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A Supplementary Methods

A.1 Sequential Importance Sampling

Importance sampling functions well when the number of vertices in the tree
k and the number of samples m are low. However, the number of dimensions
we are sampling from for F increases with k ·m. Thus, in the presence of
noise, sometimes, for all samples F̄ , TF̄ is empty, and thus the calculated
posterior probability of all trees is 0. This occurs when the largest tree that
F̄ admits, TF̄ has less than k nodes, |V (TF̄ )| < k. However, some of these
samples may in fact be near another value F̄ ′ ≈ F̄ such that there exists a
(T, π) for which F̄ ′ respects the Sum Condition. As the number of nodes
in the largest tree admitted by samples increases, we would expect we are
nearing such a value.

We generalize importance sampling to use multiple proposal distribu-
tions, Q1, . . . ,QN , where Qi is the distribution used at step i. As the
estimate obtained from each distribution Qi is an unbiased estimator of∫

P(X)dX, the mean is of these values is also an unbiased estimator.

∫
P(X)dX ≈ 1

N

N∑

i=1

P(X̄i)

Qi(X̄i)
. (1)

As such, we propose an MCMC inspired multiple-importance sampling ap-
proach. Q0 is the proposal distribution supplied by SciClone in Section 2.3.1.
Let Beta(F̄ ,Σ) be the beta distribution with the values F̄ as the means, and
matrix Σ as the variances. At step i+ 1,

1. let Qi+1 = Beta(F̄i) if |V (TF̄i
)| > |V (TF̄i−1

)| or with probability

p = min

(
Pr(A = A | D = D,F = F̄ (i))

Pr(A = A | D = D,F = F̄ (i))
, 1

)
.

2. Let Qi+1 = Q0 with probability ε.

3. Else Qi+1 = Qi

This approach uses information from previous samples to find samples which
may have finite probability. Unlike Markov Chain Monte Carlo (MCMC),
this approach is able to use information outside of model likelihood, i.e. the
unconstrained clustering information and the tree size, to guide sampling.

A.2 Comparison to Other Models
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(b) A mixture model for binomial
observations with a variable num-
ber of clusters (e.g. PyClone). G
is a discrete distribution generated
by a Dirichlet Process. F̃ is a n×m
matrix, corresponding to an assign-
ment of vector of frequencies (one
per sample) to each mutation. All
mutations with the same frequencies
belong to the same cluster. Thus F̃
corresponds to both F and C from
parts (a) and (b).
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(c) An infinite mixture model with
a tree constraint (e.g. PhyloSub).
Instead of a Dirichlet Process, G
is generated from a tree-structured
stick breaking prior. This process
generates frequencies F̃ that are
consistent with a tree constraint.

Figure 1: Comparison of models for mixtures with binomial obser-
vations.
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B Supplementary Results

B.1 Simulated Data Generation

In Section 3.1, we evaluate PASTRI, AncesTree, PhyloSub and Canopy
on simulated trees. Here, we generated trees with k = 3, 4, 5, n = 20,
m = 5, and sequencing read depth r = 200. For each set of parameters,
(k,m, n, r), 50 simulated instances were generated. Model parameters T ,
F , and C are generated according to the model presented in Section 2.1,
with hyperparameters ω, γ, µ set such that the generating distributions are
uniform. The observed data is generated as di,p ∼ Poisson(λ = r) and
ai,p ∼ Binomial(di,p, fcj ).

AncesTree, PhyloSub and Canopy were run with default parameters.
Input for AncesTree was created using the clustering produced by SciClone.
The observed read depths Â and D̂ were assigned as followed for cluster i
in sample p,

ai,p =
∑

`;c`=i

a`p di,p =
∑

`;c`=i

d`p . (2)

PASTRI was run with 10, 000 iterations, using sequential importance
sampling, with ε = 10−3.

B.2 Additional Simulation Results from Section 3.1
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Figure 2: Runtime.
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Figure 3: Accuracy in recovering correct ancestral relationships.

B.3 Real Data Results

PASTRI was run as described in Supplementary Section B.1. The data log-
likelihood was calculated as the logarithm of Equation 7. The PhyloSub
model log-likelihood additionally allows for reads to contain sequencing er-
ror. Thus, they have a probability µr of observing a reference allele from
a variant population and probability µv of observing a reference allele from
the reference population. Thus, instead of the Binomial term, we have

Binomial

(
aj,p |

1

2
fcj ,p, dj,p

)
,

we have

Binomial
(
aj,p | fcj ,p(1− µv) + (1− fcj ,p)(1− µr), dj,p

)
.

Given the 0.001 sequencing error for illumina data, we used µr = 0.999 and
µv = 0.499.

Figure 5 contains the results of running AncesTree on the same data.
SciClone found 8 clusters of mutations. AncesTree was not able to construct
a tree containing all 8 clusters. The largest tree it was able to reconstruct
contained 6 clusters, and 18/20 mutations.

5



0.0 0.1 0.2 0.3 0.4 0.5

Metric 1

PASTRI

PhyloSub

Canopy

0.0 0.1 0.2 0.3 0.4 0.5

Metric 2

PASTRI

PhyloSub

Canopy

(a) 3 nodes

0.0 0.1 0.2 0.3 0.4 0.5

Metric 1

PASTRI

PhyloSub

Canopy

0.0 0.1 0.2 0.3 0.4 0.5

Metric 2

PASTRI

PhyloSub

Canopy

(b) 4 nodes

Figure 4: Accuracy in recovering true cluster frequencies.
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Optimal tree found by AncesTree 

FAT =

2
6666664

0.98 0.94 0.94
0.22 0.22 0.30
0.10 0.16 0.00
0.58 0.42 0.50
0.66 0.56 0.61
0.05 0.16 0.28

3
7777775

Tree	contains:	
	6/8	Clusters	
	18/20	Muta7ons	

Figure 5: AncesTree results on CLL patient 5. AncesTree was not able
to construct a tree containing all 8 clusters. The largest tree it was able to
reconstruct contained 6 clusters, and 18/20 mutations.

7


