
 

 

 

 

SUPPLEMENTARY     MATERIAL 
 

for the manuscript: 

Abundance estimation and differential testing on strain level  

in metagenomics data 
 
 

Martina Fischer,* Benjamin Strauch, Bernhard Y. Renard  

Research Group Bioinformatics (NG 4), Robert Koch-Institute, Nordufer 20, 13353 Berlin, Germany  

 

 

 

 

    1. part:  Figures & Tables 

  2. part:  Data set  & model descriptions  



 

 

 

 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
 

Figures      &      Tables 

 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
  



Supplementary Figure 1:                       

(a) 

 

(b) 

 

       Supplementary Figure 1:  Impact of total number of input reads on (a) abundance estimates and (b) standard errors. We 
conducted a study applying different total numbers of input reads (exemplary for the ‘original’ simulation set 4): increasing 
the original number of input reads N (N =750.000 ) by the factor of 2, 4, and 6, corresponding to total amounts of 1.5, 3, 
and 4.5 million input reads for the set. We conducted comparisons of abundance estimates and standard errors computed 
on the ‘sets with increased read number’ against the results obtained by the ‘original’ set. It can be observed that the 
abundance estimates scale linear with the number of reads, whereas the standard errors scale quadratic. 



Supplementary Figure 2: 

 

 

 
 

 

Supplementary Figure 2:  Similarity matrix of the simulation data sets comprising 35 reference genomes (see list of taxa 
accession numbers in the subsequent section ‘Data Set description’). The heatmap visualizes all pairwise reference 
sequence similarities ranging from 0 to 100% similarity (visualized from pink to dark blue). The diagonal of the matrix refers 
to the proportion of simulated reads mapping back to their reference of origin. Different clusters of strains exhibiting high 
reference sequence similarities can be observed. Notably is the first big cluster of diverse Escherichia coli strains (bottom 
left), comprising two sub-strains which share 98% sequence similarity, two more distant E.coli strains, and further two 
Shigella strains known to be closely related to E.coli.  The second big cluster comprises four different strains of 
Bifidobacterium longum, followed by a cluster of Bifidobacterium bifidum, which expresses moderate similarities to the 
former. Further, various smaller clusters of strains are present. 

(Simulation Data – 35 Refs) 



Supplementary Figure 3:  

  
 

 
 

Supplementary Figure 3:  Similarity matrix of the simulation data sets comprising 55 reference genomes, exhibiting large 
similar strain clusters (see list of taxa accession numbers in the subsequent section ‘Data Set description’). The heatmap 
visualizes all pairwise reference sequence similarities ranging from 0 to 100% similarity (visualized from pink to dark blue). 
Additional strain and sub-strain sequences were added to the simulation set of 35 references to challenge the tools: a big 
cluster of overall 13 taxa of Escherichia coli strains containing three different sub-strain clusters with sequence similarities 
above 95%, mixed with diverse distant E.coli strains and closely related Shigella strains. Further, cluster of Bifidobacterium 
longum, Bifidobacterium bifidum, Bacteroides fragilis as wells as two different Streptococcus species cluster were largely 
extended to test the resolution performance of the tools within large and highly similar strain clusters.  

(Simulation Data – 55 Refs) 



Supplementary Figure 4: 

 

 

 

 

 

Supplementary Figure 4:   The FAMeS data comprises three different samples with abundance profiles according to low 
(LC), medium (MC) and high complexity (HC), a common classification in metagenomics. Thereby, a low complexity sample 
may represent a bioreactor community with one dominant among low abundant genomes, while medium complexity refers 
to a moderately complex community with few dominating taxa. High complexity samples are frequently characterized by no 
dominating taxa present or also by very long tails of low abundant taxa. 

 

 

 

 

 

 

  



Supplementary Figure 5: 

 

 

 

 

 

Supplementary Figure 5:   Accuracy of abundance estimates by DiTASiC for the FAMeS data sets. For all three samples of 
LC, MC, and HC, abundance estimates exhibit only tiny divergences from the ground truth. High accuracy is depicted by the 
points found on the diagonal. Hence, highly accurate abundance estimates of the considered 122 taxa are achieved across 
all three different abundance complexity profiles. 

 

 

 

 

  



Supplementary Figure 6: 

 

 

 

 

 

 

 

Supplementary Figure 6:   Accuracy of abundance estimates by DiTASiC for samples of the CAMI benchmark data set. For 
both samples, abundance estimates of the 255 taxa show high accuracy apart from very few outliers. High accuracy is 
depicted by points found on the diagonal. Notably, accurate estimates are also achieved for very low relative abundances 
below 0.01%. 

 

 

 

 

 

 

 

  



Supplementary Figure 7:  

 

 

 

Supplementary Figure 7:   Accuracy of abundance estimates by DiTASiC and kallisto for the Illumina 100 benchmark data 
set (i100) (Mende et al., 2012). The red line refers to the ground truth values and the points show the abundance estimates 
obtained by the corresponding tool. Overall, a high accuracy of abundance estimates is achieved for the 100 taxa by both 
tools across the entire abundance range. A bias in abundance estimation is observed for some strains of high sequence 
similarity, namely for the Escherichia coli sub-strains and for two Staphylococcus aureus strains. A more accurate 
abundance resolution of these strain clusters is obtained by DiTASiC in comparison to kallisto (also refer to Figure S 9C). 
Further, results of DiTASiC can be related to a recent benchmark study of different abundance profiling tools tested on the 
i100 data set by Schaffer et al. (2017): see second part ‘Data& Models’ at the end of this Supplemental Material. 

kallisto 



Supplementary Figure 8: 

(A) 

 

 (B) 

  
 
Supplementary Figure 8:  Accuracy of abundance estimates by DiTASiC and kallisto for (A) data set 10 and (B) data set 11 
of simulation group (3).  The red line refers to the ground truth values and the points show the abundance estimates 
obtained by the corresponding tools. 
(A) Set 10 serves to study the impact of absent strains from highly similar clusters (gray vertical line in the plot to mark the 
section of absent strains). Overall, highly accurate abundance estimates are obtained by DiTASiC. Hence an un-biased 
estimation of strains of the clusters affected by absent strains is achieved. kallisto exhibits difficulties with some strains of 

DiTASiC: Abundance Estimation (Simulation Set 10) kallisto: Abundance Estimation (Simulation Set 10) 

 

(Simulation Set 11) (Simulation Set 11) kallisto 



high sequence similarity, here concerning the Escherichia coli K12 sub-strain cluster and the Bifidobacterium longum strain 
group, causing a bias of abundance estimations and calling two of the absent strains abundant. 
(B) Set 11 focuses on the resolution of large and highly similar strain clusters, having all 55 taxa abundant in the data set 
(refer also to the matrix of reference similarities in Figure S3). Overall accurate abundance estimations are obtained and 
also an accurate resolution within the diverse strain clusters is achieved by DiTASiC. The large E.coli cluster causes some 
abundance biases for both tools, especially for the sub-strain sequences of sequence similarities above 95%.  Here, DiTASiC 
proves more accurate estimations and an overall better resolution within the considered cluster (see also Figure S 9A). 

 

  



Supplementary Figure 9:       
(A) 

 

Supplementary Figure 9 (B): see caption on page (14) 
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(Simulation Set 11) 
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Supplementary Figure 9 (C): see caption on page (14) 
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Supplementary Figure 9 (D): see caption on page (14) 

 

 

 

Supplementary Figure 9:  Accuracy of abundance resolution within strain clusters by DiTASiC and kallisto shown for 
different examples in the CAMI, i100 and simulation data (A-D). The ground truth abundance is displayed in yellow and 
the estimated abundances by the corresponding tools are overlayed with purple colour. 
 (A) The largest cluster in simulation set 11 comprises nine different Escherichia coli strains. Challenging is the resolution of 
the present sub-strains which share sequence similarities above 98%. DiTASiC enables a more accurate abundance 
resolution in comparison to kallisto. (B) An example of a Corynebacterium cluster in the CAMI set reveals a perfect 
resolution by DiTASiC, again, two of the strains are characterized by high sequence similarity. (C) An increased error in 
abundance estimation in the i100 data was shown in Fig S7 for the Escherichia coli sub-strains and for two Staphylococcus 
aureus strains. A more accurate abundance resolution of these strain clusters is obtained by DiTASiC. (D)  Here, we consider 
the six different simulations sets of group (2) focusing on the abundance estimates obtained for the 4 strains of the E.coli 
cluster (E. coli K-12 substr. DH10B , E. coli K-12 substr. MG1655, E.coli O7:K1 str. CE10, E.coli S88) (visualized only for group 

kallisto 



(2), as in group (1) not all strains of the E.coli cluster are abundant). The E.coli cluster consists of two sub-strains, which 
share 98% sequence similarity, and two more distant strains. DiTASiC enables a highly accurate abundance resolution of the 
entire strain cluster, as is shown by an almost perfect abundance estimation overlay in the plot across all samples. kallisto 
exhibits problems in the resolution of the two sub-strains, which is shown by a consistent abundance underestimation of E. 
coli K-12 substr. DH10B and abundance overestimation of E. coli K-12 substr. MG1655, while the two distant strains receive 
accurate estimations.  
Overall, it can be observed that a common error in the resolution of a strain cluster is an abundance interchange or 
equalization of abundances of similar sub-strains.  In the resolution by DiTASiC these errors are shown to be avoided.    



 

Supplementary Figure 10: 
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                  Taxa, shown in the plot according to the numbers: 
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Supplementary Figure 10:   Taxa abundance estimates exemplary for three simulation data set of various abundance 
profiles (a-c), presenting the different tools DiTASiC, GASiC and kallisto in comparison to the ground truth and observed 
mapping abundances. Mapping abundances are biased due to read ambiguities which causes overestimation or assignment 
of reads to absent taxa (absent taxa are marked with a circle around the taxa number). DiTASiC as well as kallisto exhibit 
highly accurate estimations and a clear improvement over GASiC. 



Supplementary Figure 11: 
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Supplementary Figure 11:   Robustness evaluation of (a) DiTASiC, (b) GASiC, and (c) kallisto, on two replicate samples 
from the simulation data (data set 4 and data set 5, respectively; taxa are numbered according to the list given in 
Supplementary Figure 7). DiTASiC and kallisto show an overall robust performance in abundance estimation of all 35 taxa in 
the replicates, and a significant improvement compared to GASiC. 
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Supplementary Figure 12:  

(A) 
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(B) 

 

 Supplementary Figure 12:   Impact of missing taxa in a reference set on the abundance estimation. The red line refers to 
the ground truth values, points refer to the abundance estimates obtained by the corresponding tool, while triangles mark 
absent taxa. Vertical lines are drawn to define sections of strain clusters. In this study, reads derived from 55 taxa are 
contrasted to a reduced reference set of 35 taxa to investigate the impact of missing taxa in a selected reference set. One 
consequence is that 11% of reads are not aligned and therefore are eliminated from the subsequent model calculations; 
second, the abundances estimated for some taxa are overestimated by the tools. However, a closer look reveals that it 
always concerns closely related strains which show an increased abundance due to missing strains within their cluster. 
However, no overall abundance bias is observed. Noticeable, while DiTASiC only exhibits abundance overestimations, 
kallisto also shows underestimation and overestimations within one cluster to compensate for missing taxa.  

kallisto 



Supplementary Table S1 

 

 

 Simulation Data  FAMeS Data (Pignatelli et al.) 
 

Sim 1 Sim 2 Sim 3 LC MC HC 
 # absent taxa (TN) 25 21 19   10 12 10 
# false-positives (FP) 0 0 0  0 0 0 
        
# present taxa (TP) 10 14 16   112 110 112 
# false-negatives (FN) 0 0 0  1 0 0 
        
Sensitivity 1 1 1  0.991 1 1 
Specificity 1 1 1  1 1 1 
 

 

Supplementary Table 1:   Detection of absent taxa. We tested the detection performance with different proportions of 
absent taxa included, namely in the simulation group (1) and the FAMeS data sets. In the simulation data of group (1) only 
28%, 40% and 45% taxa out of the 35 provided references are abundant in the data. Absolute numbers of absent and 
present taxa of each data set are reported in this table as well as absolute numbers of false-positive or false-negative 
detections. DiTASiC achieves exact detections, resulting in a sensitivity and specificity of 100%. The proportion of absent 
taxa in the FAMeS data refers to 8%, 9% and 8% based on the reference set of 122 taxa overall. A sensitivity and specificity 
of 100% is again reported for DiTASiC for the MC and HC data. In the LC set a reduced sensitivity is caused by one missed 
abundant taxon. 

 

 

 

 

 

 

 

  



Supplementary Figure 13: 

(a) 

 

(b) 

 

Supplementary Figure 13:   (a) Fold change accuracy achieved by DiTASiC in comparison to fold change accuracy obtained 
by STAMP in the CAMI data, and (b) differential abundance assessment using p-values by DiTASiC.  (a) Fold change 
estimates are proven to be highly accurate for DiTASiC with an SSE 19 times smaller compared to the STAMP output. This is 
depicted in the plots by fold change estimates found on the diagonal for DiTASiC, while many estimates are divergent from 
the diagonal in the plot by STAMP. (b) Computed p-values by the statistical framework in DiTASiC prove to clearly separate 
the spiked-in non-differential and differential taxa. Other taxa of the data set, holding fold change values greater than zero, 
also receive very small p-values stating differential abundance, but cannot be further confirmed here.  



Supplementary Table S2 

 

 

 

 

 

Supplementary Table 2:   SSE values of fold change accuracy obtained by DiTASiC in comparison to STAMP in different 
sample comparisons.  SSE values of DiTASiC are significantly smaller compared to the ones computed by STAMP, indicating 
the importance of read ambiguity resolution and integration of abundance estimate uncertainties for differential 
abundance analysis. 

 

 

 

 

 

 

 

  

Sample comparison DiTASiC  STAMP 

FAMeS:  LC vs. MC 0.0047 0.5089 
FAMeS:  LC vs. HC 0.0013 0.4992 
FAMeS:  MC vs. HC 0.0051 0.0986 

CAMI   :  S1 vs S2 25.07 476.91 
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Data Set Description 

1) Simulation Data: 
Nine data sets comprise 35 reference genomes from bacterial strains downloaded from NCBI, two additional data sets (set 
10,11) were extended by further strain and sub-strain sequences (total 55 reference genomes) to create a high strain cluster 
density. 
Each data set consists of 750,000 reads of 100bp length simulated by Mason (Holtgrewe, 2010), following Illumina read 
characteristics with default parameter settings. Reads are simulated according to the following abundance profiles. 
Mason parameters: 
- Total number of simulated reads: 750000  
- Read length: 100 bp 
- Replicate study Sim 4/5:  Default.seed = 2048 (Sim 4), seed = 22 (Sim 5)  

Taxa abundance list (1): 

 

 

 

 

Taxa Name GenBank 
accession number Ground Truth:  relative taxa abundance 

  Group (1) Group (2) 

  Sim 1 Sim 2 Sim 3 Sim 4 ~5 Sim 6 Sim 7 Sim 8 Sim 9 
Alistipes finegoldii DSM 17242 GCF_000265365.1 0.01 0.01 0 0.01 0.01 0.005 0.001 0.01 
Bacillus anthracis str. Sterne GCF_000008165.1 0.02 0.04 0.02 0.013 0.025 0.025 0.002 0.013 
Bacillus cereus ATCC 10987 GCA_000008005.1 0.3 0.2 0.15 0.005 0.005 0.009 0.003 0.005 
Bacillus cereus E33L GCA_000011625.1 0.2 0.25 0 0.015 0.01 0.01 0.008 0.019 
Bacteroides fragilis 638R GCA_000210835.1 0 0 0 0.01 0.01 0.15 0.004 0.005 
Bacteroides fragilis NCTC 9343 GCA_000025985.1 0 0.01 0.05 0.008 0.015 0.015 0.13 0.008 
Bacteroides thetaiotaomicron VPI-5482 GCA_000011065.1 0 0 0 0.02 0.02 0.01 0.17 0.02 
Bifidobacterium adolescentis ATCC 15703 GCA_000010425.1 0 0.02 0.02 0.003 0.009 0.009 0.009 0.003 
Bifidobacterium bifidum BGN4 GCA_000265095.1 0 0 0 0.006 0.006 0.002 0.002 0.006 
Bifidobacterium bifidum PRL2010 GCA_000165905.1 0.21 0.18 0.1 0.014 0.02 0.011 0.011 0.014 
Bifidobacterium bifidum S17 GCA_000164965.1 0 0.01 0 0.007 0.007 0.03 0.025 0.014 
Bifidobacterium longum BBMN68 GCA_000166315.1 0.14 0.14 0.05 0.15 0.008 0.008 0.008 0.15 
Bifidobacterium longum DJO10A GCA_000008945.1 0 0 0 0.02 0.02 0.003 0.02 0.02 
Bifidobacteriumlongum infantis 157F GCA_000196575.1 0 0 0.03 0.1 0.05 0.05 0.005 0.1 
Bifidobacterium longum infantis ATCC 
15697 

GCA_000020425.1 
0 0 0 0.01 0.01 0.014 0.006 0.02 

Bifidobacterium longum JCM 1217 GCA_000196555.1 0 0.01 0.01 0.007 0.03 0.03 0.007 0.007 
Clostridium phytofermentans ISDg GCA_000018685.1 0 0 0 0.015 0.015 0.015 0.015 0.015 
Clostridium saccharolyticum WM1 GCA_000144625.1 0.08 0 0.04 0.005 0.005 0.08 0.08 0.005 
Clostridium SY8519 GCA_000270305.1 0.02 0.02 0.21 0.01 0.004 0.004 0.008 0.01 
Escherichia coli K-12 substr. DH10B GCA_000019425.1 0 0 0 0.008 0.008 0.035 0.035 0.008 
Escherichia coli K-12 substr. MG1655 GCA_000005845.1 0 0 0 0.02 0.011 0.011 0.011 0.02 
Escherichia coli O7:K1 str. CE10 GCA_000227625.1 0 0 0.12 0.013 0.009 0.013 0.001 0.013 
Escherichia coli S88 GCA_000026285.1 0 0 0 0.006 0.006 0.006 0.11 0.006 
Eubacterium eligens ATCC 27750 GCA_000146185.1 0 0 0 0.02 0.015 0.015 0.01 0.02 
Eubacterium rectale ATCC 33656 GCA_000020605.1 0.01 0 0.04 0.007 0.007 0.012 0.012 0.017 
Odoribacter splanchnicus DSM 20712 GCA_000190535.1 0.01 0.03 0.05 0.13 0.007 0.007 0.007 0.13 
Pantoea ananatis PA13 GCA_000233595.1 0 0 0 0.04 0.04 0.04 0.016 0.04 
Roseburia hominis A2-183 GCA_000225345.1 0 0 0 0.015 0.015 0.026 0.003 0.015 
Shigella dysenteriae Sd197 GCA_000012005.1 0 0 0.02 0.003 0.022 0.022 0.13 0.003 
Shigella flexneri 2a str. 301 GCA_000006925.2 0 0 0 0.018 0.018 0.002 0.017 0.032 
Streptococcus salivarius 57.I GCA_000305335.1 0 0.03 0.08 0.03 0.1 0.005 0.018 0.03 
Streptococcus salivarius CCHSS3 GCA_000253335.1 0 0 0 0.009 0.18 0.18 0.009 0.009 
Streptococcus salivarius JIM8777 GCA_000253315.1 0 0 0 0.12 0.12 0.12 0.002 0.08 
Streptococcus suis D9 GCA_000231885.1 0 0.05 0.01 0.033 0.033 0.022 0.005 0.033 
Streptococcus suis ST3 GCA_000204625.1 0 0 0 0.1 0.13 0.004 0.1 0.1 



Taxa abundance list (2): 

Taxa Name GenBank 
accession number 

Ground Truth:  
relative taxa 
abundance 
Group (3):  
Sim 10 

Ground Truth:  
relative taxa 
abundance 
Group (3):  
Sim 11 

Alistipes_finegoldii_DSM_17242 GCF_000265365.1 0.01 0.0025 
Bacillus_anthracis_Sterne GCF_000008165.1 0.013 0.016 
Bacillus_cereus_ATCC_10987 GCA_000008005.1 0.005 0.001 
Bacillus_cereus_E33L GCA_000011625.1 0.015 0.033 
Bacteroides_fragilis_638R GCA_000210835.1 0.01 0.019 
Bacteroides_fragilis_NCTC_9343 GCA_000025985.1 0.008 0.011 
Bacteroides_fragilis_strain_BOB25 GCA_000965785.1 0 0.063 
Bacteroides_fragilis_YCH46 GCA_000009925.1 0 0.006 
Bacteroides_thetaiotaomicron_VPI_5482 GCA_000011065.1 0.008 0.002 
Bifidobacterium_adolescentis_ATCC_15703 GCA_000010425.1 0.02 0.01 
Bifidobacterium_bifidum_BGN4 GCA_000265095.1 0.003 0.015 
Bifidobacterium_bifidum_PRL2010 GCA_000165905.1 0.006 0.02 
Bifidobacterium_bifidum_S17 GCA_000164965.1 0.014 0.009 
Bifidobacterium_bifidum_ATCC_29521 GCA_001025135.1 0 0.006 
Bifidobacterium_longum_subsp_longum_44B GCA_000261265.1 0 0.018 
Bifidobacterium_longum_BBMN68 GCA_000166315.1 0.15 0.007 
Bifidobacterium_longum_DJO10A GCA_000008945.1 0.02 0.014 
Bifidobacterium_longum_infantis_157F GCA_000196575.1 0.1 0.021 
Bifidobacterium_longum_infantis_ATCC_15697 GCA_000020425.1 0.01 0.05 
Bifidobacterium_longum_JCM_1217 GCA_000196555.1 0.007 0.001 
Clostridium_phytofermentans_ISDg GCA_000018685.1 0.015 0.03 
Clostridium_saccharolyticum_WM1 GCA_000144625.1 0.005 0.015 
Clostridium_SY8519 GCA_000270305.1 0.01 0.005 
Clostridium_botulinum_A3_str_Loch_Maree GCA_000019545.1 0 0.004 
Clostridium_botulinum_B1_str_Okra GCA_000019305.1 0 0.023 
Clostridium_botulinum_B_str_Eklund_17B GCA_000307125.1 0 0.016 
Clostridium_cf_saccharolyticum_K10 GCA_000210535.1 0 0.005 
Escherichia_coli_K_12_substr__DH10B GCA_000019425.1 0.008 0.025 
Escherichia_coli_K_12_substr__MG1655 GCA_000005845.1 0.02 0.017 
Escherichia_coli_str_K_12_substr_MC4100 GCA_000499485.1 0 0.007 
Escherichia_coli_O7_K1_CE10 GCA_000227625.1 0.013 0.009 
Escherichia_coli_S88 GCA_000026285.1 0.006 0.04 
Escherichia_coli_O104_H4_str_2011C_3493 GCA_000299455.1 0 0.013 
Escherichia_coli_O127_H6_str._E2348_69_substr._CVDNalr_genomic GCA_000442065.2 0 0.022 
Escherichia_coli_O127_H6_str._E2348_69_substr._UMD753_genomic GCA_000442085.2 0 0.01 
Escherichia_coli_O83_H1_str_NRG_857C GCA_000183345.1 0 0.003 
Eubacterium_eligens_ATCC_27750 GCA_000146185.1 0.02 0.11 
Eubacterium_rectale_ATCC_33656 GCA_000020605.1 0.007 0.012 
Odoribacter_splanchnicus_DSM_20712 GCA_000190535.1 0.13 0.014 
Pantoea_ananatis_PA13 GCA_000233595.1 0.04 0.008 
Roseburia_hominis_A2_183 GCA_000225345.1 0.015 0.0014 
Shigella_dysenteriae_Sd197 GCA_000012005.1 0.003 0.0035 
Shigella_dysenteriae_1617 GCA_000497505.1 0 0.0144 
Shigella_flexneri_5_str_8401 GCA_000013585.1 0 0.0095 
Shigella_flexneri_2a_301 GCA_000006925.2 0.018 0.001 
Streptococcus_salivarius_57_I GCA_000305335.1 0.03 0.0065 
Streptococcus_salivarius_CCHSS3 GCA_000253335.1 0.009 0.045 
Streptococcus_salivarius_JIM8777 GCA_000253315.1 0.12 0.016 
Streptococcus_salivarius_strain_HSISS4 GCA_000448685.2 0 0.012 
Streptococcus_salivarius_strain_NCTC_8618 GCA_000785515.1 0 0.0042 
Streptococcus_suis_D9 GCA_000231885.1 0.033 0.0015 
Streptococcus_suis_ST3 GCA_000204625.1 0.1 0.0085 
Streptococcus_suis_05HAS68 GCA_000168355.3 0 0.082 
Streptococcus_suis_JS14 GCA_000186405.1 0 0.012 
Streptococcus_suis_T15 GCA_000494895.1 0 0.07 
 



 

2) CAMI Data set: 

Within the CAMI challenge (https://data.cami-challenge.org) (Sczyrba et al., 2017), we selected a benchmark data set of 

medium complexity, which is provided for testing tools, with a ground truth of taxa proportions being available (‘2. Toy Test 

Dataset Medium_Complexity’). It comprises two 15 gb samples each holding about 150 million paired-end reads of 100 bp 

length based on HiSeq sequencing. A total of 225 bacterial and archaea genomes are present in both samples. Different 

clusters of strains with high sequence similarities are present within the 128 genera and 199 species. The relative abundances 

of the taxa range from 0.00009% to 8% in a medium complexity environment with median values of 0.1% and 0.08% for the 

samples, respectively. Comparison of the two samples yields taxa fold changes with a large span from 0.0009 to 1024. 

However, no ground truth is given for differential abundance classification and only fold change accuracy can be evaluated.  

Therefore we extend the data set by simulating spike-in data: we selected 30 new strains from genera already present in the 

original set. A total of 20 million reads per sample are simulated from the new references based on a defined abundance 

given for each sample. Simulations are conducted using Mason (Holtgrewe, 2010), with error profiles matching the original 

reads, and are subsequently merged with the original set. Abundances of the added taxa are defined such that a ground truth 

of 15 differential and 15 non-differential events is created for additional differential assessment.  

Mason parameters: 
- Total number of simulated reads: N.sim = 20,000,000 
- Read length: 100 bp 
- Seed: 22 
- Mismatch probability (begin): 0.005 
- Mismatch probability (avrg):   0.01 
- Mismatch probability (end):    0.03 
* Mismatch probabilities are assessed by a pre-processing script which conducts a quick read-subset mapping for an approximate mismatch 
inference (refer to DiTASiC manual) 

Merge ‘simulated set’ with ‘original set’: 
Total number of reads (original CAMI set):  N.org = 149,136,946 
Factor =  N.org / (N.org ~ N.sim) = 0.882   
 Relative abundance values (ground truth) of original CAMI reads are normalized by Factor 
 Relative abundance values (ground truth) for simulated reads created to sum up to (1-Factor) = 0.118 

 

Taxa abundance list of the simulated 30 taxa (spiked into original CAMI set): 

GenBank accession 
number 

Ground Truth:  relative taxa abundance 
for sample 1 ~ 2 

    

 Set 1 
Set 1 –  

normalized values for 
Mason Simulation 

Set 2 
Set 2 –  

normalized values for 
Mason Simulation 

GCA_900094705.1 0.005 0.04237288 0.005 0.04237288 
GCF_000020965.1 0.01 0.08474576 0.005 0.04237288 
GCF_000222305.1 0.0072 0.061016947 0.0072 0.061016947 
GCF_000333455.1 0.003 0.025423728 0.0045 0.038135592 
GCF_000385945.1 0.0015 0.012711864 0.0015 0.012711864 
GCF_000428765.1 0.004 0.033898304 0.0023 0.019491525 
GCF_000429685.1 0.013 0.110169488 0.013 0.110169488 
GCF_000463735.1 0.003 0.025423728 0.0017 0.014406779 
GCF_000470655.1 0.0055 0.046610168 0.0055 0.046610168 
GCF_000471625.1 0.002 0.016949152 0.0048 0.040677965 
GCF_000585495.1 0.0082 0.069491523 0.0082 0.069491523 
GCF_000716525.1 0.001 0.008474576 0.0028 0.023728813 
GCF_000817975.1 0.004 0.033898304 0.004 0.033898304 
GCF_001298525.1 0.0033 0.027966101 0.0063 0.053389829 
GCF_001402715.1 0.002 0.016949152 0.002 0.016949152 
GCF_001418395.1 0.0066 0.055932202 0.003 0.025423728 

https://data.cami-challenge.org/


GCF_001418715.1 0.004 0.033898304 0.004 0.033898304 
GCF_001484195.1 0.0024 0.020338982 0.005 0.04237288 
GCF_001485005.1 0.0015 0.012711864 0.0015 0.012711864 
GCF_001514055.1 0.012 0.101694912 0.002 0.016949152 
GCF_001514495.1 0.0044 0.037288134 0.0044 0.037288134 
GCF_001544695.1 0.001 0.008474576 0.0027 0.022881355 
GCF_001546055.1 0.003 0.025423728 0.003 0.025423728 
GCF_001591345.1 0.0025 0.02118644 0.004 0.033898304 
GCF_001591385.1 0.0013 0.011016949 0.0013 0.011016949 
GCF_001592205.1 0.002 0.016949152 0.0015 0.012711864 
GCF_001606025.1 0.0017 0.014406779 0.0017 0.014406779 
GCF_001636425.1 0.0007 0.005932203 0.0023 0.019491525 
GCF_001720585.1 0.001 0.008474576 0.0066 0.055932202 
GCF_900044055.2 0.0012 0.010169523 0.0012 0.010169523 

Sum: 0.118 1 0.118 1 
 

 

 

 

3) Illumina 100 (i100) data set by Mende et al. (2012): 

We applied the i100 benchmark data set provided in the publication by Mende et al., consisting of a total of 53.33 million 
single reads (~26.6 million paired reads) of 75 bp length following Illumina read characteristics. The reads are derived from 
100 unique bacterial genomes and were originally simulated by the iMESSi metagenomics simulator. 

Reads: 
According to the publication, we retrieved the paired read sample ‘illumina_100species.1.fq’ and ‘‘illumina_100species.2.fq’ 
from the link: http://www.bork.embl.de/~mende/simulated_data/ 

Reference sequences: 
We refer to Table2 (Genomes Used in the Medium Complexity Metagenome and Estimated Coverage (100 genomes)) of the 
Supplementary Material of Mende et al. As stated in their description, the dataset includes all chromosomes of the genomes 
as well as all plasmids. Chromosome and additional plasmids sequences were retrieved according to the provided accessions 
for the i100 data available from http://www.bork.embl.de/~mende/simulated_data/bacterial_data.txt. 

Ground Truth of Abundance Proportions: 
We refer to a slightly corrected version of the i100 ground truth table provided by Schaeffer et al. (2017), named 
‘i100_truth.csv’ available from https://github.com/pachterlab/metakallisto. The table follows the format species, abundance, 
counts, and genome size. Thereby, ‘counts’ corresponds to the column ‘Est_proportion of total sequence’ of the table by 
Mende et al. with minor corrections. The given ‘counts’ are used as ground truth ( named GT.counts). 

DiTASiC calculation 
parameters used for the matrix calculation (default settings), defined parameters: 
- Read length: 75 bp 
- Mismatch probability (begin): 0.007 
- Mismatch probability (avrg):   0.013 
- Mismatch probability (end):    0.036 
* Mismatch probabilities are assessed by a pre-processing script which conducts a quick read-subset mapping for an approximate mismatch 
inference (refer to DiTASiC manual) 
Note: DiTASiC uses the reads as single end reads 

kallisto calculation 
kallisto quant command, only parameter: - l 75 (length) 
Note: kallisto is run in paired end read mode  

 

 

http://www.bork.embl.de/%7Emende/simulated_data/
http://www.bork.embl.de/%7Emende/simulated_data/bacterial_data.txt
https://github.com/pachterlab/metakallisto


 

Evaluation 
 

Parameter outputs kallisto (paired mode) DiTASiC (single mode) 

n  (number of taxa (exact genome level)) 100 100 

T  (number of reads processed;  
     see also in .json output file of kallisto) 

26667004 53334008 

A  (number of aligned reads) 26202326 46516552 

μ   (true absolute counts, ground truth GT) ‘GT.counts’ 
(see description above, 
sum(GT.counts) = T ) 

[GT.counts / sum (GT.counts)] * T 
 
(scaled for the number of single reads) 

t   (absolute count estimate) kallisto count estimates DiTASiC count estimates 
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Evaluation values computed: 

 Exact Genome  level 
 AVGRE RRMSE SSE 

DiTASiC 0.86 2.19 8.23 e-06 

kallisto (reproduced) 1.09 * 5.38 * 5.62 e-05 
 

 
Compare to Table 1 provided in the publication by Schaeffer et al.: 

 Exact Genome  level 
 AVGRE RRMSE 

kallisto 0.97 * 5.42 * 
Bracken - - 
CLARK - - 
GASiC 7.21 19.31 
eXpress 2.57 11.92 
-  CLARK and Bracken results are reported by Schaeffer et al. to be missing as “they do not output strain level counts.” 

* Evaluation values of kallisto reproduced in our computed i100 study and evaluation values given by Schaeffer et al. are 
shown to be very similar. The minor value differences observed might be explained by minor changes in reference 
sequences of new or older versions available in NCBI.  (NCBI download of this study: 03/15/2017)  



 

Evaluation of overdispersion in the GLM models: 

In this manuscript, we focus on the bias of abundance estimates of individual taxa within one sample occurring due to 
highly similar genome sequences present. The generalized linear model (GLM) model aims to reduce this bias by resolving 
the shared read counts. Generalized linear models provide a flexible system which allows for different distribution models. 
Our proposed GLM is based on an identity link function, and the corresponding error in the model is assumed to follow a 
poisson distribution: one rationale is the discrete count setting and second is the assumption that after the correction for 
read ambiguities the bias should not exceed the variance of a poisson distribution.  
The latter assumption is constantly reviewed by applying a ‘Dispersion test’ to the computed GLM model. The test is part of 
the R-package ‘AER’ and “tests the null hypothesis of equidispersion in Poisson GLMs against the alternative of 
overdispersion and/or underdispersion” (Cameron, A.C. and Trivedi, P.K. (1990). Regression-based Tests for Overdispersion 
in the Poisson Model. Journal of Econometrics). 
We applied the test to all 17 models computed for the simulation data sets, the Pignatelli data sets, the i100 data and the 
CAMI sets: 
In all cases, the null hypothesis holds using an alpha level of 0.05 and showing p-values of 1, no overdispersion is reported 
for the data sets considered. 
The dispersion test is integrated in the code. If the test indicates overdispersion, the GLM model will be re-calculated using 
an identity link function and a ‘quasipoisson’ error term which enables modelling of overdispersion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


