly specified by the user and passed to the software (in a settings structure) along
with the data. The format of data, settings, results, and more details are given in the
next section.

S6.2 Implementation

We describe here the overall architecture and usage of the software (refer to the main text
for the mathematical symbols). The software comprises the following Matlab function (.m
files):

EstimateRates: The main routine calling the other routines for automatic tuning of the
EKS and the computation of the EKS estimates

PreprocessData: Called by EstimateRates, performs the automatic data-driven tuning
of the EKS settings by computing the switching periods and, invoking
EstimateFilteringParameters, initial state statistics and smoothing factors.

EstimateFilteringParameters: Called by PreprocessData, performs optimized spline
smoothing of the data by a Generalized Cross-Validation approach, computes rate
estimates by standard differentiation, and infers initial state statistics and smoothing
factors.

ExtendedSmoother: Called by EstimateRates, it implements the EKS for the computation
of state and rate estimates. Uses ApproximateOneStepDynamics.

ApproximateOneStepDynamics: In-between two measurement times, solves the system of
ODEs for the prediction step of the EKF and the sensitivity equations for the precom-
putation of matrix factors of the Bryson-Frazier smoother. Uses AugmentedDynamics
and VariableSmoothing.
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AugmentedDynamics: Evaluates the vector field of the augmented systems of ODEs for the
biological system dynamics and the Bayesian description of the unknown rate profiles,
together with its Jacobian, at a given state value and time instant.

VariableSmoothing: Implements the time-varying smoothing profiles of the EKS

For result visualization purposes, EstimateRates and EstimateFilteringParameters also
call the publicly available Matlab function shadedErrorBar.

The main function is EstimateRates. For the intended usage of the software, this is the
only function that the user shall call, defined as follows:

function [results,outsettings]=EstimateRates(data,settings)

Both data and settings are required input structures, although settings may be an empty
matrix or cell array. Both results and outsettings are optional output structures. Struc-
ture data must contain the data to be processed and may contain physical variable names
for result visualization purposes. Recalling that n denotes the number of experimentally
measured metabolites, the fields fieldname of data (i.e. the various entries of the type
data.fieldname) shall be:

Measurements: (m+ 1)× (2 + n) matrix containing (m+ 1) measurement times (T , first
column) in increasing order and corresponding experimental observations Y (second
column: biomass; column c, from third to last: concentration of metabolite c− 2. NaN
entries are admitted for non-available measurements of some entries at given times;
no row can have only NaN entries.

ErrorLevels: 1× (1 +n) matrix containing the standard deviation of measurement errors
σi for biomass and metabolite concentrations (same ordering as for Measurements),
if time-independent. Alternatively, (m + 1) × (1 + n) matrix containing the stan-
dard deviations of measurement errors at different observation times for the different
quantities.

Optionally, the following fields may be provided:

NameLabels, UnitLabels, RateNameLabels, RateUnitLabels: Cell arrays of 2 +n strings
specifying the names (labels) of time, biomass and metabolite concentrations for
NameLabels, and corresponding units for UnitLabels, and of time, growth rate and
metabolite exchange rates for RateNameLabels, and corresponding units for
RateUnitLabels.

Irrespective of settings, the output structure results is returned with the following
fields:

EstimationTimes: M × 1 array of times at which estimates are produced (M ≥ m+ 1. It
equals m+ 1 unless additional times other than measurement times are requested for
estimates, see setting EstimationTimes further below).

PredictorEstimates, FilterEstimates, SmootherEstimates: M × 3 · (n+ 1) matrix of
estimates of the augmented state z, each row corresponding to the time in the same
row of EstimationTimes. Predictor, Filter and Smoother contain estimates ẑ−,
ẑ, and ẑ+, in the same order. In particular, SmootherEstimates contains the desired
estimates from the EKS.
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PredictorCovariance, FilterCovariance, SmootherCovariance: 3·(n+1)×3·(n+1)×M
matrices containing the (symmetric) estimation error covariance matrices P−, P and
P+ corresponding to ẑ−, ẑ, and ẑ+ at the M estimation times (in the third dimension).

Depending on settings, if spline smoothing is performed for automatic tuning of the
smoothing factors and initial rate and state statistics, the following field is also returned:

Prefits: A structure with fields as follows:

Prefits.x0, Prefits.u0: Initial state estimates x̂−0 and rate estimates û−0 , in the same
order.

Prefits.HeavySmoothFact: 1× (n+ 1) array containing the estimated smoothing factors
γ◦1 , . . . , γ

◦
n+1.

Prefits.SpFits: 1 × (n + 1) cell array containing the cross-validated spline fits used for
automatic EKS tuning for biomass and the different metabolites

Prefits.SpRateTimes: 2× (n+ 1) array where every column, say [Tstart;Tstop], with
Tstart<Tstop, specifies the period over which splines have been used to derive esti-
mates of the rate profile corresponding to that column.

Manual settings for the EKS can be specified with the following optional fields of
settings:

AnalysisPeriod: 2× 1 vector with entries [Tmin ; Tmax], providing the initial and final
time of the analysis (if absent, automatically determined as whole data span; Only
times within data span are considered).

EstimationTimes: m′ × 1 vector of times at which estimation results have to be returned
(in addition to measurement times; only times within [Tmin ; Tmax] are considered).

HeavySmoothFact: 1 × 1 smoothing factor for slow rate dynamics. Alternatively, 1 × n
vector of smoothing factors, one per rate (if absent, estimated from data).

LightSmoothFact: 1 × 1 smoothing factor for fast rate dynamics. Alternatively, 1 × n
vector of smoothing factors, one per rate (if absent, fixed to 1e3*HeavySmoothFact).

Tmins, Tmaxs: K × (n+ 1) matrices, where, for any j, [Tmins(j,i) Tmaxs(j,i)] is the
time period where a switch is authorized. Entries Tmins(j,i)>=Tmaxs(j,i) have no
effect. See outsettings below for a typical structure of this matrix.

SwitchThresholds: 1 × (n + 1) vector with thresholds for detection of exhaustion of
different species. Alternatively, (m + 1) × (n + 1) matrix with different thresholds
for the different measurement times (if absent, set to 2*ErrorLevels). Overridden if
both Tmins and Tmaxs are provided.

SwitchPeriod: 2 × 1 vector with entries [DTminus ; DTplus], defining the period of
fast rate changes as [Tswitch+DTminus, Tswitch+DTplus], for any automatically
detected switching time Tswitch. Alternatively, 2 × (n + 1) matrix with different
values for the different species (if absent, automatically fixed based on measurement
times as described in main text). Overridden if both Tmins and Tmaxs are provided.
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ShowProgress: Scalar flag, specify 1 for waitbar and other info on the progress of the
analysis (default if absent), 0 otherwise.

HeavySmoothFact: 1 × 1 smoothing factor for slow rate dynamics, equal for all species.
Alternatively, 1×(n+1) vector of smoothing factors, one per rate (if absent, estimated
from data).

LightSmoothFact: 1×1 smoothing factor for fast rate dynamics. Alternatively, 1× (n+1)
vector of smoothing factors, one per rate (if absent, fixed to 1e3*HeavySmoothFact)

Additional optional fields pertain and trigger linear data interpolation, affecting EKS but
not its tuning, as discussed in Sec. S1 above. They are:

Oversampling: 1 × 1 integer number (parameter S of Sec. S1) of uniformly spaced inter-
polation points from a measurement time (included) to the next (excluded). If equal
to 1, in particular, the NaN entries of data.Measurements(:,2:end) are replaced
by linearly-interpolated values, and no interpolated measurement time is added. If
absent, no interpolation is operated.

ErrorInflateFact: Amplification factor of error standard deviation in-between time points
(factor δ of Sec. S1; used in case of data interpolation; if absent, set to 2 by default).

The specified manual settings are transferred to identical fields of outsettings. This
output structure reports the settings actually used by the software in the processing of
data, whether manually specified, set by default, or automatically detected. This includes
in particular matrices Tmins and Tmaxs (see settings above), typically not specified by
the user, but automatically determined in a format where every row j concerns one switch
detected for one species j, with Tmins(j,i)<Tmaxs(j,i), and all other entries of the same
row are zero in both matrices. Structure outsettings can be easily inspected, modified,
and fed back into a new call to EstimateRates for manually adjusted data processing.

Scripts showing the usage of this software for the validation study and the two applica-
tions in the paper are available together with the software.
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