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7.1 Comparison with mammalian genome
reconstruction methods

As discussed in Introduction, previous researchers have focused
on macrosynteny for reconstructing the pre-TGD genome struc-
ture (Postlethwaitet al., 2000; Naruseet al., 2004; Jaillonet al.,
2004; Woodset al., 2005; Kohnet al., 2006; Kasaharaet al., 2007;
Muffato, 2010; see Muffato and Roest Crollius, 2008 for review).

On the other hand, various approaches have been employed for
studying ancestral mammalian genomes: e.g., ancestral karyotypes
were inferred by chromosome painting (see Ferguson-Smith and
Trifonov, 2007 for review); rearrangement history and ancestral
gene order were discussed using distance-based methods (Bourque
and Pevzner, 2002;Bourqueet al., 2004;Bourqueet al., 2004); con-
tiguous ancestral regions were reconstructed using homology-based
methods (Maet al., 2006; Chauve and Tannier, 2008; Gavran-
ović et al., 2011); and large regions of ancestral genome sequences
were reconstructed at single-nucleotide resolution (Blanchetteet al.,
2004; Patenet al., 2008; Dialloet al., 2010) by taking advantage
of a large number of sequenced mammalian genomes. In addition,
homology-based methods were used in reconstruction of ancestral
amniote gene order (Ouangraouaet al., 2009; Ouangraouaet al.,
2011).

However, those gene-order-based methods have not been applied
to the reconstruction of pre-TGD gene order (Muffato and Roest
Crollius, 2008; Jaillonet al., 2009). There are two primary reas-
ons for this limitation: (1) the problem of pre-WGD gene-order
reconstruction involves massive duplications and deletions, and
consequently those gene-order reconstruction methods specifically
designed for non-WGD genomes are not applicable in a straightfor-
ward manner (see El-Mabrouk and Sankoff, 2012 for review), and
(2) microsynteny conservation (i.e., conservation of gene order and
gene proximity) is substantially weaker in teleost than in mammals
(Sémon and Wolfe, 2007; Huftonet al., 2008; Ravi and Venkatesh,
2008), partially due to massive gene loss after the TGD, which
impedes gene-order reconstruction methods that rely on strong con-
servation of microsynteny (see Introduction in Gavranović et al.,
2011). In sum, teleost genomes seem to be in a particularly chal-
lenging situation for gene-order- or gene-adjacency-based methods,
and this is why we needed to develop the macrosynteny model.

7.2 Notation
In order to increase the readability of the main text, major symbols
are explained in words in Supplementary Table 2. Definition of these
variables can be found in Sections 2.2, 2.3, and 2.4.

7.2.1 Calculation of expectationsLet X be a random variable
having pdfq andf be an integrable function withE[|f(X)|]<∞.
Then, the expected value off(X) is calculated as follows:

E[f(X)] =

∫
f(x)q(x)dx, (15)

where integration is over all possible values ofX. See (Durrett,
2013) or (Williams, 1991) for more detail.

Table 2. Symbols in the macrosynteny model and their meanings.

Xs,g = k
Geneg in non-WGD segments is assigned to pre-
WGD chromosomek.

Y t,d
s,g = c

The d-th ortholog in post-WGD speciest (of geneg in
non-WGD segments) is located on chromosomec.

Us,k = p
Genes in non-WGD segments are assigned to pre-WGD
chromosomek with probabilityp.

Vt,k,c = p

A gene in post-WGD speciest, which is orthologous to a
non-WGD gene assigned to pre-WGD chromosomek, is
located on chromosomec with probabilityp.

ns,g
t,c = j

Gene g in non-WGD segments has j orthologs on
chromosomec in post-WGD speciest.

7.3 Derivation of the VBEM update formulas
7.3.1 Variational M-step: First, we fix bothqX̂ andqV̂ and then
deriveq∗

Û
= argmaxq

Û
F (qX̂,Θ̂), the optimalqÛ that maximizes

the negative free energy. For this purpose, we define a key quantity:

I(u) = E[log(pU (u)pX|U (X̂|u))]. (16)

Note thatI(Û) = E[log(pU (Û)pX|U (X̂|Û))|Û ]. (If this seems
confusing, see (Durrett, 2013, Example 5.1.5) or (Williams, 1991,
Section 9.10).) Then, substitutingpΘ,X,Y as Equation (7) and
qΘ̂,X̂(Θ̂, X̂) = qÛ (Û)qV̂ (V̂ )qX̂(X̂) and extracting terms that are

not dependent on̂U asc1, we can transform the negative free energy
given by Equation (9) as

F (qX̂,Θ̂) = E
[
I(Û)− log(qÛ (Û))

]
+ c1 (17)

= −KL
(
qÛ ||J

)
+ c2, (18)

where we defined functionJ(u) = exp(I(u))
/ ∫

exp(I(u′))du′

and constantc2 = log(
∫
exp(I(u′))du′) + c1. It follows from

Equation (18) that the negative free energy is maximized atqÛ = J ,
which minimizes the KL divergence. Thus, by the definition of the
model described in Sections 2.2 and 2.3 and writing the normalizing
constant asc3 = − log(

∫
exp(I(u′))du′), we have

log(q∗
Û
(u)) = I(u) + c3

=
∑

s log(pUs(us)) +
∑

s,gE
[
log
(
pXs,g|Us(X̂s,g|us)

)]
+ c3

=
∑

s

{
log

(
Γ(
∑

k αk)∏
k Γ(αk)

)
+
∑

k(α̂
(s)
k −1) log(us,k)

}
+c3, (19)

where we defined variational parametersα̂
(s)
k by

α̂
(s)
k = αk +

∑Gs
g=1qX̂s,g

(k). (20)

Since the right-hand side of Equation (19) is a sum of the logarithms
of Dirichlet densities (cf. Equation (1)), we see thatq∗

Û
is factorized

asq∗
Û
(u) =

∏S
s=1 q

∗
Ûs

(us), whereq∗
Ûs

is the Dirichlet density with

parameterŝα(s).
Second, with a similar argument forq∗

Û
, we deriveq∗

V̂
, the optimal

qV̂ that maximizesF (qX̂,Θ̂). We have

log(q∗
V̂
(v)) = E

[
log
(
pV (v)pY |X,V (y|X̂, v)

)]
+ c4

=
∑
k,t

{
log

(
Γ(
∑

c β
(t)
c )∏

c Γ(β
(t)
c )

)
+
∑
c

(β̂(k,t)
c −1) log(vk,t,c)

}
+ c4,

(21)
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where c4 is a normalizing constant and we defined variational
parameterŝβ(k,t)

c by

β̂(k,t)
c = β(t)

c +
∑S

s=1

∑Gs
g=1qX̂s,g

(k)ns,g
t,c . (22)

This indicates thatq∗
V̂

is factorized asq∗
V̂
(v) =

∏K
k=1

∏T
t=1 q

∗
V̂k,t

(vk,t),

whereq∗
V̂k,t

is the Dirichlet density with parameterŝβ(k,t).

7.3.2 Variational E-step: Similar to the M-step, we fixqÛ
and qV̂ and deriveq∗

X̂
, the optimalqX̂ that maximizeF (qΘ̂,X̂).

Extracting terms that are not dependent onX̂ asc5, and factoriz-
ing pX|U (x|u) andpY |X,V (y|x, v) with respect tos = 1, . . . , S,

g = 1, . . . , Gs, t = 1, . . . , T , andd = 1, . . . , D
(t)
s,g, we have

log(q∗
X̂
(x)) = E

[
log
(
pX|U (x|Û)pY |X,V (y|x, V̂ )

)]
+ c5

=
∑

s,g

(
As,g +

∑
t,dB

t,d
s,g

)
+ c5, (23)

where we defined

As,g=E
[
log
(
pXs,g|Us(xs,g|Ûs)

)]
, (24)

Bt,d
s,g=E

[
log(p

Y
t,d
s,g |Xs,g,VXs,g,t

(yt,ds,g|k, V̂k,t))
]
. (25)

Then, assuming that̂Us follows the Dirichlet distribution with
parameterŝα(s),As,g can be calculated as follows:

As,g = E[log(Ûs,xs,g )] = ψ0

(
α̂(s)
xs,g

)
−ψ0

(∑K
k=1α̂

(s)
k

)
, (26)

where ψn(x)=
dn+1

dxn+1 log(Γ(x))= dn

dxn
Γ′(x)
Γ(x)

is the polygamma

function. Similarly, writing ask = xs,g andc = yt,ds,g, we have

Bt,d
s,g = E[log(V̂k,t,c)] = ψ0

(
β̂(k,t)
c

)
−ψ0

(∑Ct
i=1β̂

(k,t)
i

)
. (27)

Taken together,q∗
X̂
(x) is factorized asq∗

X̂
(x) =

∏
s

∏
g q

∗
X̂s,g

(xs,g),

whereq∗
X̂s,g

(xs,g) can be calculated as follows with a normalizing
constantc6:

log
(
q∗
X̂s,g

(xs,g)
)
= ψ0

(
α̂(s)
xs,g

)
+
∑T

t=1

∑D
(t)
s,g

d=1 B
t,d
s,g+c6. (28)

7.4 Newton-Raphson method for hyper-parameter
estimation

For each iteration, we estimate optimal hyper-parameters values that
maximize the negative free energy as follows. First, focusing on the
terms that involve withα and writing the other terms asc7, we have

F (qX̂,Θ̂) =
∑S

s=1E
[
log
(
pUs(Ûs)

)]
+ c7 (29)

=
∑S

s=1 log
(
Γ(
∑K

k=1 αk)
/∏K

k=1 Γ(αk)
)

+
∑S

s=1

∑K
k=1(αk − 1)E

[
log(Ûs,k)

]
+ c7. (30)

Then, assuming that̂Us follows the Dirichlet distribution with para-
metersα̂(s), we obtain the partial derivatives necessary for the

Newton-Raphson updates as follows:

∂F (qX̂,Θ̂)

∂αi
= S

{
ψ0

(∑K
k=1 αk

)
− ψ0 (αi)

}
+
∑S

s=1

{
ψ0

(
α̂
(s)
i

)
−ψ0

(∑K
k=1 α̂

(s)
k

)}
, (31)

∂2F (qX̂,Θ̂)

∂αi∂αj
= S

{
ψ1

(∑K
k=1 αk

)
− δi,jψ1 (αi)

}
. (32)

In the same way, partial derivatives with respect to beta parameters
are derived as follows:

∂F (qX̂,Θ̂)

∂β
(t)
i

= K
{
ψ0

(∑Ct
c=1 β

(t)
c

)
− ψ0

(
β
(t)
i

)}
+
∑K

k=1

{
ψ0

(
β̂
(k,t)
i

)
−ψ0

(∑Ct
c=1 β̂

(k,t)
c

)}
, (33)

∂2F (qX̂,Θ̂)

∂β
(t)
i ∂β

(t)
j

= K
{
ψ1

(∑Ct
c=1 β

(t)
c

)
− δi,jψ1

(
β
(t)
i

)}
. (34)

From these equations we calculate the Newton-Raphson updates to
obtain optimal hyper-parameter values (Press, 2007).

7.5 Initialization of the approximate distribution
The VBEM algorithm iteratively updates pdfqΘ̂,X̂ to obtain refined
approximation to the true posterior. The iteration starts from a pdf,
which we initialize by using variance-minimizing clustering of non-
WGD segments.

First, we exclude segments from the shortest one until the total
number of excluded orthologs just exceedsL% of the total ortho-
logs. We setL=10 because short segments tend to become outliers
and affect clustering results. Second, after removing short segments,
individual segments are defined as distinct clusters. Third, we merge
two clusters so that the sum of variance (defined below) over all
clusters is minimized. We have chosen a variance-minimizing clus-
tering algorithm because it is robust to outliers. This step is repeated
until the number of clusters decreases to preassignedK. Forth, for a
smallε> 0 andg=1, . . . , Gs, we setqX̂s,g

(k) = 1− (K − 1)ε if

segments is a member of clusterk andqX̂s,g
(k) = ε otherwise. If

segmentswas excluded in the first step, we setqX̂s,g
(k) = 1/K for

all g=1, . . . , Gs. Fifth, qÛs
andqV̂k,t

are defined to be the Dirichlet
pdfs with parameters given by Equations (11) and (12).

The definition of variance is given as follows. For post-WGD spe-
cies t, non-WGD segments is associated with aCt-dimensional
vectorn(s)

t = (n
(s)
t,1 , . . . , n

(s)
t,Ct

), wheren(s)
t,c =

∑Gs
g=1 n

s,g
t,c denotes

the number of genes in chromosomec of post-WGD speciest that
are orthologous to genes in segments. A cluster, denoted byS,
is a set of segments and is associated withCt-dimensional vector
n
(S)
t =

∑
s∈S n

(s)
t,c . We define the distance between the center of

clusterS and segments ∈ S with respect to post-WGD speciest
by their vector argument:

dt(S, s) = arcsin
n
(S)
t · n(s)

t

|n(S)
t | · |n(s)

t |
, (35)

where|·| denotes the vector norm. Then we define the variance of
clusterS as

d(S) =
∑

s∈SGs

{∑T
t=1dt(S, s)/T

}2

. (36)
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7.6 Convergence criteria forF (qX̂,Θ̂) and α̂
(s)
k

The VBEM algorithm iteratively update the variational parameters
until F (qX̂,Θ̂) converges to a local maximum. For diagnosing con-
vergence, we calculateF (qX̂,Θ̂) asF (qX̂,Θ̂) = FÛ + FV̂ + FX̂ ,
where each term is given by

FÛ = E[log(pU (Û)pX|U (X̂|Û)
/
qÛ (Û) )] (37)

=

S∑
s=1

log

(
Γ(
∑K

k=1 αk)∏K
k=1 Γ(αk)

∏K
k=1 Γ(α̂

(s)
k )

Γ(Gs +
∑K

k=1 αk)

)
, (38)

FV̂ = E[log(pV (V̂ )pY |X,V (y|X̂, V̂ )
/
qV̂ (V̂ ) )] (39)

=

K∑
k=1

T∑
t=1

log

(
Γ(
∑Ct

c=1 β
(t)
c )∏Ct

c=1 Γ(β
(t)
c )

∏Ct
c=1 Γ(β̂

(k,t)
c )

Γ(
∑Ct

c=1 β̂
(k,t)
c )

)
, (40)

FX̂ = E[log(1
/
qX̂(X̂) )] (41)

= −
S∑

s=1

Gs∑
g=1

K∑
k=1

qX̂s,g
(k) log(qX̂s,g

(k)). (42)

Then,F (qX̂,Θ̂) is considered to be converged if the updated value
of F (qX̂,Θ̂), R1, and the previous value,R2, satisfy the following
condition:(R1 −R2)/|R2|< 0.00001.

Next, α̂(s)
k is considered to be converged if the updated value

of α̂(s)
k , rk,1, and the previous value,rk,2, satisfy the following

condition:
∑

k|rk,1 − rk,2|/K < 0.00001.

7.7 Reconstruction of pre-TGD gene order
We reconstructed pre-TGD gene order using ANGES (Joneset al.,
2012) and PMAG+ (Hu et al., 2014) in addition to the GapAdj ana-
lysis presented in Section 5. We obtained gene-order information
from two sets of species: (1) human, medaka, andTetraodon; and
(2) human, mouse, dog, chicken, spotted gar, zebrafish, medaka,
stickleback, andTetraodon. We also made smaller-scale datasets
from the two sets of species using only universal markers (i.e., genes
present in all species).

In ANGES analysis, we compared all pairs between non-
and post-TGD species for computing ancestral contiguous
sets, and parameters were set as follows: markersdoubled=0,
acssa=1, acssci=1, acsmci=1, acsweight=1, acscorrection=0,
c1p linear=1, cipheuristic=1. The results were summarized below,
which indicate that ANGES inferred a large number of short
CARs having a small number of genes due to weak gene-order
conservation between non- and post-TGD genomes.

Table 3. ANGES inferred a large number of short Pre-TGD CARs.

Number of species Universal Number Number of genes
non-TGD post-TGD markers of CARs Max Median

1 2 yes 874 17 2
1 2 no 1268 11 2
5 4 yes 492 32 3
5 4 no 2841 25 3

Next we used PMAG+, which was available as a web server at
http://www.geneorder.org. It returned reconstruction results only for

the dataset with universal markers from the nine species. The recon-
struction by PMAG+ consisted of four large CARs having957, 767,
893, and324 genes, respectively. For assessing the quality of these
CARs, we calculated the proportion of orthologs located on the two
most syntenic medaka chromosomes as discussed in Section 5. The
proportions for the four CARs were0.177, 0.181, 0.199, and0.261,
respectively, suggesting that the individual CARs probably consist
of falsely joined genes from many pre-TGD chromosomes.

Taken together, these reconstructions confirm the observation
described in Section 5 that gene-order conservation between non-
and post-TGD genomes is not sufficiently strong for reliable infer-
ence of large pre-TGD CARs.
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Fig. 6. Reconstruction withK =13. The top half of this figure is identical to the figure presented in the main text. The bottom half shows ortholog distributions
among post-TGD species (x-axis) and non-TGD species (y-axis). Post-TGD chromosomes were ordered as presented in the top: i.e., Ola24 to Ola17, Gac18
to Gac3, Tni14 to Tni15, and Dre20 to Dre2 (left to right). Non-TGD segments were assigned to pre-TGD chromosomes as described in the main text, and
they were ordered along the x-axis from pre-TGD chromosomes 1 to 13 (bottom to top). Most clusters of blue dots distant from the diagonal lines are likely
to indicate inter-chromosomal rearrangements in the post-TGD lineages.
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Fig. 7. Reconstruction withK =12. The light purple pre-TGD chromosome in theK =13 reconstruction was merged into the purple pre-TGD chromosome.
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Ola1

Ola14

Fig. 8. Ortholog distribution among chicken, spotted gar, reconstructed pre-TGD ancestor (K =13), and medaka. Black and gray lines indicate boundaries
of chromosomes and conserved synteny blocks, respectively. The chicken chromosomes were ordered along the x-axis from Gga1 to GgaZ (left to right). The
spotted gar and medaka chromosomes were ordered from Loc1 to Loc29 and from Ola24 to Ola17, respectively (bottom to top). The pre-TGD chromosomes,
consisting of the 152 human segments, were ordered from chr1 to chr13 (bottom to top), and genes in the human segments were ordered as in the human
genome. (The pre-TGD genome was represented by human segments and genes in this figure, considering the low coverage of the current version of chicken
and spotted gar genomes.) The plot shows that (1) Ola1 and Ola14 have orthologs in non-overlapping regions in the chicken genome, and (2) many chicken
microchromosomes retain one-to-one correspondence to the spotted gar chromosomes, but none of them were retained as single chromosomes in the pre-TGD
genome.
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