
Supplementary	Note:		

Quick-start:	running	TIminer	pipeline	on	mock	example	files	

	
After	installation,	the	full	pipeline	can	be	easily	run	on	mock	example	files	provided	together	with	the	TIminer	
package.		
	
The	pipeline	can	be	run	from	the	TIminer	‘script’	directory	by	executing	the	following	command:	
	
python TIminerPipeline.py --input ../samples/inputInfo.txt --out 
../samples/out 
	
Alternatively,	the	mock	example	files	can	be	analyzed	through	a	graphical	user	interface	(GUI).	The	GUI	can	be	
started	by	executing	from	the	TIminer	‘script’	directory	the	following	command:	
	
python TIminerUI.py  
	
Once	the	GUI	is	started	(Supplementary	Figure	S1),	the	pipeline	can	be	run	on	the	examples	files	through	three	
simple	steps:	

1. Click	the	“Load	Examples”	button;	
2. Specify	the	path	to	the	“Output	directory”;	
3. Click	the	“Run”	button.	

	
The	TIminer	pipeline	generates	several	output	files.	We	refer	the	reader	to	TIminer	online	documentation	for	a	
full	description	of	the	output	files	(http://icbi.i-med.ac.at/software/timiner/doc/index.html#output-files),	and	
discuss	in	the	following	the	interpretation	of	the	major	results	obtained	from	the	mock	examples	that	describe	
tumor-immune	cell	interactions.	
	

• HLA	typing.	Optitype	predicted	heterozygous	HLA	alleles	for	the	HLA-A	gene	(HLA-A31:01	and	HLA-
A26:01)	and	homozygous	alleles	for	the	HLA-B	and	HLA-C	genes	(HLA-B38:01	and	HLA-C12:03,	
respectively).	

	
• Gene	set	enrichment.	From	Gene	Set	Enrichment	Analysis	(GSEA)	results	we	can	see	that	activated	

CD4+	T	cells	(ACT_CD4)	are	significantly	enriched	at	a	false-discovery	rate	of	5%	(NES=2.99,	q-
value=0.00<0.05).	Contrariwise,	the	enrichment	of	effector	memory	CD8+	T	cells	(TEM_CD8)	is	not	
significant	(NES=1.35,	q-value=0.19>0.05).	Activated	B	cells	(ACT_B_CELL)	are	instead	depleted,	as	
their	NES	score	is	negative	(NES=-2.32,	q-value=0.01).	

	
• Immunophenoscore.	From	the	immunophenoscore	plot	(Supplementary	Figure	S2)	we	can	see	that	

HLA-related	genes	are	strongly	up-regulated	(top-left	outer	sector,	in	dark	red),	while	genes	related	to	
both	effector	immune	cells	(EC,	top-right	sector)	and	suppressive	immune	cells	(SC,	bottom-right	
sector)	are	slightly	up-regulated.	Most	of	the	checkpoints	molecules	(CP)	with	immunoinhibitory	
effects	(identified	by	the	“-“	sign)	are	down-regulated,	while	co-stimulators	(“+”	sign)	are	both	up-	
(CD27)	and	down-regulated	(ICOS).	Taken	all	together,	these	positive	and	negative	contributions	can	
be	summarized	in	an	immunophenoscore	of	10	(on	a	[0-10]	scale),	representing	a	good	
immunophenotype,	i.e.	a	tumor	which	is	likely	to	elicit	an	effective	immune	response.	

	
• Neoantigens.	The	expressed	neoantigens	consist	of	seven	mutated	peptides	arising	from	two	genes:	

NCOA6	and	TP53.	The	original	pool	of	mutated	peptides	comprised	eight	peptides	from	three	genes,	
but	one	of	them	was	not	expressed	(TP53TG3D).	Among	the	expressed	neoantigens,	the	MNRRPILTI	
peptide,	arising	from	an	R>G	missense	mutation	in	TP53,	was	predicted	to	bind	to	HLA-C12:03	with	
high	affinity	(407.5	nM),	whereas	a	lower	affinity	was	predicted	for	its	wild-type	version	MNRGPILTI	
(1059.7	nM).	

	
	
	
	



Advanced	filtering	

The	TIminer	function	filterNeoantigenDir (or	filterNeoantigenFile	for	single-subject	analysis)	
selects	neoantigens	that	arise	from	expressed	genes,	which	are	identified	from	the	files	of	transcripts-per-
millions	(TPM)	generated	by	Kallisto	(Bray	et	al.,	2016)	(see	Figure	1	in	the	main	text).	Alternatively,	an	
advanced	filtering	scheme	implemented	in	the	sensitiveFilterNeoantigenDir	function	(or	
sensitiveFilterNeoantigenFile	for	single-subject	analysis)	can	be	selected	(Supplementary	Figure	
S3).	This	function	performs	sensitive	mapping	of	the	RNA-seq	reads	with	HiSat2	(Kim	et	al.,	2015)	and	then	
calculates	the	coverage	of	each	mutation	from	with	ASEReadCounts	function	from	the	Genome	Analysis	Toolkit	
(McKenna	et	al.,	2010).	Finally,	from	the	list	of	binding	mutated	peptides	identified	by	NetMHCpan	(Nielsen	
and	Andreatta,	2016),	those	arising	from	mutations	with	an	RNA-seq	read	coverage	≥5	are	selected	(default	
value	which	can	be	modified	with	the	countThresh	parameter).	

The	sensitive	filtering	can	be	activated	in	the	TIminer	pipeline	by	specifying	the	--sensitiveFiltering	
parameter:	

python TIminerPipeline.py --input INPUT --out OUT --sensitiveFiltering 

Please	note	that	this	option,	with	respect	to	the	default	filtering	scheme,	is	more	computationally	demanding.	 	



Supplementary	Figure	S1.	TIminer	graphical	user	interface	(GUI).	
	

	
	



Supplementary	Figure	S2.	The	 immunophenogram	obtained	 from	the	mock	example	data.	The	outer	sectors	
represent	 the	 z-scored	 expression	 of	 the	 genes	 or	 immune	 cell	 types	 determining	 tumor	 immunogenicity,	
together	with	their	weight	(either	positive	“+”	or	negative	“-“);	gene	z-scores	are	averaged	for	cell	types.	The	
immune	cell	 types	are:	activated	CD4+	or	CD8+	T	cells	 (Act	CD4	or	Act	CD8),	effector	memory	CD4+	or	CD8+	T	
cells	 (Tem	CD4	or	Tem	CD8),	central	memory	CD4+	or	CD8+	T	cells	 (Tcm	CD4	or	Tcm	CD8),	 regulatory	CD4+	T	
cells	(Treg),	and	myeloid-derived	suppressor	cells	(MDSC).	The	inner	sectors	summarize	the	z-scores	into	four	
scores,	 one	 for	 each	major	 determinant	 of	 tumor	 immunogenicity:	 genes	 related	 to	 antigen	 processing	 and	
presentation	(MHC),	checkpoints	molecules	and	immunomodulators	(CP),	effector	T-cells	(EC),	and	suppressive	
immune	 cells	 (SC).	 The	 immunophenoscore	 (IPS)	 is	 an	 aggregated	 score	 representing	 the	 overall	 tumor	
immunogenicity	on	an	arbitrary	scale	from	0	to	10.		

	

	
	
	
	
	 	



Supplementary	Figure	S3.	Scheme	of	the	TIminer	pipeline	with	sensitive	filtering	of	neoantigens,	which	filters	
the	list	of	binding	mutated	peptides	identified	by	NetMHCpan	(Nielsen	and	Andreatta,	2016)	considering	only	
the	expressed	mutations.	Expressed	mutations	are	identified	through	a	two-step	procedure:	(i)	sensitive	re-
alignment	of	RNA-seq	reads	with	HiSat2	(Kim	et	al.,	2015);	and	(ii)	computation	of	RNA-seq-read	coverage	of	
the	somatic	mutations	with	the	Genome	Analysis	Toolkit	(GATK)(McKenna	et	al.,	2010).		
	
	

	
	
	 	



Supplementary Table S1. Standalone, computational pipelines for class-I neoantigen prediction available 
in the literature. 
 

Method	 Predictions	 URL	 Ref	

	
FRED	2	

	
Mutated	peptide	(from	SNPs	and	indels),	
HLA	typing,	proteasomal	cleavage,	TAP	
transport,	peptide-HLA	binding	affinity,	
peptide	prioritization,	and	vaccine	
design	
 

	
http://fred-2.github.io	
		

	
(Schubert	et	
al.,	2016)	

INTEGRATE-neo	 HLA	typing,	mutated	peptide	(from	gene	
fusions),	peptide-HLA	binding	affinity	
	

https://github.com/ChrisMa
herLab/INTEGRATE-Neo	
	

(Zhang	et	al.,	
2017)	

	
MuPeXI	 Mutated	peptide	(from	SNPs,	frameshift	

mutations,	and	indels),	peptide-HLA	
binding	affinity,	peptide	prioritization	
considering	also	gene	expression,	allele	
frequency,	and	protein	self-dissimilarity	
	

http://www.cbs.dtu.dk/servi
ces/MuPeXI/		

(Bjerregaard	
et	al.,	2017)	

NetCTL	 Proteasomal	cleavage,	TAP	transport,	
peptide-HLA	binding	affinity,	and	
combined	score	for	peptide	
prioritization	
	

http://www.cbs.dtu.dk/servi
ces/NetCTL	

(Larsen	et	
al.,	2007)	

NetEpi	 Peptide-HLA	binding	affinity	and	
stability,	T-cell	propensity,	and	
combined	score	for	peptide	
prioritization	
	

http://www.cbs.dtu.dk/servi
ces/NetTepi	
	

(Trolle	and	
Nielsen,	
2014)	

	
	

pVAC-seq	 Mutated	peptide	(from	SNPs),	peptide-
HLA	binding	affinity,	and	peptide	
prioritization	considering	also	NGS	read	
coverage	and	gene	expression	
	

http://github.com/griffithla
b/pVAC-Seq	

(Hundal	et	
al.,	2016)	

 
HLA: human leukocyte antigen; indel: insertion or deletion; NGS: next-generation sequencing; SNP: single-
nucleotide polymorphism; TAP: transporter associated with antigen processing.  
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