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1 Importance score cut-off

Let Igj→k be the importance score corresponding to the interaction event (j → k) between miRNA j and
gene k in the gth tree ensemble. Specifically, this importance score is defined as Igj→k = 1

T

∑
τ∈Ngj

Cτgj
where T is the number of random forest trees, Ngj is the set of nodes which utilize the jth miRNA for
the splitting rule in the gth tree ensemble and Cτgj is the decrease in node impurity observed in the gth
random forest model after splitting τ based on the jth predictor. In order to derive the final unweighted
networks, a proper cut-off value for importance scores {Igj→k}Mj=1 needs to be chosen. In particular, we
utilize the following permutation based procedure which derives the density of importance score under
the assumption of no interaction (Petralia et al., 2016).

(a) For b ∈ {1, · · · , B}, with B being the number of permutations,
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(a.1) Randomly permute the sample order of the expression of the target gene (response variable)
for each data type g ∈ {1, . . . , G}, i.e., permute values in vector ygk = {yg1k, . . . , y

g
ngk
}. Fit G

random forest models (one for each treatment condition) via iJRF to predict the expression of
the target gene based on the expression of miRNAs.

(a.2) Compute the final importance scores for relationships {m→ k}Mm=1 in each class g which are
denoted as {Ig,bm→k}Mm=1.

(b) For each class g and threshold ι, we compute

fg(ι) =
1
B

∑B
b=1

∑M
m=1 1(Ig,bm→k>ι)∑M

m=1 1(Igm→k>ι)

where 1(A) is the indicator function, equal to one if event A occurs and zero otherwise.

fg(ι) can serve as an approximation of the false discovery rate (FDR) (Tusher et al., 2001). In our
application, we use B = 200 and ιg0 = min{ι : fg(ι) ≤ 0.001} and declare an edge between j and k in
class g if Igj→k > ιg0.

2 Inferred Networks

2.1 Computational Time
In this section, we provide some information about the computational time needed to run iJRF for our
particular data application. As mentioned in section 2.2 of the main manuscript, iJRF’s computational
complexity is O(pTN

∑G
g=1 log(ng)ng) wth p being the number of mRNAs, N the number of predictors

(miRNAs) sampled at each node, T the number of random forest trees and ng the sample size of the
gth data set. In practice, iJRF analysis can be completed for all 7, 546 target genes in about 56 minutes
using an Intel 2 core machine. When the job is run on a server using parallel computing, the analysis
can be performed within a few minutes. In fact, the computational time of running iJRF for 100 target
genes using an intel 2 core machine is about 45 seconds.

2.2 Chemical Networks
In this section, we provide more details on chemical networks, i.e., DEP-Net, MPB-Net and TCS-Net. In
particular, DEP-Net contained 3, 018 interactions linking 47miRNAs and 1, 311mRNAs; MPB-Net 5, 743
interactions linking 57 miRNAs and 2, 119 mRNAs; while TCS-Net contained 3, 557 interactions linking
50 miRNAs and 1, 385 mRNAs. Therefore, DEP was the chemical with the smallest number of estimated
miRNA-mRNA interactions. In addition, a substantial portion (> 68%) of the interactions contained in
DEP-Net were present in Control-Net. Figure S1 shows the top 10 miRNAs in chemical-networks that
were responsible for more than 90%, 88% and 87% of the interactions in DEP-Net, MPB-Net and TCS-
Net, respectively. For each miRNA, Figure S1 shows, the number of edges shared between chemical-Net
and Control-Net (green bar), the number of control-specific edges (blue bar) and the number of chemical-
specific edges (red bar). The three quantities have been normalized dividing them by the total number
of connecting edges present in either control or chemical-networks. Although Control-Net has more
interactions than chemical-networks, there are some interesting miRNAs more connected in chemicals
rather than in control. As an example, miR-205 is connected to 103 mRNAs in DEP-Net, 283 mRNAs
in MPB-Net, 181 mRNAs in TCS-Net, while only to 137 mRNAs in Control-Net. Another interesting
miRNA is miR-29a-3p which is more connected in chemicals (DEP: 90 edges, MPB: 99 edges and TCS:
100 edges) than in control (58 edges). These miRNAs are already known in breast cancer literature (Cai
et al., 2016; Das and Lin, 2016; Li et al., 2016a; Zhang et al., 2015) for their role in drug sensitivity and
diagnosis.
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Figure S1. Top 10 miRNAs in DEP-Net, MPB-Net and TCS-Net. These miRNAs are responsible for
more than 85% of the interactions in chemical networks. For each miRNA, we show the number of edges
shared between chemical-Net and Control-Net (green bar), the number of control-specific edges (blue
bar) and the number of chemical-specific edges (red bar). The three quantities have been normalized
dividing them by the total number of connecting edges present in either control or chemical-networks.
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Figure S2 provides a pairwise comparison between chemical networks, i.e., DEP vs MPB, DEP vs
TCS and MPB vs TCS. For each pairwise comparison, we show miRNAs with more than 20 connecting
edges in at least one of the two networks compared.

DEP versus other chemicals Despite the loss of interactions observed in DEP-Net, some miRNAs such
as miR-15b-5p, miR-183-5p and miR-146a-5p are higher connected in DEP-Net compared to MPB-Net
and TCS-Net. These three chemicals should be considered for further investigations. As shown in Figure
S2, miR-375 and miR-200a are the two miRNAs where the most dramatic loss of interaction is observed
in DEP-Net compared to MPB-Net and TCS-Net. These two miRNAs were experimentally validated in
our study given the loss of interactions observed in DEP-Net compared to Control-Net.

MPB versus other chemicals Few miRNAs such as miR-672-5p, miR-146a-5p, miR-15b-5p, miR-181a-
5p and miR-199a-5p are higher connected in MPB-Net compared to TCS-Net. Among these miRNAs,
miR-199a-5p is the one with the highest number of connecting edges in MPB-Net (MPB: 70 edges, TCS:
26 edges). The number of connecting edges of miR-199a-5p in Control-Net is instead 23 and, therefore,
miR-199a-5p can be considered as MPB-specific hub miRNA. miR-199a-5p has been linked to breast can-
cer in different studies (Chen et al., 2016; Li et al., 2016b; Yi et al., 2013) and Shin et al. (2015) suggested
a role as triple negative breast cancer marker with diagnostic value. Further analyses are necessary to
elucidate the effect of MPB on the regulatory mechanisms of miR-199a-5p.

TCS versus other chemicals Compared to DEP-Net, TCS-Net involves a much higher number of
connecting edges for miR-375-3p and miR-200a-3p. However, as shown in Figure S1, a loss of interactions
is observed in TCS-Net compared to Control-Net, and threfore cannot be considered a TCS-specific hub-
miRNA. In the comparison of TCS-Net with MPB-Net, particularly interesting is miR-497-5p that is
connected to 30 mRNAs in TCS-Net while only to 7 mRNAs in MPB-Net. Again, this miRNA was more
connected in Control-Net (45 edges) than TCS-Net and, therefore, cannot be considered a TCS-specific
hub-miRNA.

3 Other methods

3.1 Marginal Analysis

No significant results were detected by traditional univariate analysis (i.e., t-test, Wilcoxon test) testing
the difference in expression of miRNAs between Control and treatment groups. As an example, for each
miRNA, we tested the difference in expression between control and each treatment (i.e., DEP, MPB and
TCS) using the unpaired Wilcoxon test. The Wilcoxon test was chosen over a t-test given the small
sample size of the study. Figure S3 shows the distribution of p-values on a − log10 scale. It is important
to notice that these p-values were not adjusted for multiple comparison and no p-value was significant
(< 0.20) after Benjamini correction.

3.2 miRNA-mRNA Interactions via Correlation Test

For each chemical treatment and control, we inferred miRNA-mRNA interactions using Pearson’s corre-
lation test. Specifically, for each miRNA-mRNA pair and one treatment condition, an edge is declared
between the pair if their correlation under the treatment condition is significant after adjusting for mul-
tiple comparison. The following paragraphs contain results for two different false discovery rate (FDR)
cut-off, i.e., fdr = 0.01 and fdr = 0.001.
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Figure S2. Pairwise comparison between chemical networks. For each pairwise comparison, we show
only miRNAs with more than 20 edges in at least one of the two chemical networks compared. For each
miRNA, we show the number of edges shared between the two networks (green bar), the number of
chemical 1 specific edges (blue bar) and the number of chemical 2 specific edges (red bar). The three
quantities have been normalized dividing them by the total number of connecting edges present in at
least one of the two networks compared.
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Figure S3. Pvalues (- log 10 scale) from unpaired Wilcoxon test comparing the difference of miRNA
expression between Control and chemical treatment.

FDR cut-off 0.001 In order to derive miRNA-mRNA networks from iJRF, an FDR cut-off of 0.001
was considered (see section 1 of supplementary material). Such stringent cut-off is generally utilized for
high-dimensional data applications. Table S1 shows the number of edges detected by the correlation
test using the same FDR cut-off. Consistently with iJRF’s results, a loss of connectivity is registered in
chemicals compared to control. However, the number of detected edges is much lower than that of iJRF
(see Table 1 in the main manuscript). In particular, more than 89% of the edges in Control-Net resulting
from correlation test involve three top miRNAs, i.e., miR-375-3p, miR-483-3p and miR-150-5p, which are
among the top 10 miRNAs detected by iJRF (see Figure 2 of the main manuscript). As shown by Figure
S4, these top miRNAs play a limited role in chemical networks. Particularly interesting is miR-375-3p,
one of the miRNAs experimentally validated in our study. Figure 3(a) in the main manuscript showed
some interesting enriched pathways such as "Mammary Gland Development" and "Gland Morphogen-
esis" for mRNAs connected to miR-375-3p in Control-Net but not in DEP-Net. In the same way, we
derived pathways enriched for mRNAs connected to miR-375-3p and miR-200a-3p in Control-Net but
not in DEP-Net based on the correlation test. Unfortunately, no pathway was enriched using Benjamini’s
adjusted p-value of 0.01. Therefore, iJRF detected more associations and identified more interesting
mechanisms compared to the correlation model.

FDR cut-off 0.01 Table S1 shows the number of edges detected by the correlation test applying a cut-off
of 0.01. Again, a loss of connectivity is registered in chemical networks compared to Control-Net. Figure
S5 shows the degree plot of the top ten hub-miRNAs in Control-Net. Although the top 10 miRNAs
detected by the correlation test and iJRF are mostly the same, the correlation model results in less
overlapping networks compared to iJRF. As an example, only 6% of edges in DEP-Net are shared with
Control-Net based on the correlation model, ten times less than the number of shared edges detected
by iJRF (Table 1 in the main manuscript). This result is expected as iJRF, through joint learning, is
more effective to detect common associations than algorithms handling different treatment conditions
separately (Petralia et al., 2016). Moreover, as demonstrated by Petralia et al. (2016), using random
forest models to characterize interaction patterns is more powerful than a joint learning based on Gaussian
graphic models (Danaher et al., 2014).

To further compare our joint learning with the correlation test, an enrichment analysis was performed.
Specifically, for each miRNA, we considered the set of connected messanger RNAs and derived the list
of enriched GO terms. In particular, enrichment analysis was performed using David Tools (version 6.7)
(Huang et al., 2008) and only GO terms with Benjamini adjusted p-value less than 0.01 were considered
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Table S1. Number of interactions inferred in Control-Net, DEP-Net, MPB-Net and TCS-Net with two
different FDR cut-off, i.e., 0.001 and 0.01.

FDR Cut-Off 0.001
Control DEP MPB TCS

Control 287 0 1 0
DEP 179 47 0
MPB 234 0
TCS 6

FDR Cut-Off 0.01
Control DEP MPB TCS

Control 4,893 87 505 21
DEP 1,352 456 1
MPB 2,926 10
TCS 1,038

Control versus DEP Control versus MPB Control versus TCS
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Figure S4. Degree plot for top-miRNAs resulting from correlation test applying an FDR cut-off of
0.001. For each miRNA, we show the number of edges shared by chemical and control (green bar), the
number of control-specific edges (blue bar) and the number of chemical-specific edges (red bar). The
three quantities have been normalized dividing them by the total number of connecting edges in either
Control-Net or chemical networks.
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as enriched. Figure S6 shows the total number of enriched GO terms resulting from both the correlation
test and iJRF. As shown, for all networks, iJRF results in more enriched pathways than the correlation
test. Therefore, despite using a less stringent FDR cut-off, the correlation test fails to reveal biological
processes detected by iJRF.

4 MirTarBase
Table S2 shows the list of interactions for the 10 leading miRNAs in Control-Net contained in miRTarBase
(Hsu et al., 2010). As shown, some of the interactions are contained in DEP-Net, MPB-Net and TCS-Net
as well.

5 Enrichment Analysis
Table S3 shows some of the enriched categories for the top leading miRNAs in Control-Net. For each
miRNA j, we consider the list of genes connected to j in Control-Net but not in chemical-networks and
derived enriched GO terms using David Tools (Huang et al., 2008). As shown, enriched GO terms include
"Plasma Membrane", "Mammary Gland Development", "Immune Response" and "T-Cell Activation".
Only enriched categories with p-values smaller than 0.01 are shown.

Figure S7(a) shows the density of the absolute value of correlation between miR-375-3p and miR-
200a-3p with genes connected to them in Control-Net but not in DEP-Net. In Figure S7(b), we test the
difference in correlation between Control and DEP groups for genes connected to miR-375-3p and miR-

200a-3p only in Control. For this purpose, we consider the following statistics
∑

j=1 |ρControl
j,m |∑

j=1 |ρdepj,m|
with ρhj,m

being the correlation between gene j and miRNA m under h treatment condition. Then, we permuted
labels between Control and DEP category 1, 000 times and calculated the same statistics. The histogram
in Figure S7(b) shows the value of the statistics over 1, 000 permutations. As shown, the true value (solid
red line) is in the tail of the null density (p-values equal to 0.028 and 0.06 for miR-375-3p and miR-200a-3p,
respectively) indicating that the loss of correlation observed under DEP exposure is significant.
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Figure S5. Degree plot for top-miRNAs resulting from correlation test applying an FDR cut-off of
0.01. For each miRNA, we show the number of edges shared by chemical and control (green bar), the
number of control-specific edges (blue bar) and the number of chemical-specific edges (red bar). The
three quantities have been normalized dividing them by the total number of connecting edges in either
Control-Net or chemical networks.



S 10

951

691

461

248

700

326 303

310

250

500

750

C
ontrol−N

et

D
EP−N

et

M
PB
−N

et

TC
S−N

et

Network

N
um

be
r o

f G
O

 T
er

m
s

Correlation Test iJRF

Figure S6. For each network (i.e., Control-Net, DEP-Net, MPB-Net, TCS-Net), we show the total
number of enriched GO terms resulting from the correlation test (0.01 FDR cut-off) and iJRF. For each
miRNA, we considered the set of connected messanger RNAs and derived the list of enriched GO terms.
In particular, enrichment analysis was performed using David Tools (version 6.7) and only GO terms
with Benjamini’s adjusted p-value less than 0.01 were considered as enriched.
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A network approach to study the e�ect of chemical exposures on gene
regulatory system in rats

Francesca Petralia, Vasily Aushev, Kalpana Gopalakrishnan, Susan Teitelbaum, Jia Chen, Pei Wang
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY

Abstract
Exposure to environmental chemicals during early devel-
opment may increase the risk of developing breast cancer
later in life. In this context, we are interested in char-
acterizing which microRNA (miRNA) and mRNA expres-
sions change in a coherent manner across the lifespan, and
whether the coexpression pattern is a�ected by environ-
mental exposures. miRNAs contribute to tumor progres-
sion via the regulation of post transcriptional gene expres-
sions. Thus, information on di�erent interaction patterns
among miRNAs and mRNAs measured in mammary tis-
sues from chemical exposed vs. non exposed rats can cast
light on how chemical exposures may alter mammary gland
development.

Data Description

• Three common environmental chemicals:
• Diethyl Phthalate (DEP)
• Methyl Paraben (MPB)
• Triclosan (TCS)

Control Diethyl phthalate 
(DEP)

Methyl paraben 
(MPB) 

Triclosan 
(TCS)

• Female SpragueDawley rats were treated with chemicals at
four windows of susceptibility (prenatal, neonatal,
prepubertal and pubertal)

• Chemical doses produce urinary metabolite levels similar to
those measured in US population.

• For the analysis, we consider 7,546 mRNAs and 272
miRNAs

Derive miRNA-mRNA interaction network

OILOIL

DEPDEP
MPBMPB

TCSTCS

Borrow 
Information

Prioritize Prioritize 
miRNAs miRNAs 
based on based on 

sequence sequence 

similaritysimilarity

OILOIL

DEPDEP

MPBMPB

TCSTCS

Same miRNA is chosen as splitting variable Same miRNA is chosen as splitting variable 

across different exposed dataacross different exposed data

For each exposed data, For each exposed data, 

model each mRNA as model each mRNA as 

function of miRNAs via function of miRNAs via 

random forestrandom forest

Repeat for each mRNARepeat for each mRNA

Derive Derive 

Interactions Interactions 

based on random based on random 

forest importanceforest importance

• To infer networks we use Joint Random Forest (JRF) [1] with
iRafNet sampling scheme [2]

• For each exposure condition, model the expression of each mRNA as
function of miRNAs expression via random forest

• At each random forest node, we sample miRNAs with probability
proportional to Target Scan scores [3]

• Following JRF model, the four random forest tree ensembles (OIL,
DEP, MPB and TCS) use the same splitting variables (miRNAs) to
build trees. In this way we achieve borrowing information across
exposure conditions and detect common relationships with better
power.

Results

(a) Correlation between miRNA-mRNA present only in Control-Net
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(b) Test di�erence in correlation between DEP-Net and Control-Net
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Let-7b-5p miR-99a-5p
miR-99a significantly inhibits breast cancer
cell proliferation, migration, and invasion

Let-7 regulates self renewal and tumorigenicity
of breast cancer cells

Fig. 4 Plot of expression across four window
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Fig. 5 Scatterplot between Let-7b-5p and
a connected mRNA in MPB but not in OIL

Gnas locus may contribute to the pathogenesis
of breast cancer
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Discussion

• We propose a model to infer miRNA-mRNA interactions from di�erent
exposure conditions simultaneously.

• Some miRNAs, such as miR-200a-3p & miR-375-3p, regulate more
mRNAs in control than in chemicals (Fig. 1 & Fig. 2).

• Among the chemicals, DEP is the one with less detected associations
(Fig. 1). Genes associated to miR-200a-3p and miR-375-3p in OIL but
not in DEP were enriched of “Gland Development” (Fig. 3).

• Chemical specific miRNAs detected in MPB (Let-7b-5p) and TCS
(miR-99a-5p) (Fig. 4, 5 & 6) play important role in breast cancer.
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Figure S7. (a) Density of absolute correlation between miR-375-3p and miR-200a-3p with mRNAs
connected only in Control-Net for DEP exposed data (red) and control data (black). (b) We test the
difference in correlation between Control and DEP group for genes connected to miR-375-3p and

miR-200a-3p only in Control-Net. For this purpose we consider the statistics
∑

j=1 |ρControl
j,m |∑

j=1 |ρdepj,m|
with ρhj,m

being the correlation between gene j and miRNA m under condition h. The test is performed using
permutation techniques, permuting the label of samples between Control and DEP category. The
histogram shows the null density of the statistics over 1,000 permutations while the red line shows the
true value of the statistics.
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Table S2. List of interactions contained in miRTarBase (Hsu et al., 2010) for the top ten connected
miRNAs in Control-Net. As shown, some of the interactions were contained in DEP-Net, MPB-Net and
TCS-Net as well.

miRNAs mRNAs DEP MPB TCS

miR-375 HER2, TMTC4, SFT2D2 , KRT8 x
miR-375 PLAG1, CCDC88A, CELF2 x
miR-375 GATA6 x x
miR-375 CMTM4, FOLR1, CTSC
miR-200a ZEB2
miR-200a HOXB5 x
miR-200a DLC1 x
miR-150 CBL x x x
miR-150 FOXK1
miR-150 CCR6 x x x
miR-342 KCTD15 x
miR-200b FN1, DNMT3A x
miR-200b HOXB5 x
miR-200b DLC1 x
miR-200b CAB39 x x
miR-204 SOX4 x x x
miR-204 TRPM3 x x
miR-429 PARD6B x
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Table S3. Enriched categories for top 10 miRNAs in Control-Net. For each miRNA, we consider the
list of genes connected in Control-Net but not in chemical networks and derive enriched GO terms using
David Tools. For each pathway, we report Benjamini adjusted p-value. Only pathways with Benjamini
adjusted p-values smaller than 0.01 are shown.

miRNA Pathways enriched for genes connected to miRNA in Control-Net but not in DEP-Net.

miR-146b-5p Phosphoprotein (4E-3), Bicellular tight junction (8E-3), Cell junction (9E-3)
miR-200a-3p Plasma Membrane (1E-10), Cell-Cell Junction (2E-5), Gland Development (2E-4),

Skeletal System Development (2E-3), Regulation of Cell Proliferation (3E-3), Biological Adhesion (6E-3)
miR-429 Plasma Membrane (1E-13), Homeostatic Process (4E-7), chemical homeostasis (4E-7),ion Homeostasis (2E-4)

Cell adhesion (4E-4), Gland development (1E-3), regulation of cell proliferation (6E-3), lipid binding (7E-3)
miR-150-5p plasma membrane (2E-4), ntracellular signaling cascade (2E-3), external side of plasma membrane (9E-3)
miR-342-3p plasma membrane (3E-4), external side of plasma membrane (5E-3)
miR-200b-3p plasma membrane (1E-11), gland development (10E-6), apical junction complex (5E-4),

mammary gland development (6E-3), cell adhesion (8E-3), biological adhesion (8E-3), cell-cell junction (6E-3)
miR-204-5p plasma membrane (9E-17), chemical homeostasis (6E-5), cell-cell junction (5E-5), ion homeostasis (3E-4),

homeostatic process (4E-4) , apical junction complex (5E-4), cellular chemical homeostasis (7E-4)
miR-483-3p Plasma Membrane (3E-12), response to hormone stimulus (10E-7), response to endogenous stimulus (3E-6),

response to organic substance (7E-6), regulation of cell proliferation (7E-4), gland development (2E-3),
calcium ion binding (2E-3), response to drug (4E-3), lipid binding (9E-3)

miR-375-3p Gland Development (1E-7), gland morphogenesis (1E-5), plasma membrane (2E-5)
epithelium development (7E-4)

miR-214-3p Gland Morphogenesis (6E-4), Response to Organic Substance (1E-3), Plasma Membrane (3E-3)

miRNA Pathways enriched for genes connected to miRNA in Control-Net but not in MPB-Net.

miR-146b-5p Plasma Membrane (9E-4)
miR-429 Plasma Membrane (5E-5)
miR-150-5p Intracellular Signaling Cascade (2E-3), Guanyl ribonucleotide Binding (4E-3), Positive Regulation of

Macromolecule Metabolic Process (5E-3)
miR-200b-3p Membrane (8E-3)
miR-204-5p Plasma Membrane (3E-7), Chemical Homeostasis (7E-3), Gland Development (8E-3), Ion Homeostasis (9E-3)
miR-483-3p Plasma Membrane (2E-7), Lipid Binding (2E-3) , response to hormone stimulus (2E-3)

response to organic substance (6E-3)
miR-375-3p gland development (1E-3)

miRNA Pathways enriched for genes connected to miRNA in Control-Net but not in TCS-Net

miR-146b-5p Phosphoprotein (3E-3)
miR-200a-3p apical plasma membrane (5E-6), basolateral plasma membrane (6E-4), cell surface (9E-4),

tricellular tight junction (1E-3), extracellular exosome (4E-3)
miR-429 apical plasma membrane (4E-6), response to progesterone (8E-4), cell adhesion (5E-3)

protein binding (8E-3), microvillus (2E-3), extracellular exosome (5E-3)
miR-150-5p Cell activation (7E-14), leukocyte activation (9E-14), positive regulation of immune system process (2E-13)

immune response (4E-13), T cell activation (3E-11), lymphocyte activation (5E-11), intracellular signaling
cascade (1E-8), regulation of cell activation (2E-8), plasma membrane (2E-8), positive regulation
of immune response (3E-8), regulation of cytokine production (1E-6), positive regulation of response to
stimulus (3E-6), cell receptor signaling pathway (3E-6)

miR-342-3p External Side of Plasma Membrane (7E-11), Positive Regulation of GTPase Activity (1E-8)
Intracellular Signal Transduction (4E-8), Inflammatory Response (2E-7), Immune Response (3E-5)
Cytoskeleton (1E-5), Positive Regulation of ERK1 and ERK2 Cascade (2E-4), T Cell Differentiation (5E-4)

miR-200b-3p plasma membrane (7E-9), gland development (9E-4)
miR-204-5p plasma membrane (6E-15), ion homeostasis (6E-5), chemical homeostasis (2E-4), cellular ion homeostasis (5E-4),

cellular chemical homeostasis (7E-4), apical part of cell (1E-3), homeostatic process (2E-3)
miR-483-3p plasma membrane (1E-12), response to hormone stimulus (5E-5), response to organic substance (5E-4)

regulation of cell proliferation (1E-3) , anchoring junction (2E-3), gland development (6E-3)
response to oxygen levels (7E-3), tissue remodeling (8E-3), adherens junction (7E-3)
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