
1

SMLocalizer user manual

Version 2.0

2017 – Kristoffer Bernhem, Hjalmar Brismar

2

1 CONTENTS

2 Setup .. 3

2.1 Requirments..................................... 3

2.1.1 ImageJ 3

2.1.2 OS and hardware requirements 3

2.1.3 GPU acceleration 3

2.2 Installing SMLocalizer 4

3 Processing SMLM data 5

3.1 Processing .. 5

3.2 Loading images and settings 5

3.3 Calibration 6

3.4 Background correction 7

3.5 Fitting .. 8

3.5.1 Modality selection 9

3.5.2 Image pixel size 9

3.5.3 Total gain 9

3.5.4 Minimal signal 9

3.6 Parameter selection 10

3.6.1 Clean table 10

3.6.2 Photon count 10

3.6.3 Sigma x y 11

3.6.4 R^2 .. 11

3.6.5 Precision x y 11

3.6.6 Precision z 11

3.6.7 Frame 11

3.6.8 Z .. 11

3.7 Drift correction and channel

alignment ... 11

3.7.1 Max drift 12

3.7.2 Number of bins 12

3.8 Image rendering 13

3.9 Cluster analysis 13

3.10 Multichannel images 14

3.11 Parallel vs GPU computation 14

3.12 Subsequent analysis in Matlab 14

4 Tutorial – SMLM challenge 16

4.1 2D ... 16

4.2 3D Double Helix 19

4.2.1 Calibration 19

4.3 Mitofilin PRILM 24

4.4 2D Gold bead tutorial – Drift

correction .. 27

5 Architecture and algorithms 28

5.1 Background correction 28

5.1.1 Static events removal 28

5.1.2 Shot noise 28

5.2 Fitting .. 29

5.2.1 2D fitting 29

5.2.2 3D fitting 30

5.2.3 Z precision estimate for PRILM

and double helix 35

5.3 Drift correction and channel

alignment .. 36

5.4 Image rendering 36

5.5 Cluster analysis 36

6 References ... 37

3

2 SETUP

2.1 REQUIRMENTS

2.1.1 ImageJ

SMLocalizer require ImageJ2.01 (http://imagej.net/) or Fiji2 (https://fiji.sc/) to function. SMLocalizer

will require writing privileges to the preference file ImageJ or Fiji.

2.1.2 OS and hardware requirements

SMLocalizer will run on any system capable of running ImageJ or Fiji. At time of writing this includes

(taken from http://imagej.net/Downloads) :

ImageJ will run on any system that has a Java 8 (or later) runtime installed. This includes, but is not

limited to:

1. Windows XP, Vista, 7 or 8 with Java installed from java.com

2. Mac OS X 10.8 "Mountain Lion" or later with Java installed from java.com

3. Ubuntu Linux 12.04 LTS or later with OpenJDK 8 installed

SMLM images are typically large, as such, SMLocalizer requires that the java heap space memory be

set high enough for the files the user intends to load. Typical values should be 3x the raw data file size.

Java heap space memory is set in /Edit/Options/Memory & Threads.

2.1.3 GPU acceleration

SMLocalizer by default runs all processes on the system available CPU cores. If a compatible

NVIDIA card is available, the user can select to transfer functions to the GPU instead. For GPU

accelerated computation SMLocalizer 2.x.x requires a NVIDIA GeForce gtx970 or later graphics card.

Older version may work but none have been tested. The main limitation is memory available, with the

current code expecting 4 GB of memory available. Ensure that the latest drivers for the graphics card

are installed. For windows, timeout can be an issue for larger data files, this can be fixed through

changing the graphic device timeout to 10+ seconds, see http://answers.microsoft.com for details on

this.

The OS specific CUDA archives needs to be places in \plugins\jars directory of the main ImageJ

directory (or into \jars for Fiji). Download the Fiji or ImageJ specific .rar and extract it into the main

directory.

http://imagej.net/
https://fiji.sc/
http://imagej.net/Downloads
http://java.com/
http://java.com/
http://answers.microsoft.com/en-us/windows/forum/windows_7-performance/increase-time-out-limit/e979e2ad-e15f-450b-9818-a148cbf01078

4

2.2 INSTALLING SMLOCALIZER
In ImageJ or Fiji, go to the help menu and select Update (see fig 1). This will after a checking of your

current plugins take you to the updater window.

Select Manage update sites and Add update site. A new line will be added to the list of update sites

(see fig 2). Replace the name New with SMLocalizer and add the URL: http://sites.imagej.net/Cellular-

Biophysics-KTH/. ImageJ will now keep your SMLocalizer up to date.

Figure 2 Adding SMLocalizer to update sites

Figure 1 Fiji and ImageJ update.

http://sites.imagej.net/Cellular-Biophysics-KTH/
http://sites.imagej.net/Cellular-Biophysics-KTH/

5

3 PROCESSING SMLM DATA

The following section aim to explain the details required to properly use SMLocalizer. For a more

detailed description of the algorithms, see section 5.

As ImageJ does not have a clear way to display processing progress, the keys used for the different

algorithms will remain depressed whilst their respective algorithms are running.

3.1 PROCESSING
SMLocalizer can fit one-color 2D experiments without calibrations by:

1. Loading the data set into ImageJ.

2. Run SMLocalizer from /plugins/ menu.

3. Setting the correct image pixel size.

4. Setting the correct total gain. This value is camera manufacturer dependent. If left unmodified

photon count will not yield correct values, nor precision estimates. All other parameters will

be correctly fitted despite gain being incorrectly set.

5. OPTIONAL:

a. Setting the minimal signal that should be considered of interest. Take the center pixel

value and reduce this number by the frame mean background value. Set minimal

signal to this value. If the checkbox for minimal signal is not checked the software

will automatically determine regions of interest based on image intensity distributions.

b. If dataset is > 1000 frames, leave filter width at 101. If smaller, reduce filter width

value.

6. Press Process.

Once all settings have been determined the Process button will sequentially do:

1. Background correction.

2. Fitting of selected regions selected based on Minimal signal.

3. Filtering of fits based on selected parameter ranges.

4. Drift correction (if selected).

5. Channel alignment (if selected and a multichannel image stack is loaded).

6. Rendering of results (if selected).

7. Cluster analysis and rendering of results (if selected).

Each of these steps can be performed manually by the user through calling the individual algorithms.

See sections 3.4 through 3.9 for details.

3.2 LOADING IMAGES AND SETTINGS
Loading images for processing by SMLocalizer is done through the main ImageJ or Fiji interface.

Some image formats lack compression and require additional space. A suggestion for performance

optimization is to resave these as .tif stacks before proceeding.

6

Once installed and an image stack has been loaded, the plugin can be started. In the Plugins menu,

select SMLocalizer to start the main plugin. Upon startup SMLocalizer will load the settings last stored

(or default if no new settings have been stored). New settings can be stored or loaded using the two

buttons in the bottom right corner (see fig 3).

3.3 CALIBRATION

SMLocalizer require bead images for calibration of 3D fits and can use multispectral beads for

calibration of channel offset in x-y (2D) or x-y-z (3D). For 2D one-color data calibration is not

required. For 2D multicolor data SMLocalizer will run but will not compensate for spectral shift

between channels without calibration.

For 3D fit calibration image stacks with known z-step size with the same channel setup as for the

intended experiment using sub 100 nm beads will need to be acquired. The beads need to emit light in

wavelengths covering all filters that will be used in the experiments that will be fitted. So if an

experiment calls for the use of the use of Atto-488 and AlexaFluor-647 as STORM dyes a bead

emitting photons in the 510-525 and 650-670 nm range is required. Center focus on the beads and

include in 10-20 nm steps 1 µm down and 1 µm up from this imaging plane in the image stack,

generating a 100-200 frame image with two channels in the dye example above. Ensure that the order

of filter imaging is the same as for the experiment, so if Atto-488 will be imaged first, place it first in

the calibration experiment as well. 10-20 well-separated beads should be included in the image stack

for best results. Also, ensure that you have good signal through the entire stack.

Once the stack has been loaded into ImageJ, select the correct 3D modality (or single slice multi-

channel image for 2D calibration) and press Calibrate (see fig 4). For 3D modalities, the software will

Figure 3 SMLocalizer graphical interface with relevant buttons for settings storing and loading.

Figure 4 Relevant button and menu to calibrate 2D or 3D fits. Right panel example of central frame from 3D PRILM

calibration stack.

7

ask you for the z-step size in nm. Once you press OK, the calibration will commence. Once completed

you will be presented with a list of fitted data points in a result table. What is common is that the very

edge of the calibration file is a more uncertain then the more central parts, and subsequently any errors

will be larger at the edges of the calibration. The calibration algorithms will generate a lookup table

for the modality for z fitting and a series of offset values for x-y-z against the first channel for

multichannel images. This offset will be applied to all fitted 3D data before being presented to the

user.

As small shifts in system alignment will affect the performance, new calibration files should be

generated often, preferably weekly for good performance.

3.4 BACKGROUND CORRECTION
SMLocalizer performs background correction based on the work of Hoogendoorn el al3. In short, static

signal (for longer than half the filter width (see fig 5) from Basic input) is removed and transient

increases remain (an example before and after image can be seen in fig 6). Background correction can

be done through the Process button that will start with background correction or through Correct

background which will background correct and replace the current open image stack (see fig 6).

SMLocalizer will use a default 101 frame width for background corrections if the checkbox is not

checked and the value for the channel altered.

Figure 5 Relevant buttons and fields for background correction.

8

Figure 6 With same color map, example of before and after background filtering. 500 nm scalebar.

3.5 FITTING

Figure 7 Relevant buttons and fields for Gaussian fitting.

SMLocalizer performs 2D Gaussian and 3D multi-modality fitting on regions extracted from the open

image stack through minimizing least square errors of fit. Two settings (Pixel size and Total gain)

needs to be looked over for the Gaussian fitting with an additional parameter that can be modified for

experienced users, Minimal signal (see fig 7). This will override SMLocalizers standard region

identification to only include areas with center pixels stronger then Minimal signal (after background

correction).

9

Figure 8 Example result table after fitting of particles.

3.5.1 Modality selection

SMLocalizer can fit both 2D and 3D SMLM data. In the dropdown menu at the bottom half of Basic

input (see fig 7), the user can select between 2D and different 3D modalities. In order for fit 3D data, a

calibration needs to be generated for that modality. See Calibration (3.2) for details concerning how to

generate calibrations. For 3D, select the correct modality from the list:

 PRILM4

 Biplane5

 Double helix6

 Astigmatism7

SMLocalizer will proceed to use the calibration for that modality and fit the 3D data, returning x-y-z

coordinates for all events that fall within the calibration range. 2D and 3D data are then handled in the

same way with regards to parameter filtering, image rendering, channel alignment and drift correction.

For details concerning how 3D modalities are processed, see section 5.2. For Biplane data the input

data needs to be stitched so that both planes are in a single image next to each other.

3.5.2 Image pixel size

User set parameter that is camera dependent. Change this value to the value that your system uses.

3.5.3 Total gain

This is the total conversion rate from a photon being read by the camera to the resulting pixel

intensity. Camera manufacturers provide information on how this number is obtained.

3.5.4 Minimal signal

Minimal intensity of center pixel of a region. Pixels below this value will not be considered a possible

particle. By default this is not used but rather particles will be located automatically if the center pixel

is frame mean + 0.7σ or stronger.

10

3.6 PARAMETER SELECTION

Figure 9 Relevant buttons and fields for parameter range settings.

Parameter range (see fig 9) is used to select which fitted particles should be included in downstream

algorithms. By selecting a parameter type, that type will be used and only particles with values

between min and max will be included. Setting parameter range is non-destructive, that is, particles

outside of the selected range are not removed but only excluded. An example list of what the

parameter distribution can look like after fitting can be found in Figure 8.

The distribution of each parameter can be obtained from the result table. Select the Result menu and

Distribution. Select the parameter of interest to plot the selected distribution (see Figure 10).

3.6.1 Clean table

By clicking Clean table SMLocalizer will remove particles that fall outside the selected parameters

range. This is destructive.

3.6.2 Photon count

This is the number of photons SMLocalizer has calculated a particle has emitted. For PALM it is

reasonable to require 100+ photons per particle whilst for STORM imaging 500+ photons should be

required.

Figure 10 Plotting of parameter distributions

11

3.6.3 Sigma x y

This is the sigma in x and y for the Gaussian fit. Sigma of the Gaussian fit relates to the full width at

half maximum (FWHM) as 𝐹𝑊𝐻𝑀 = 2√2𝑙𝑛2𝜎 (wide field). The width of an in focus emitter will

change depending on the optics and filters used but is typically in the range of 100-200 nm. Out of

focus emitters will have a broadening of their PSF in 2D which will be reflected by larger values of

sigma.

3.6.4 R^2

This is the goodness of fit for a given particle. A value of 1.0 is a perfect fit and 0.0 would indicate no

correlation between fit and real data. With decreased R^2 values come an uncertainty in the

localization. In our experience values above 0.85 is a good compromise.

3.6.5 Precision x y

This is the precision of the Gaussian fit in x and y. Dependent on sigma x y and photon count.

Precision of the fit scales with the square root of the number of photons. This will be highly probe

dependent but reasonable values typically fall between 5 – 50 nm.

3.6.6 Precision z

This is the precision of the Gaussian fit in z. Precision of the fit scales with the square root of the

number of photons for astigmatism and biplane modalities. For PRILM and Double Helix modalities,

the error in x-y determination is used to calculate the precision in z. This will be highly probe

dependent but reasonable values typically fall between 5 – 75 nm. If the precision calculations for

PRILM or Double Helix falls outside the calibration range a value of 1000 will be reported.

3.6.7 Frame

Which frames to include. Discarding early portions with to high density of events can improve upon

results.

3.6.8 Z

Which z coordinates to include. SMLocalizer will during 3D fitting set z = 0 at the plane of focus with

z decreasing towards the beginning of the calibration stack and increasing towards the end of the

calibration stack. Any 3D modality will be more accurate in the region surrounding z = 0.

3.7 DRIFT CORRECTION AND CHANNEL ALIGNMENT

Figure 11 Buttons and relevant fields for drift correction and channel alignment.

SMLocalizer will perform drift correction on the fitted particles during processing if the checkbox is

checked (see fig 11). By clicking the Drift correct button (see fig 11), a result table of fitted particles

12

can be drift corrected outside of the main sequence of processing performed by the Process button (see

fig 11). Drift correction is performed by maximizing the correlation between two adjacent bins of

particles, separated based on frame number. Drift correction is done on each channel separately. Drift

correction is prone to artefact introduction if too few particles are included.

Alignment of channels is performed in the same manner, accounting for drift between start of channel

acquisition and chromatic shifts.

3.7.1 Max drift

The maximum drift from one bin to the next in X/Y and Z separately. Smaller allowed drifts will

reduce computational cost at the risk of not finding the correct drift.

3.7.2 Number of bins

The number of bins (in time) the fitted particles should be divided into.

13

3.8 IMAGE RENDERING

Figure 12 Buttons and fields relevant for image rendering.

SMLocalizer will, if the checkbox for Render image is selected (see fig 12), perform this action during

Process. Render image uses the particles within the selected parameter range to render an image with

a pixel size set by the user. For 3D data an image stack will be created with the voxel size chosen by

the user (see fig 12). Default is that each particle adds a value of one to the image, allowing for

counting particles in the image. All image editing ImageJ or Fiji is capable of performing can be

performed on these result images. Gaussian smoothing multiplies the image values and applies a two

pixel wide Gaussian filter.

3.9 CLUSTER ANALYSIS

Figure 13 Buttons and fields relevant for cluster analysis.

SMLocalizer can perform 2D cluster analysis on the localized particles through the DBSCAN8

algorithm. A results image of the clusters found will be generated based on the pixel size set in Render

image (see 3.8). Particles will be considered to be part of a cluster if they have Min connections

neighbors within Epsilon (see fig 13).

14

3.10 MULTICHANNEL IMAGES

Figure 14 Multichannel selection.

SMLocalizer can analyze multichannel (but not currently multi frame and slice) images. At the bottom

part of the Basic input tab (see fig 14), a list of channels is available. Default is a single channel but

more can be added in the list. Each channel has its own settings for all fields and checkboxes that

needs to be set.

3.11 PARALLEL VS GPU COMPUTATION

Figure 15 Selection of parallel vs GPU accelerated computation.

SMLocalizer can on CUDA capable systems (see 2.1.3) perform the computationally intensive

calculations on a GPU. The default alternative is CPU based parallel computing (see fig 15).

3.12 SUBSEQUENT ANALYSIS IN MATLAB
Once a results table has been obtained from SMLocalizer the data can be transferred to any software

that accepts .tif or tab separated tables as input. For Matlab a short function is available online on

https://sourceforge.net/projects/smlocalizer/ that will translate the results table into a struct in Matlab

containing vectors with all data.

To transfer SMLM data processed in SMLocalizer to Matlab, click File/SaveAs in the results table and

store the file, adding .txt at the end of the file name. Once this has been done, download the matlab

https://sourceforge.net/projects/smlocalizer/

15

function LoadSMLocalizer.m from Sourceforge, start Matlab and add LoadSMLocalizer.m to the path

(through the Set Path button or by copying the file to the folder containing your other custom Matlab

functions). To load the data, use the call:

Figure 16 GUI shown after the uigetfile('.txt') command has been called in matlab.

[Name,Path] = uigetfile('.txt'); (see figure 16)

Select the file of interest and click ok. Proceed with the next function call:

S=LoadSMLocalizer([Path,Name]); (see figure 17)

S will now contain all data from the results table, available for further Matlab based analysis.

Figure 17 Output after calling LoadSMLocalizer with Path and Name from uigetfile call.

16

4 TUTORIAL – SMLM CHALLENGE

4.1 2D
This tutorial will give an example of how SMLocalizer can be used. This example uses the sequence-

as-stack-MT0.N1.LD-2D-Exp dataset from the 2016 SMLM challenge

(http://bigwww.epfl.ch/smlm/challenge2016/index.html). To download the dataset, go to

http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/data.html and download

MT0.N1.LD-2D-Exp-as-stack. A 3D example follows this 2D example.

Start by downloading the dataset and install SMLocalizer into ImageJ/Fiji (this tutorial uses Fiji).

All color maps have been changed to Red hot.

1. Load the dataset into Fiji.

2. Zoom in image to 800 %.

3. Go to Image/Adjust/Brightness / Contrast and press Reset in the B&C panel now displayed.

Next zoom in on the image to a 800% zoom (see fig 18).

Figure 18 Initialize Fiji and load the imagestack.

http://bigwww.epfl.ch/smlm/challenge2016/index.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/data.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/sequence-MT0.N1.LD-2D-Exp-as-stack.zip

17

4. Start SMLocalizer.

Figure 19 Initialize SMLocalizer.

5. At this point the user can either activate Gaussian smoothing in the Render image tab and

press Process or go through the steps detailed below (see fig 19).

6. Hit Correct background key (see fig 20).

Figure 20 SMLocalizer after background correction.

Press Localize (see fig 21 for output).

Figure 21 After events has been localized a result table is displayed.

18

7. For this set there are not enough events to do any meaningful drift correction. Pressing Drift

correct will tell the user that no correction could be done under these settings. We do not

suggest reducing the demands as artifacts are likely to appear.

8. Instead, render the result table using Gaussian smoothing and a R^2 range of 0.85-1.0. To do

activate Gaussian smoothing in the Render tab, activate R^2 selection and set its range to 0.85

– 1.0 in the parameter selection tab and finally press Render Image (see fig 22).

Figure 22 No drift correction could be done.

Figure 22 Final rendered results

19

4.2 3D DOUBLE HELIX
This tutorial will give an example of how SMLocalizer can be used for a 3D dataset. This example

uses the sequence-as-stack-MT0.N1.LD-DH-Exp and the sequence-as-stack-Beads-DH-Exp datasets

from the 2016 SMLM challenge (http://bigwww.epfl.ch/smlm/challenge2016/index.html). The

sequence-as-stack-Beads-DH-Exp is used for 3D calibration and applied to the sequence-as-stack-

MT0.N1.LD-DH-Exp dataset. In order to download the datasets, go to

http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/data.html and download

MT0.N1.LD-DH-Exp-as-stack and then go to

http://bigwww.epfl.ch/smlm/challenge2016/datasets/Beads/Data/data.html and download z-stack-

Beads-DH-Exp-as-stack.zip. All image displays use red hot lookup table for 2D.

4.2.1 Calibration

Start by loading the calibration stack into ImageJ and start SMLocalizer from the /plugins/ menu. Go

to Image/Adjust/Brightness / Contrast and press Reset in the B&C panel now displayed. Next zoom in

on the image to a 400% zoom (see fig 23).

Figure 23 First slice of the calibration stack for Double Helix.

Proceed to select the correct modality in the dropdown menu (Double Helix) and press Calibrate (see

fig 24).

http://bigwww.epfl.ch/smlm/challenge2016/index.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/data.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/MT0.N1.LD/Data/sequence-MT0.N1.LD-DH-Exp-as-stack.zip
http://bigwww.epfl.ch/smlm/challenge2016/datasets/Beads/Data/data.html
http://bigwww.epfl.ch/smlm/challenge2016/datasets/Beads/Data/z-stack-Beads-DH-Exp-as-stack.zip
http://bigwww.epfl.ch/smlm/challenge2016/datasets/Beads/Data/z-stack-Beads-DH-Exp-as-stack.zip

20

The software will proceed to ask the user for the z-step size for the stack provided (see fig 25, here 10

nm).

The calibration algorithm will now find the optimal parameters for generating the calibration lookup

table. Once complete a result calibration curve will be and an empty result table displayed (see fig 26).

Figure 24 SMLocalizer GUI with relevant button and menu for calibration.

Figure 25 Z step size for calibration file.

Figure 26 Calibration curve for Double Helix.

21

The calibration curve will be stored in ImageJ for future use. The next step is to close all open

windows and load the experimental file (sequence-as-stack-MT0.N1.LD-DH-Exp).

Figure 27 GUI for 3D double helix fitting.

See figure 27 for settings chosen for double helix fitting. Change the values for z limits to include -550

through 600 nm and activate z as parameter for selection. The data does not contain sufficient particles

for drift correction (and does indeed not include drift) so drift correction can either be left on or be

turned off (see fig 28 for output if left checked). Finally check that the image modality is set to Double

Helix. Once all changes have been made, press Process. Alternatively press Correct background, once

complete press Localize and once that is complete finally press Render image.

Figure 28 If drift correction was active the following window will appear, showing that no drift compensation was applied.

22

Figure 29 Slice 67 from the produced image stack after the histogram has been reset and lookup table has been modified to

Red Hot.

Conclude the rendering by color depth coding the image. Select the image stack and go to one of the

denser slices, in this example 67 (see fig 29 for a view of this slice). Go to Image/Adjust/Brightness /

Contrast and press Reset in the B&C panel now displayed. Following this, go to

Image/Hyperstacks/Temporal-Color code, select Thermal as lookup table, and press Go (see fig 30 for

output).

23

Figure 30 Rendering of results from fitting the double helix 3D dataset.

24

4.3 MITOFILIN PRILM
Provided on https://sourceforge.net/projects/smlocalizer/ are three datasets that are used in this

tutorial. A bead stack for PRILM calibration, an overview widefield image and a PRILM modality

dataset (see fig 31).

The sample is a U2OS cell, fixed using paraformaldehyde and labeled with a primary antibody against

Mitofilin9 (proteintech, id: 10179-1-AP) and a secondary antibody labeled with Alexa Fluor 647. The

images are acquired on a Carl Zeiss Elyra PS.1 using 642 nm activation and increasing back-pumping

with 405 nm. A Plan-Apochromate 100x/1.46 Oil (Zeiss) objective was used and emission was

collected through a 655 nm long pass filter. Pixel size was 100 x 100 nm, integration time was 25 ms

and the gain on the EMCCD camera was set to 100.

Figure 31 WF image with cropped region marked for the PRILM dataset and central slice (101) from the PRILM

calibration stack available on https://sourceforge.net/projects/smlocalizer/

Figure 32 a) SMLocalizer GUI set for background correction of Mitofilin PRILM stack. b) Raw first frame

of Mitofilin PRILM.tif zoomed in to 1200%. c) Background corrected first frame of Mitofilin PRILM.tif tif

zoomed in to 1200% (after B&C was set to auto).

https://sourceforge.net/projects/smlocalizer/
https://sourceforge.net/projects/smlocalizer/

25

Load the PRILM calibration stack into ImageJ and start SMLocalizer. Select PRILM as image

modality, set Image pixel size to 100 and press Calibrate. When asked, set z-step to 10 nm and press

ok. Once completed a plot with the resulting angle-z graph will be displayed along with an empty

results table. Close both and proceed to load the Mitofilin PRILM dataset into ImageJ (see fig 32).

With this information, the basic settings in SMLocalizer can be set (Image pixel size: 100, Total gain:

100). Input these settings into SMLocalizer and press Process. Once a results table has been displayed,

it is time to change the parameter ranges. Select Photon count and set it to 300-3000 and change the

R^2 range to 0.7 – 1.0. PRILM distorts the PSF and a great fit against a Gaussian will not work against

the more distorted (far from focus) events. There are too few particles to do any reasonable drift

corrections with so proceed to change Pixel size to 5 and 5 nm (in Render image section) and proceed

to press Render Image (see fig 33a). Do not have the Gaussian smoothing checkbox ticked. Increase

the pixel values for the image by the command Process/Math/Multiply and set the value to 5000 and

press ok (see fig 33b&c).

For final image rendering, four new images will be generated, all using the just generated

4000x2000x725nm tif stack:

1. Start with the command Image/Stack/Reslice [/]… and press ok. This will generate a new

stack with the dimensions 4000x725 nm and show the x-z distribution. Proceed to use the

command Image/Stack/Z project and select Sum Slices and press ok. Use the command

Process/Filters/Gaussian Blur and set the radius to 2.0 and press OK. Use the command

Image/Lookup tables/mpl-inferno and finish by setting the histogram range

(Image/Adjust/Brightness and Contrast) using auto (see fig 33d).

2. Start with the command Image/Stack/Reslice [/]…, set Start at to Left and press ok. This will

generate a new stack with the dimensions 2000x725 nm and show the y-z distribution.

Proceed to use the command Image/Stack/Z project and select Sum Slices and press ok. Use

the command Process/Filters/Gaussian Blur and set the radius to 2.0 and press OK. Use the

command Image/Lookup tables/mpl-inferno and finish by setting the histogram range

(Image/Adjust/Brightness and Contrast) using auto (see fig 33e).

3. Start with the command Image/Stack/Z project and select Sum Slices and press ok. Use the

command Process/Filters/Gaussian Blur and set the radius to 2.0 and press OK. Use the

command Image/Lookup tables/mpl-inferno and finish by setting the histogram range

(Image/Adjust/Brightness and Contrast) using auto (see fig 33f).

4. Start with the command Process/Filters/Gaussian Blur 3D and set all values to two. Press ok

and proceed with finding the highest intensity frame (# 59) and press Auto in the B&C

window. Proceed with the command Image/Hyperstacks/Temporal-Color code, select

Thermal in the dropdown menu, and press ok. The resulting image will be color coded for

depth according to the generated color time scale window. White is in focus, blue shifted

colder colors are below the focus and red shifted warmer colors are above the focus. (see fig

33g&h)

26

Figure 33 a) SMLocalizer GUI for image rendering. b) B&C window used for histogram changes. c) Slice 59 after "auto"

has been pressed in B&C window. d) x-z projection of the sample. e) y-z projection of the sample. f) x-y projection of the

sample. g) Color coded projection of the sample. h) Depth scale bar for g).

27

4.4 2D GOLD BEAD TUTORIAL – DRIFT CORRECTION
Provided on https://sourceforge.net/projects/smlocalizer/ is a bead sample dataset,

50nm_Gold_bead.tif. Download the file for use in this tutorial, load it into ImageJ and start

SMLocalizer (see fig 34a&b).

Figure 34 a) SMLocalizer GUI with all settings correct for this tutorial. b) Raw first frame of the input data zoomed in to

2400%. c) Initial, non corrected, output showing the introduced drift in of the bead with mpl-inferno lookup table. d) Drift

correction in x and y calculated by SMLocalizer for 5 bins. e) Drift correction in x and y calculated by SMLocalizer for 10

bins. f) Drift correction in x and y calculated by SMLocalizer for 25 bins. g) Drift correction in x and y calculated by

SMLocalizer for 50 bins.

As this is a bead sample, we can not background correct this image stack as that would remove the

non-blinking bead from our dataset. Instead we directly localize the particles by hitting the Localize

key. Wait for a results table to be displayed, change the Photon range to 2000 – 4000, tick the

checkbox for Gaussian smoothing and press Render image to display the non drift corrected results

(see fig 34c). Next we calculate and apply the drift correction for this dataset. Press Drift correct and

wait for the Drift corrections plot to appear. Conclude with pressing Render image again. In the

figure 34 d-g above we used 4 different values for number of bins, both under and oversampling.

https://sourceforge.net/projects/smlocalizer/

28

5 ARCHITECTURE AND ALGORITHMS

5.1 BACKGROUND CORRECTION

5.1.1 Static events removal

SMLocalizer performs background correction based on the work of Hoogendoorn el al3. In short, each

pixel is median filtered in time through the following steps:

1. The mean intensity in each frame is calculated.

2. Pixels are normalized to the frame mean.

3. The filter width number of pixels is used to calculate the running median for a specific pixel.

4. The median is subtracted from the original normalized pixel value and is subsequently

rescaled using the frame mean.

5. The method removes static (over at least half the filter width) objects and retains transient

increases (blinking events).

Pseudo code for performing the background correction (see Hoogendoorn el al3 for details):

Best results are obtained when the filter window width is > 10x the duration of blinking events.

5.1.2 Shot noise

Following median filtering described above each frame is run through a bicubic B-spline filter to

further clean out the signal10. Each pixel is processed with the following 5x5 kernel:

0.0015257568…, 0.0036617187…, 0.0286859863…, 0.0036617187…, 0.0015257568…

0.0036617187…, 0.0087878906…, 0.0688445311…, 0.0087878906…, 0.0036617187…,

0.0286859863…, 0.0688445311…, 0.5393295900…, 0.0688445311…, 0.0286859863…,

0.0036617187…, 0.0087878906…, 0.0688445311…, 0.0087878906…, 0.0036617187…,

0.0015257568…, 0.0036617187…, 0.0286859863…, 0.0036617187…, 0.0015257568…

for (all frames)

 It = <Ix,y,t>x,y

 Nx,y,t = Ix,y,t/It

for (all frames)

 Ix,y,t = Ix,y,t – It ∙ median{ Nx,y,t-w,… Nx,y,t,… Nx,y,t+w }

Ix,y,t : pixel intensity

It : frame mean intensity

Nx,y,t : Normalized pixel intensity

29

5.2 FITTING

5.2.1 2D fitting

Gaussian fitting is done iteratively with decreasing step size. The 2D elliptic tilted Gaussian

description used is:

𝜃𝐴 =
cos2(𝜗)

2𝜎𝑥
2 +

sin2(𝜗)

2𝜎𝑦
2

𝜃𝐵 = −
sin(2𝜗)

4𝜎𝑥
2 +

sin(2𝜗)

4𝜎𝑦
2

𝜃𝐶 =
cos2(𝜗)

2𝜎𝑥
2 +

sin2(𝜗)

2𝜎𝑦
2

𝑓(𝑥, 𝑦) = 𝑎𝑚𝑝 ∙ 𝑒−[𝜃𝐴∙(𝑥−𝑥0)2+𝜃𝐵∙(𝑥−𝑥0)∙(𝑦−𝑦0)+𝜃𝐶∙(𝑥−𝑥0)2] − 𝑏

Where b is the background and amp the amplitude of the function. The residual error of fitting is

calculated as:

𝑅2 = 1 −
𝑆𝑆𝐸

𝑆𝑆𝑇

𝑆𝑆𝐸 = ∑(𝑓(𝑥, 𝑦) − �̅�)2

𝑥,𝑦

𝑆𝑆𝑇 = ∑(𝑦(𝑥, 𝑦) − �̅�)2

𝑥,𝑦

Where y is the measured pixel values and �̅� is the mean value.

Optimization is performed by minimizing SSE/SST after initial guesses of input parameters has been

done.

 x0 and y0 are estimated as the weighted centroid.

 σx and σy are evaluated between 80 nm and 200 nm and the combination yielding the best fit is

used for initial estimate.

 amp is estimated as the central pixel intensity.

 b is estimated to 0.

 ϑ is estimated as 0.

30

5.2.2 3D fitting

All 3D modalities start with 2D fitting using parameter settings obtained from the calibration file. The

fitted particles are then translated using a lookup table and raw data to obtain 3D information. For all

3D modalities as part of the calibration, the x-y offset from the frame in focus is determined as

function of z. This correction is applied to the final x-y coordinates.

for (all regions)

 for (σx = 80:200 && σy = 80:200)

 find((σx , σy) → min(G(P))

 while(optimize)

 P(current) += stepSize(current)

 if(P(current) within bounds)

 if(G(P) > G(Pold)) // if we did not improve

 if (stepSize(current > 0)

 stepSize(current) *= -1 // change direction

 else

 stepSize(current) *= -1.5 // change direction and decrease

 else // if outside bounds

 if (stepSize(current > 0)

 stepSize(current) *= -1 // change direction

 else

 stepSize(current) *= -1.5 // change direction and decrease

 if (loops = max loops || G(P) – G(Pold) < convergence)

 optimize = false

 else

 current = next // evaluate next parameter.

G(P) and G(Pold) evaluates the Gaussian with current or last rounds parameters

and returns the SSE/SST (see above).

31

5.2.2.1 PRILM

PRILM fitting starts with generation of a calibration lookup table from an image stack of beads.

Once a calibration lookup table has been generated 3D fitting can be performed. The window used for

fitting and the maximum distance allowed between lobes are taken from the calibration file, as is the

chromatic corrections.

for (gaussianWindow = 500 nm:900 nm)

 for (intensityMinimum = 0.5:0.7)

 for (lobeDistance = 600 nm:1000 nm)

 set minimum intensity for peak recognition by intensityMinimum*[central frame max intensity]

 Fit all located particles as in 2D (see above)

 Remove fits with rsquare < 0.70

 Set particle z height to frameNumber*z-stepSize (from user)

 for (all particles with include==1)

 set Particle(current).include = 2

 find (Particle(all).include==1 closest to Particle(current))

 if (distance(Particle(closest)-Particle(current)) < lobeDistance)

 Particle(closest).include = 2 (exclude from further searches)

 dx = Particle(current).x0 – Particle(closest).x0

 dy = Particle(current).y0 – Particle(closest).y0

 angle = atan2(dy,dx)

 Sum up angle for all particles from a given frame and calculate the mean angle, add to angle[z]

 end

 calculate length of angle[z] which is unambiguous.

 end

 end

end

take the longest angle[z], store it and store gaussianWindow and lobeDistance that yielded this.

Calculate x-y-z channel offset from channel 1 to all other channels and store it.

Fit all objects using 2D algorithms and user provided minimum intensity.

for (Particle(all).include == 1)

 set Particle(current).include = 2

 find within same frame and channel distance(Particle(current),Particle(Particle with include == 1)) < lobeDistance

 Particle(closest).include = 2

 dx = Particle(current).x0 – Particle(closest).x0

 dy = Particle(current).y0 – Particle(closest).y0

 angle = atan2(dy,dx)

 newParticle.x0 = (Particle(current).x0 + Particle(closest).x0)/2 + xCorrect(newParticle.z0,channel)

 newParticle.y0 = (Particle(current).y0 + Particle(closest).y0)/2 + yCorrect(newParticle.z0,channel)

 newParticle.z0 = angleCalibrationLookUpTable[angle]

 newParticle.sigma_x = (Particle(current). sigma_x + Particle(closest). sigma_x)/2

 newParticle.sigma_y = (Particle(current). sigma_y + Particle(closest). sigma_y)/2

 newParticle.photons = Particle(current). photons + Particle(closest). Photons

 newParticle.precision_x = 0.5(Particle(current). precision_x + Particle(closest). precision_x)

 newParticle.precision_y = 0.5(Particle(current). precision_y + Particle(closest). precision_y)

 newParticle.precision_z = error propagation, see 5.2.3

 newParticle.r_square = min(Particle(current). r_square + Particle(closest). r_square)

 if (Particle(current).channel > 1) shift x-y-z by calibrated offset.

end

32

5.2.2.2 Biplane

Biplane fitting starts with generation of a calibration lookup table from an image stack of beads.

Once a calibration lookup table has been generated 3D fitting can be performed. The window used for

fitting and the maximum distance allowed between lobes are taken from the calibration file, as is the

chromatic corrections.

for(all frames)

 pixelvalue = pixelvalue – frameMedian

end

for (gaussianWindow = 500 nm:900 nm)

 for (intensityMinimum = 0.4:0.7)

 for (max2Dsigma = 200 nm:350 nm)

 set minimum intensity for peak recognition by intensityMinimum*[central frame max intensity]

 Fit all located particles as in 2D (see above)

 Remove fits with rsquare < 0.80

 Set particle z height to frameNumber*z-stepSize (from user)

 for (all particles with frame within 5 of center)

 calculate mean offset in x-y

 end

 for (all particles)

 check for second fitted particle offset away, use best fitted particle for x-y if found

 sum up the pixels surrounding the center pixel at particle and offset away (gaussianWindow wide)

 ratio[z] = intensityleft / intensityright

 calculate mean ratio[z] for each frame and channel

 end

 calculate length of ratio[z] which is unambiguous.

 end

 end

end

take the longest ratio[z], store it and store gaussianWindow and max2Dsigma that yielded this.

Calculate x-y-z channel offset from channel 1 to all other channels and store it.

Fit all objects using 2D algorithms and user provided minimum intensity.

for (Particle(all).include == 1)

 find (Particle offset away), use best fit for x-y

 intensityRatio = sum up pixelvalues gaussian fit window surrounding center pixel at center and offset away.

 newParticle.x0 = Particle(bestFit).x0 + xCorrect(newParticle.z0,channel)

 newParticle.y0 = Particle(bestFit).y0 + yCorrect(newParticle.z0,channel)

 newParticle.z0 = ratioCalibrationLookUpTable[intensityRatio]

 newParticle.sigma_x = Particle(bestFit). sigma_x

 newParticle.sigma_y = Particle(bestFit). sigma_y

 newParticle.photons = summed intensities surrounding both centras.

 newParticle.precision_x = Particle(bestFit). precision_x

 newParticle.precision_y = Particle(bestFit). precision_y

 newParticle.precision_z = 600 / √𝑛𝑒𝑤𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

 newParticle.r_square =Particle(bestFit). r_square

 if (Particle(current).channel > 1) shift x-y-z by calibrated offset.

end

33

5.2.2.3 Double helix

Double helix fitting starts with generation of a calibration lookup table from an image stack of beads.

Once a calibration lookup table has been generated 3D fitting can be performed. The window used for

fitting and the maximum distance allowed between lobes are taken from the calibration file, as is the

chromatic corrections.

for (gaussianWindow = 500 nm:900 nm)

 for (intensityMinimum = 0.5:0.7)

 for (lobeDistance = 600 nm:1000 nm)

 set minimum intensity for peak recognition by intensityMinimum*[central frame max intensity]

 Fit all located particles as in 2D (see above)

 Remove fits with rsquare < 0.80

 Set particle z height to frameNumber*z-stepSize (from user)

 for (all particles with include==1)

 set Particle(current).include = 2

 find (Particle(all).include==1 closest to Particle(current))

 if (distance(Particle(closest)-Particle(current)) < lobeDistance)

 Particle(closest).include = 2 (exclude from further searches)

 dx = Particle(current).x0 – Particle(closest).x0

 dy = Particle(current).y0 – Particle(closest).y0

 angle = atan2(dy,dx)

 Sum up angle for all particles from a given frame and calculate the mean angle, add to angle[z]

 end

 calculate length of angle[z] which is unambiguous.

 end

 end

end

take the longest angle[z], store it and store gaussianWindow and lobeDistance that yielded this.

Calculate x-y-z channel offset from channel 1 to all other channels and store it.

Fit all objects using 2D algorithms and user provided minimum intensity.

for (Particle(all).include == 1)

 set Particle(current).include = 2

 find within same frame and channel distance(Particle(current),Particle(Particle with include == 1)) < lobeDistance

 Particle(closest).include = 2

 dx = Particle(current).x0 – Particle(closest).x0

 dy = Particle(current).y0 – Particle(closest).y0

 angle = atan2(dy,dx)

 newParticle.x0 = (Particle(current).x0 + Particle(closest).x0)/2 + xCorrect(newParticle.z0,channel)

 newParticle.y0 = (Particle(current).y0 + Particle(closest).y0)/2 + yCorrect(newParticle.z0,channel)

 newParticle.z0 = angleCalibrationLookUpTable[angle]

 newParticle.sigma_x = (Particle(current). sigma_x + Particle(closest). sigma_x)/2

 newParticle.sigma_y = (Particle(current). sigma_y + Particle(closest). sigma_y)/2

 newParticle.photons = Particle(current). photons + Particle(closest). Photons

 newParticle.precision_x = 0.5(Particle(current). precision_x + Particle(closest). precision_x)

 newParticle.precision_y = 0.5(Particle(current). precision_y + Particle(closest). precision_y)

 newParticle.precision_z = error propagation, see 5.2.3

 newParticle.r_square = min(Particle(current). r_square + Particle(closest). r_square)

 if (Particle(current).channel > 1) shift x-y-z by calibrated offset.

end

34

5.2.2.4 Astigmatism

Astigmatism fitting starts with generation of a calibration lookup table from an image stack of beads.

Once a calibration lookup table has been generated 3D fitting can be performed. The window used for

fitting and the maximum distance allowed between lobes are taken from the calibration file, as is the

chromatic corrections.

for (gaussianWindow = 1500 nm:1900 nm)

 for (intensityMinimum = 0.5:0.7)

 for (max2Dsigma = 400 nm:800 nm)

 set minimum intensity for peak recognition by intensityMinimum*[central frame max intensity]

 Fit all located particles as in 2D (see above)

 Remove fits with rsquare < 0.80

 Set particle z height to frameNumber*z-stepSize (from user)

 for (all particles)

 ratio[z] = sigma_x / sigma_y

 maxDim[z] = max(sigma_x,sigma_y)

 end

 calculate length of ratio[z] which is unambiguous with help of maxDim[z] by finding maximum maxDim giving this

 end

 end

end

take the longest ratio[z], store it and store gaussianWindow,maxDim and max2Dsigma that yielded this.

Calculate x-y-z channel offset from channel 1 to all other channels and store it.

Fit all objects using 2D algorithms and user provided minimum intensity.

for (Particle(all).include == 1)

 ratio = sigma_x/sigma_y

 if (max(sigma_x,sigma_y)< maxDim)

 newParticle.x0 = Particle(current).x0 + xCorrect(newParticle.z0,channel)

 newParticle.y0 = Particle(current).y0 + yCorrect(newParticle.z0,channel)

 newParticle.z0 = ratioCalibrationLookUpTable[intensityRatio]

 newParticle.sigma_x = min(Particle(current). sigma_x, Particle(current). sigma_y)

 newParticle.sigma_y = min(Particle(current). sigma_x, Particle(current). sigma_y)

 newParticle.photons = summed intensities surrounding both centras.

 newParticle.precision_x = min(Particle(current). precision_x, Particle(current). precision_y)

 newParticle.precision_y = min(Particle(current). precision_x, Particle(current). precision_y)

 newParticle.precision_z = 600 / √𝑛𝑒𝑤𝑃𝑎𝑟𝑡𝑖𝑐𝑙𝑒. 𝑝ℎ𝑜𝑡𝑜𝑛𝑠

 newParticle.r_square =Particle(current). r_square

 if (Particle(current).channel > 1) shift x-y-z by calibrated offset.

 end

end

35

5.2.3 Z precision estimate for PRILM and double helix

The error in x-y localization propagates to an error in z determination. By shifting the centers for the

two lobes by their precision in x and y and calculating a new angle we obtain the uncertainty in angle

determination for a given double psf localization. By calculating the resulting z value we get

boundaries for the uncertainty of z determination for the given localization. In figure 35a this shift and

subsequent angle calculation is demonstrated. In figure 35b the angle is interpreted for a double helix

calibration curve.

Figure 35. A shows the two centers of the lobes from a PRILM or double helix psf with circles showing the precision in x-y.

Moving along the normal to the vector connecting the two centers to this border two new points are obtained. The angle of

the vector connecting these two new points are then calculate and the difference from the original angle saved. The second

bound is obtained by reversing the direction of travel along the normal symmetry tells us that this second angle difference to

original will be the same as the first one.

If either the upper or lower border for the precision determination falls outside the calibration curve a

value of 1000 will be reported. If both upper and lower bound falls within the calibration curve the

mean z offset will be reported as z precision.

36

5.3 DRIFT CORRECTION AND CHANNEL ALIGNMENT
Drift correction is performed by calculating the cross correlation between different bins of particles (in

time). For each bin an image (10x10x10 nm) (2D or 3D) is generated. The maximum correlation

between two adjacent bins is obtained and the shift applied to the second bins data points.

For each bin the following pseudocode is executed:

5.4 IMAGE RENDERING
For single channel and multichannel a single image (with multiple slices for multichannel data) is

generated. Particle coordinates are rounded to nearest multiple of pixel size and the resulting pixel

coordinate value is increased by 1.

If Gaussian smoothing is selected the image values will be multiplied by 1000 and a Gaussian filter

with 2-pixel filter radius will be applied to the image.

All images are calibrated to get accurate dimensions.

5.5 CLUSTER ANALYSIS
Cluster analysis will perform cluster analysis on the particles within a given channel that has

parameters within a user set ok range. The current version implements DBSCAN for 2D clusters using

the apache commons framework. See http://commons.apache.org/proper/commons-

math/apidocs/org/apache/commons/math4/ml/clustering/DBSCANClusterer.html for details on the

functions called where eps = Epsilon and minPts = Minimum connections. The results are given as a

new rendered image with only the clusters found present and an update to the result list with a column

for cluster id.

xCorr(d) =
∑(𝒙𝒊−𝑥)(𝒚𝒊−𝒅−𝑦)

√∑(𝒙𝒊−𝑥)2√(𝒚𝒊−𝒅−𝑦)2

 where x, y are 3 dimensional arrays, i is a 3 dimensional index, d is a 3 dimensional

shift. 𝑥 and 𝑦 represent array means. Non overlapping voxels due to shift are discarded.

output = find shift →max (xCorr)

http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ml/clustering/DBSCANClusterer.html
http://commons.apache.org/proper/commons-math/apidocs/org/apache/commons/math4/ml/clustering/DBSCANClusterer.html

37

6 REFERENCES

1 Schindelin, J., Rueden, C. T., Hiner, M. C. & Eliceiri, K. W. The ImageJ ecosystem: An open

platform for biomedical image analysis. Molecular Reproduction and Development 82, 518-

529, doi:10.1002/mrd.22489 (2015).

2 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Meth 9,

676-682,

doi:http://www.nature.com/nmeth/journal/v9/n7/abs/nmeth.2019.html#supplementary-

information (2012).

3 Hoogendoorn, E. et al. The fidelity of stochastic single-molecule super-resolution

reconstructions critically depends upon robust background estimation. Scientific Reports 4,

3854, doi:10.1038/srep03854

http://www.nature.com/articles/srep03854#supplementary-information (2014).

4 Baddeley, D., Cannell, M. B. & Soeller, C. Three-dimensional sub-100 nm super-resolution

imaging of biological samples using a phase ramp in the objective pupil. Nano Research 4,

589-598, doi:10.1007/s12274-011-0115-z (2011).

5 Juette, M. F. et al. Three-dimensional sub-100 nm resolution fluorescence microscopy of thick

samples. Nat Meth 5, 527-529,

doi:http://www.nature.com/nmeth/journal/v5/n6/suppinfo/nmeth.1211_S1.html (2008).

6 Pavani, S. R. P. et al. Three-dimensional, single-molecule fluorescence imaging beyond the

diffraction limit by using a double-helix point spread function. Proceedings of the National

Academy of Sciences 106, 2995-2999, doi:10.1073/pnas.0900245106 (2009).

7 Huang, B., Wang, W., Bates, M. & Zhuang, X. Three-Dimensional Super-Resolution Imaging

by Stochastic Optical Reconstruction Microscopy. Science 319, 810 (2008).

8 Sander, J., Ester, M., Kriegel, H.-P. & Xu, X. Density-Based Clustering in Spatial Databases:

The Algorithm GDBSCAN and Its Applications. Data Mining and Knowledge Discovery 2,

169-194, doi:10.1023/A:1009745219419 (1998).

9 Jans, D. C. et al. STED super-resolution microscopy reveals an array of MINOS clusters along

human mitochondria. Proceedings of the National Academy of Sciences 110, 8936-8941,

doi:10.1073/pnas.1301820110 (2013).

10 Unser, M. A Perfect Fit for Signal and Image Processing. IEEE Signal Processing Magazine

16, 22-38 (1999).

http://www.nature.com/nmeth/journal/v9/n7/abs/nmeth.2019.html#supplementary-information
http://www.nature.com/nmeth/journal/v9/n7/abs/nmeth.2019.html#supplementary-information
http://www.nature.com/articles/srep03854#supplementary-information
http://www.nature.com/nmeth/journal/v5/n6/suppinfo/nmeth.1211_S1.html

