
Supplementary Data for Three-dimensional
Cardiovascular Imaging-Genetics: A Mass

Univariate Framework

1 UK Digital Heart Project protocols

Participants who had known cardiovascular or metabolic disease or were tak-
ing prescription medicines were excluded but simple analgesics, antihistamines,
and oral contraceptives were acceptable. Female subjects were excluded if they
were pregnant or breastfeeding. Standard safety contraindications to magnetic
resonance imaging were applied including a weight limit of 120 kg. All sub-
jects provided written informed consent for participation in the study, which
was approved by a research ethics committee. Anthropometric measurements
were collected by trained research nurses. Subjects fasted for four hours be-
fore the visit took place. Blood pressure was acquired in accordance with the
guidelines of the European Society of Hypertension (O’Brien et al., 2002) us-
ing a calibrated oscillometric device (Omron M7, Omron Corporation, Kyoto,
Japan). Five measures were taken, the first three were discarded and the last
two were averaged. Subjects height (Ht) and weight (Wt) were assessed without
shoes and body surface area (BSA) was calculated by the Mosteller formula:

BSA(m2) =
√

Ht(cm)∗Wt(kg)
3600 .

Cardiac MR (CMR) was performed on a 1.5-T Philips Achieva system (Best, the
Netherlands). To capture the whole-heart phenotype, a high-spatial resolution
3D balanced steady-state free precession cine sequence was used that assessed
the left and right ventricles in their entirety in a single breath-hold (60 sections,
repetition time 3.0 ms, echo time 1.5 ms, flip angle 50◦, field of view 320 × 320
× 112 mm, matrix 160 × 95, reconstructed voxel size 1.2 × 1.2 × 2 mm, 20
cardiac phases, temporal resolution 100 ms, typical breath-hold 20 s). Images
were stored on an open-source database (MRIdb, Imperial College London, UK)
(Woodbridge et al., 2013). Conventional volumetric analysis of the cine images
was performed using CMRtools (Cardiovascular Imaging Solutions, London, UK)
following a standard protocol (Schulz-Menger et al., 2013).



2 Gauss-Markov assumptions

In this section we review the statistical assumptions of the general linear model
and their importance in a mass univariate context, so as to clarify under which
conditions reliable inference can be obtained.
The regression coefficients β in the general linear model under study can be
obtained via ordinary least squares (OLS): β = (XXT )−1XT y and s.e.(β) =√
s2(XXT ), where s2 is the OLS estimate of the variance σ2 of the observations.

According to the Gauss-Markov theorem, the ordinary least square method will
be the best linear unbiased estimator (BLUE) of the regression coefficients β
if its five assumptions are satisfied. Here we report the importance of these
assumptions for the approach proposed in this work.

1. No multicollinearity in X. Multicollinearity is present when a covariate is a
linear combination (perfect) or is highly correlated (imperfect) with other
covariates. The absence of perfect collinearity is necessary to guarantee that
X is full rank so that XXT can be inverted when deriving the regression
coefficients, assuring their uniqueness. Imperfect multicollinearity results in
a reduction of the statistical efficiency of the derived regression coefficients,
causing a reduction of power and ambiguous effects (Andrade et al., 1999). In
order to diagnose this, low pairwise correlations between predictor variables
are not sufficient to exclude multicollinearity with more than two explanatory
variables, but they are a necessary condition. The variance inflation factor
and the condition number of the design matrix can be instead employed
to estimate the amount of variance of each regression coefficient increased
because of collinearity and to detect the amount of collinearity respectively
(Hair et al., 2016). Taking together these three latter indices, modifications of
the design matrix via omission or orthogonalization of explanatory variables
can be considered to correct for multicollinearity.

2. Random sampling of the population. This assumption is required in order
to not introduce bias in the estimates and it is guaranteed when candidates
have been randomly selected to participate to the study.

3. No endogeneity in X. Endogeneity happens when an explanatory variable is
correlated with the error term, i.e. E(εi|X) 6= 0. In general, this problem can
be due to a model misspecification problem where one or more predictors
have not been included into the model, to a measurement error in X that will
add bias to the estimation of the regression coefficients, or to a simultaneity
error when one column of X is jointly determined with Y. As endogeneity is
a conceptual problem, there are no direct statistical tests to verify this as-
sumption, hence the results should be questioned each time. In the context
under study, the last source of endogeneity can be considered negligible as
imaging and clinical data comes from different sources. Bias due to measure-
ment errors should be considered and addressed in the experimental design
definition. Finally, the first assumption implies that the proposed approach
can only prove association and not cause-effect relationships.
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4. Linearity and additivity. The relation between dependent and independent
variables is required to be linear in the parameters β, therefore this assump-
tion requires the model covariates to be correctly specified. More importantly
it is required that the independent variables are additive, i.e. the amount
of change in Y associated with the increase of one predictor is independent
of the values of the other covariates. This latter assumption guarantees the
correct interpretation of the obtained regression coefficients, avoiding their
overestimation. In our context, non-additivity can be addressed by defining
interaction terms of the predictors. Moreover, when interpreting the derived
regression coefficients, this assumption highlights again that this approach
only shows the presence of associations and not cause-effect relationships.

5. Homoscedasticity. This assumption requires that the error variance σ is iden-
tical across observations. It can be tested by computing a heteroscedasticity
test such as the Breusch-Pagan (for linear heteroscedasticity) or the White’s
test (for non-linear heteroscedasticity). Heteroscedasticity causes too wide or
too narrow regression coefficient standard errors, giving too much weight to
certain subsets of the data when estimating the βs. Important sources of this
effect rely in physiological or artefactual effects that underlie the measure-
ments and they can be reduced by using either using weighted least squares,
log transformations of the data or heteroscedasticity-consistent robust stan-
dard errors.

If assumptions 1-4 are valid the estimation of the regression coefficients are
unbiased and consistent, and if 5 is also valid it becomes efficient.
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3 A study on the effect of the TFCE parameters E and H

The sensitivity of the proposed pipeline using different values of the TFCE pa-
rameters E and H were assessed using synthetic data. A 3D model showing no
correlation between WT and the posterior estimate of the allele frequency Xsnp

of a SNP (rs4288653) adjusted for age, gender, BSA and SBP was used to gener-
ate background noise. A synthetic data signal was generated by summing to the
WT values of each subject a term I β Xsnp at each vertex, where I is the signal
intensity and β is a map of regression coefficients. Three distinct β maps (signal
1, 2 and 3) obtained from real clinical data and characterized by non-null β
coefficients scaled to the (0,1] range were employed (Fig. ??). These covered the
25%, 50% and 75% of total area of the LV respectively were employed together
with three distinct values (0.2, 0.3, 0.4) of signal intensity I. For a given value
of the signal intensity I and of the spatial extension S of the synthetic signal,
five values of the parameter E and five values of the parameter H were employed
by the proposed framework to detect the synthetic signal generated (a total of
25 simulations for each (I,S) couple). The number of subjects N was fixed to
80, the number of permutations for each simulation to 5,000. Sensitivity results
were linearly interpolated and normalized for the maximum sensitivity obtained
for each (I,S) couple and plotted on the colour plots reported in Fig. 2.

Fig. 1. The three regression coefficient β maps (signal 1, 2 and 3) used to generate the
synthetic signal to be detected the method proposed in this paper with different values
of the TFCE parameters E and H.
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The first row of Fig. 2 shows the sensitivity results obtained at a fixed spa-
tial extension of the generated synthetic signal (S = 25%) and different signal
intensities I. It can be noticed how at higher signal intensities the framework
sensitivity increases and how on a small extended signal better sensitivity values
are obtained when H is higher than E. The second row of Fig. 2 shows the results
obtained at a same signal intensity I when increasing the spatial extension S of
the generated signal. In particular, in the bottom left figure it can be noticed
how the importance of the signal intensity I is still predominant, while with the
increase of the signal extension S the relative importance of the parameter E
increases. In all the studied cases, the false discovery rate of the framework was
always below the 5% and often equal to 0%, while the sensitivity was always
above 99%.
Overall, in this preliminary study the values of E = 0.5 and H = 2 suggested in
the TFCE original paper (Smith et al., 2009) by theoretical and empirical reasons
achieved good sensitivity values. However, the performance of other combina-
tions of E and H such as (E = 1, H = 3) show promise and will be investigated
in future work.

Fig. 2. Colour plots for the proposed framework sensitivity at different TFCE parame-
ters E and H and for different signal intensities I and signal extension S. In each graph
sensitivity values were normalized to the maximum sensitivity detected.
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4 A comparison between standard cluster-extent based
thresholding and TFCE

A comparison between the proposed framework using TFCE and the proposed
framework using a standard cluster-extend based thresholding was performed on
the same synthetic data used in the previous section. The latter procedure as
proposed in (Friston and others., 1994) has been implemented in the R package
developed for this work. This procedure consists of two steps. In the first one,
a cluster in a statistical map obtained by mass univariate regression is defined
as the group of connected vertices that have a t-statistic value greater than
a user-defined threshold hthr. Then, a second threshold hα is computed via
permutation testing as the 95th percentile of the distribution of largest cluster in
each permuted map and used to to declare significant the clusters in the original
statistical map that are more spatially extended than this threshold hα. Hence
this method depends on the user-defined initial cluster-forming threshold hthr.
For this reason, the sensitivity, specificity and FDR of the proposed approach
with TFCE parameters E = 0.5 and H = 2 were compared against the results
obtained by the same approach using cluster-extent based thresholding with five
distinct cluster-forming thresholds hthr (0.5, 1, 1.5, 2, 2.5) instead of TFCE on
the five distinct signals studied in the previous section (Fig. 2). The number of
subjects N was again fixed to 80, the number of permutations for each simulation
to 5,000 and the graphs obtained are reported in Fig. 3.
The sensitivity of the cluster-extent based thresholding method proved to be
very dependent on the cluster-forming threshold hthr and its choice had a large
impact on the results. Moreover, higher FDR and lower specificity characterised
cluster-extent based thresholding results when their sensitivity was comparable
or greater than TFCE. These results therefore favour the use of TFCE over
cluster-extent based thresholding as also proved in the brain image analysis
literature (Smith et al., 2009).
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Fig. 3. Sensitivity, specificity and the false discovery rate (FDR) of the proposed
pipeline using either cluster-extent based thresholding or TFCE at different cluster-
forming thresholds (thr). At the top of each set of graphs, the intensity I and the spatial
extension S of the generated synthetic signal is reported.
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5 GWAS replication supplementary data

Table 1 contains a summary of the covariates employed in the regression model
adopted fr GWAS replication. Table 2 reports the results of the linear regression
models used for conventional 2D association analysis between left ventricular
mass (LVM) and the posterior estimate of the allele frequency of one SNP ad-
justed for age, gender, body surface area (BSA) and systolic blood pressure
(SBP). Even without multiple testing correction, none of the models reached
significance.

Full Cohort (N = 1, 124) Males (N = 511) Females(N = 613)

Age [years] 43.4 ± 13.3 (19-77) 43.2 ± 13.0 (19-77) 43.5 ± 13.2 (20-77)
BSA [m2] 1.84 ± 0.2 1.98 ± 0.16 1.72 ± 0.14
SBP [mmHg] 119.3 ± 14 125.0 ± 12.7 114.65 ± 13.2

Table 1. A summary of the 1,124 Caucasian subjects of UK Digital Heart Project at
Imperial College cohort whose MRI scans has been used in this work.

beta p-value

rs409045 0.06 0.17
rs6450415 0.01 0.75
rs1833534 -0.05 0.43
rs6961069 -0.01 0.96
rs10499859 0.01 0.84
rs10483186 0.01 0.74

Table 2. Regression coefficients and their related p-values of the linear association
study between LVM and the posterior estimate of the allele frequency adjusted for age,
gender, body surface area (BSA) and systolic blood pressure (SBP) of the presented
GWAS replication study.
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6 Sensitivity, Specificity and False Discovery Rate on
Synthetic Data

The two regression coefficients (β) maps used to generate the synthetic data
employed in this experiment are reported in Fig. 4. Signal A covers the 10%
of the left ventricle and has coefficients scaled between 0 and 1, while signal B
covers the 60% of the left ventricle and has coefficients scaled between -1 and 0.
Fig. 5 reports the two maps obtained on signal A and B at different signal
intensities (I) and sample sizes (N) for the difference between the sensitivity
scored by the proposed pipeline using TFCE and the sensitivity scored by the
same pipeline without TFCE. The increase of sensitivity provided by TFCE was
higher for signal B due to its larger spatial extension as expected. The difference
of sensitivities converged to zero at high I and N as also the sensitivity of the
pipeline without TFCE reached 100% sensitivity.
Fig. 6 and Fig. 7 report the detected false discovery rate (FDR) and specificity of
the proposed pipeline with or without TFCE. In Fig. 6 the FDR of the proposed
pipeline was zero for all the simulated I and N, while it increased for the second
signal (signal B - covering the 60% of the ventricle) and exceeded 5% only for few
simulations having a sample size N greater than 1,600 (one example is reported
in Fig. 7). This effect is due to the large synthetic signal extension, which causes
TFCE to reward also the neighbour vertices around the true signal and it is not
considered an issue since it cannot cause to declare cluster arisen from noise to
be significant (as also shown in Fig. 6).
Overall, the application of TFCE provides a relevant increase in sensitivity which
only comes at the expenses of a little decrease of specificity on largely extended
signals.

Fig. 4. The two β maps used to generate the synthetic data for this experiment - signal
A (first row) and B (second row).
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Fig. 5. 2D maps showing the increase of sensitivity of the proposed pipeline when
TFCE is applied on two different synthetic signals (A and B) at different signal inten-
sities I and cohort dimensions (N).
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Fig. 6. Signal A. Rate of false discoveries and sensitivity of the proposed pipeline with
or without TFCE.

Fig. 7. Signal B. Rate of false discoveries and sensitivity of the proposed pipeline with
or without TFCE.
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