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A Supplementary Methods
A.1 Training the Gradient Tree Boosting model
As we mentioned in the main text, Gradient Tree Boosting (GTB) approximates F ∗(x) with F (x), an additive
ensemble of base learner functions. The additive model is as follows:

F (x) =
M∑
m=1

βmh(x;θm), (1)

where h(x;θm) is a decision tree, which is a function of x with the parameter setting θm, and βm is the expansion
coefficient. M is the total number of decision trees in the ensemble. For m = 1, · · · ,M ,

Fm(x) = Fm−1(x) + βmh(x;θm). (2)

A new decision tree is generated at each stage to minimize the loss function given the current model. Suppose
L(y, F (x)) is the loss function,

(βm,θm) = argmin
β,θ

N∑
i=1

L(yi, Fm−1(xi) + βh(xi;θ)). (3)

Gradient descent method [1] is used to estimate the parameters of the new decision tree. θm and βm are updated
with a two-step strategy. Firstly,

θm = argmin
θ,ρ

N∑
i=1

[ỹim − ρh(xi;θ)]2, (4)

where

ỹim = −∂L(yi, F (xi))
∂F (xi)

|F (x)=Fm−1(x). (5)

Accordingly, βm can be updated through a second-step optimization.

βm = argmin
β

N∑
i=1

L(yi, Fm−1(xi) + βh(xi;θm)). (6)

We also tried to choose the most appropriate thresholds for the classifier. A sample is classified as positive if the
probability of being from the positive class exceeds the threshold. It has been suggested that adjusted thresholds of
the classifier be used in the case of imbalanced data [2, 3]. The threshold of the classifier was tuned as a parameter
using only training data. In each fold of the 10-fold cross validation (outer round), we performed 5-fold cross
validation (inner round) on the training set to select the threshold of the classifier.

Prior to model training on all the six cell lines, we tuned the parameters n estimators (the number of deci-
sion trees in the ensemble) and max depth (maximal depth of each tree) of the XGBClassifier. Ensembles with
more estimators are more robust to the over-fitting problem, and deeper decision trees are able to learn higher
order of interactions of the features [4]. We evaluated the performance of the trained classifier with respect to
different choices of the parameters on the training data. The parameter tuning processes were mainly performed
on GM12878 and K562, which have larger sample sizes than the other cell lines. The parameters of XGBClassi-
fier adopted in both PEP-Motif and PEP-Word are n estimators = 1000 and max depth = 10, with the other
parameters as default.
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A.2 Motif clustering based on motif similarity estimation
We used TomTom [5] to compute the similarity between each pair of the 641 motifs from the HOCOMOCO Human
v10 database used in PEP-Motif and constructed a connectivity graph showing the motif similarity relationships.
Motifs with significantly similar PWMs were connected in the graph, using a threshold ofE-value of 10−3 in mea-
suring the similarity confidence with results from TomTom. There are 357 components in the graph, representing
coarse-level clustering of motifs. Examples of the components are shown in Supplementary Figure S4. We further
implemented the Highly Connected Subgraphs clustering algorithm [6] to group motifs in each component into
clusters. Any pair of motifs in a resulted cluster are within distance of 2 to each other, a property guaranteed by
the HSC algorithm.

A.3 Weighted pooling to generate features in PEP-Word
We used weighted pooling to generate feature representation for enhancer/promoter sequences from features ofK-
mers. EachK-mer is assigned a weight, based on two principles [7]. First,K-mers related to unwanted background
features have lower weights. Second, K-mers with more occurrences have higher weights. Accordingly, we
employed the approach of calculating Item Frequency-Inverse Document Frequency (TF-IDF) [8–10] in our weight
assignment, with the goal of repressing background noise while retaining the influence of K-mers with frequent
occurrences. TF-IDF has been effectively applied in information retrieval and text mining [11]. It reflects the
importance of a word to a document in a corpus of documents. We used GenSim [12] to build a TF-IDF dictionary
for all the K-mers involved in the word embedding model of the enhancers (or promoters). The TF-IDF of each
K-mer is calculated as follows.

tfidf(w, d,D) = tf(w, d) · idf(w,D), (7)

where w is a K-mer, d is the sequence in which the K-mer appears, and D is the corpus of all the sequences of the
enhancers (or promoters). tf(w, d) is the number of occurrences of K-mer w in sequence d. Specifically,

idf(w, d) = log
|D|

|{d ∈ D : t ∈ d}|
, (8)

where |D| is the total number of sequences and |{d ∈ D : t ∈ d}| is the number of sequences in which the K-mer
appears. Therefore, if aK-mer appears commonly across the sequences, it is assumed to involve background noise
and receives a reduced TF-IDF value.

A.4 Choosing parameters of the word embedding model in PEP-Word
In PEP-Word we adjusted parameters such as K-mer size and the embedded feature vector size. We chose the
parameters in seeking balance between computational efficiency and prediction performance. In PEP-Word the
K-mer size is K=6 and the embedded feature vector size is n=300. As the vocabulary size of the word embedding
model is approximately 4K , larger K leads to exponential increase of vocabulary size and higher computational
expense. We found that the performance improves as K increases from 4 to 6, which suggests the longer K-mers
capture more discriminative patterns. Model with K=7 has similar or slightly better performance than model with
K=6 in three tested cell lines (GM12878, K562 and HeLa-S3) (Supplementary Figure S5). However, there is
no obvious improvement as K increases to 8. Since K=7 increases computation cost and training time, K=6
is preferred for practical use and selected for the model for all the performance comparison in this work. We
also evaluate the performance by varying the embedded feature vector size from 100 to 600. Results showed that
choosing n=300 has balanced benefit of computational efficiency and performance (Supplementary Figure S5).

A.5 Integration of features from PEP-Motif and PEP-Word
We combined the feature vector from PEP-Word with a selected subset of putative important features from PEP-
Motif to form integrated feature representation (PEP-Integrate) of each enhancer-promoter pair, in attempt to ex-
ploit potential complementary characteristics of the two kind of features. We assume motif-based features to be
more accurate in the capturing specific TFBS patterns as a curated motif database is used for motif scanning. On
the other hand, features generated by PEP-Word are abstract distributed representations and not limited to TFBS
patterns, with the possibility of capturing patterns in the potential whole feature space which are not modeled by
existing TFBS motifs. The integrated feature vector for the i-th sample pair is as follows:

f (i) = (f
(i)
W , f

(i)
M,s) = (f

(i)
W,1, · · · , f

(i)
W,n, f

(i)
M,s1

, · · · , f (i)M,sk
). (9)
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f
(i)
W and f (i)M are respectively the feature vectors extracted by PEP-Word and PEP-Motif. Let s be the set of indices

of selected motif features in f (i)M . Suppose s = (s1, ..., sk), i.e., there are k selected motif features to be combined
with f (i)W . We performed similar feature importance ranking and recursive feature selection as described in the
section of PEP-Motif to choose features contained in s. We ranked motif features based on their importance
estimated in PEP-Motif, and sequentially increased the number of top ranking motif-based features selected for
PEP-Integrate, refitting, and evaluating the predictor trained with GTB accordingly. Performance evaluation with
respect to different sizes of s is shown in Supplementary Figure S2. We chose the top 300 important motif features
for PEP-Integrate in each cell line, which gains performance improvement over individual modules and does not
induce high feature dimensionality.

A.6 Choice of flanking region of enhancers
The enhancers are mostly only a few hundred base-pairs in length. In forming the feature representation of the
enhancers, we involve the flanking regions of each enhancer in attempt to utilize the information encoded in the
context for more effective feature extraction. Flanking region of 4kb on each side of the originally annotated
enhancer is included as extension of the enhancer. We changed the length of the flanking region L and evaluated
the performance of the re-trained model with respect to different choices of L on cell lines GM12878, K562, and
HeLa-S3. The performance comparison on AUPR is shown in Supplementary Figure S5. Accordingly, we selected
L = 4kb to keep the balance between performance and computational efficiency.

A.7 Analysis of potential predictive feature interactions
We took a look at the interacting enhancer-associated motif features and promoter-associated motif features that
are important based on our GTB model. For each cell type, we performed 10-fold cross validation and used
XGBFIR [13] to extract a number of most predictive E-P feature interactions from the training data. The top N
important E-P feature interactions from each fold were first merged and then we selected the ones that were within
top N in more than two training folds (denoted as feature set S(N)

1 ). We then sorted all the merged features by
their relative rank within E-P feature interactions in the respective training fold, and selected the top N feature
interactions (denoted as feature set S(N)

2 ). We obtained the union of S(N)
1 and S(N)

2 (denoted as S(N)) while
retaining the order of the interactions within each set, with S(N)

1 assigned priority. Thus S(N) contains important
features from the corresponding cell line with respect to the choice of N . We repeated the procedure for all the six
cell lines. For N = 30, the E-P feature interactions selected to S(N) in GM12878, K562, and HeLa-S3 are shown
in Supplementary Figure S8, S9 and S10. For N = 200, we chose the feature interactions that are selected to S(N)

in at least two cell lines. We obtained 40 feature interactions (shown in Supplementary Table S10).

A.8 Evaluation metrics used in model performance assessment
Different evaluation metrics are used in our study to assess the performance of the model. The evaluation metrics
include AUROC (Area Under the Receiver Operating Characteristic curve), AUPR (Area Under the Precision-
Recall curve), Precision, Recall, F1 score, and MCC (Matthews Correlation Coefficient). Receiver Operator Char-
acteristic (ROC) curves are widely used in evaluation of binary decision problems [14]. However, it has been
shown that ROC curves can overly optimistically evaluate an algorithms performance if the class distributions are
very imbalanced [15]. Precision-Recall (PR) curves have often been used as an alternative to ROC curves for
predictive tasks on heavily imbalanced data.

Precision (Positive Predictive Value, PPV) is the fraction of predictions that are true positive. Recall (Sensitivity
or True Positive Rate, TPR) is the fraction of true positive among all the predictions. F1 score is the harmonic mean
of precision and recall. MCC (Matthews Correlation Coefficient) takes into account true and false positives and
negatives, and is generally regarded as a balanced measure even if the classes are very imbalanced. The definitions
are shown below.

Precision = PPV =
TP

TP + FP
, (10)

Recall = TPR =
TP

TP + FN
, (11)
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F1 = 2 · Precision× Recall
Precision+Recall

, (12)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
. (13)

A.9 Performance evaluation in comparison with TargetFinder and RIPPLE
To obtain AUPR and AUROC in performance comparison, probabilistic predictions of TargetFinder (E/P/W) and
TargetFinder (EE/P) on the E/P datasets and EE/P datasets in six cell lines as described in the Methods section
were obtained using the source code of TargetFinder through 10-fold cross validation, in the same way as PEP
modules were evaluated. The calculated performance of Precision, Recall, F1 score, and MCC are also consistent
with the results reported in [16]. Probabilistic predictions of RIPPLE on the EE/P datasets were obtained through
10-fold cross validation by using the source code of RIPPLE and employing the same set of functional genomic
features collected for TargetFinder (EE/P) in the annotated extended enhancer and promoter regions. As RIPPLE
only outputs probabilistic predictions and does not make binary classification, to compute Precision, Recall, F1

score, and MCC, we drew the Precision-Recall curve of RIPPLE and chose the threshold corresponding to the
best F1 based on the PR curve. Samples were classified by the selected threshold and Precision, Recall, F1 score,
and MCC were calculated accordingly, which are highly likely to be better than real performance if a threshold is
estimated from cross validation or chosen with prior knowledge. RIPPLE uses both continuous features or binary
features. We performed evaluation with both modes. To obtain binary features, the original features were converted
to 1 if the feature values are larger than zero, and to 0 otherwise. We compared performance from both modes and
chose continuous features, which performed better.
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B Supplementary Tables

Cell line Enhancers Promoters Positive Negative Total
(total number) (total number) sample size sample size sample size

GM12878 100036 8453 2113 42200 44313
K562 82806 8196 1977 39500 41477
IMR90 108996 5253 1254 25000 26254
HeLa-S3 103460 7794 1740 34800 36540
HUVEC 65358 8180 1524 30400 31924
NHEK 144302 5254 1291 25600 26891

Table S1: Summary of Enhancer/Promoter (E/P) data. E/P data were used in [16] to evaluate the performance of Tar-
getFinder (E/P/W), TargetFinder (E/P) and the baseline model, of which TargetFinder (E/P/W) achieved the strongest per-
formance. The negative sample size is about 20 times of the positive sample size in E/P data.

Cell line Enhancers Promoters Positive Negative Total
(total number) (total number) sample size sample size sample size

GM12878 100036 8453 3559 71000 74559
K562 82806 8196 2750 55000 57750
IMR90 108996 5253 1897 37800 39697
HeLa-S3 103460 7794 2146 42900 45046
HUVEC 65358 8180 1932 38600 40532
NHEK 144302 5254 1559 31000 32559

Table S2: Summary of Extended Enhancer/Promoter (EE/P) data.EE/P data were used in [16] to evaluate the performance
of TargetFinder (EE/P). The enhancer-promoter interactions were identified on basis of the extended enhancers and the
promoters, resulting in more positive samples. The negative sample size is also about 20 times of the positive sample size
in EE/P data. The sample size of EE/P data is therefore larger than that of E/P data.
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Cell line Method AUROC AUPR Precision Recall F1 MCC
GM12878 TargetFinder(E/P/W) 0.9618 0.8322 0.8778 0.7549 0.8117 0.8055
GM12878 PEP-Motif 0.9503 0.8532 0.9039 0.7610 0.8263 0.8217
GM12878 PEP-Word 0.9489 0.8449 0.8962 0.7601 0.8225 0.8174
GM12878 PEP-Integrate 0.9524 0.8607 0.9189 0.7719 0.8390 0.8351
K562 TargetFinder(E/P/W) 0.9640 0.8782 0.8872 0.8113 0.8476 0.8412
K562 PEP-Motif 0.9472 0.8454 0.8929 0.7416 0.8129 0.8080
K562 PEP-Word 0.9461 0.8420 0.8849 0.7425 0.8075 0.8021
K562 PEP-Integrate 0.9514 0.8498 0.8938 0.7532 0.8175 0.8124

IMR90 TargetFinder(E/P/W) 0.9621 0.8197 0.8501 0.7281 0.7844 0.7770
IMR90 PEP-Motif 0.9388 0.8161 0.8500 0.7504 0.7971 0.7893
IMR90 PEP-Word 0.9331 0.8376 0.8994 0.7488 0.8172 0.8126
IMR90 PEP-Integrate 0.9416 0.8470 0.9255 0.7632 0.8365 0.8334
HeLa-S3 TargetFinder(E/P/W) 0.9758 0.9089 0.8971 0.8466 0.8711 0.8652
HeLa-S3 PEP-Motif 0.9613 0.8823 0.9217 0.7845 0.8476 0.8436
HeLa-S3 PEP-Word 0.9613 0.8741 0.9070 0.7621 0.8282 0.8238
HeLa-S3 PEP-Integrate 0.9645 0.8865 0.9300 0.7793 0.8480 0.8447

HUVEC TargetFinder(E/P/W) 0.9563 0.8044 0.8674 0.6909 0.7692 0.7643
HUVEC PEP-Motif 0.9318 0.7649 0.8013 0.6640 0.7262 0.7173
HUVEC PEP-Word 0.9298 0.7787 0.8062 0.6877 0.7422 0.7329
HUVEC PEP-Integrate 0.9401 0.7896 0.8259 0.6850 0.7489 0.7411

NHEK TargetFinder(E/P/W) 0.9831 0.9272 0.9234 0.8683 0.8950 0.8903
NHEK PEP-Motif 0.9624 0.8815 0.8985 0.7885 0.8399 0.8344
NHEK PEP-Word 0.9726 0.9003 0.9249 0.8110 0.8642 0.8599
NHEK PEP-Integrate 0.9778 0.9073 0.9536 0.8118 0.8770 0.8744

Table S3: Performance evaluation of TargetFinder (E/P/W), PEP-Motif, PEP-Word, and PEP-Integrate on E/P data of six cell
lines. K=6 is used for K-mer by PEP-Word for training the word embedding model. PEP-Integrate features are PEP-Word
features combined with on E/P data 300 top ranked important motif features selected from PEP-Motif. The performance
of PEP-Motif, PEP-Word or PEP-Integrate that shows improvement over the corresponding performance of TargetFinder
(E/P/W) is in bold font.
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Cell line Method AUROC AUPR Precision Recall F1 MCC
GM12878 TargetFinder(EE/P) 0.9704 0.8804 0.8888 0.8039 0.8442 0.8380
GM12878 RIPPLE 0.9583 0.8416 0.8880 0.7378 0.8061 0.8011
GM12878 PEP-Motif 0.9634 0.8806 0.9011 0.7963 0.8455 0.8400
GM12878 PEP-Word 0.9661 0.8784 0.8983 0.7839 0.8372 0.8317
GM12878 PEP-Integrate 0.9665 0.8888 0.9139 0.7963 0.8511 0.8463
K562 TargetFinder(EE/P) 0.9640 0.8782 0.8796 0.7542 0.8121 0.8060
K562 RIPPLE 0.9448 0.7935 0.8615 0.6807 0.7605 0.7557
K562 PEP-Motif 0.9557 0.8409 0.8758 0.7309 0.7968 0.7912
K562 PEP-Word 0.9579 0.8385 0.8463 0.7232 0.7799 0.7724
K562 PEP-Integrate 0.9603 0.8480 0.8779 0.7268 0.7952 0.7898

IMR90 TargetFinder(EE/P) 0.9650 0.8633 0.9056 0.7739 0.8346 0.8297
IMR90 RIPPLE 0.9533 0.8235 0.8940 0.7116 0.7925 0.7889
IMR90 PEP-Motif 0.9509 0.8419 0.9032 0.7333 0.8094 0.7770
IMR90 PEP-Word 0.9583 0.8627 0.8856 0.7628 0.8196 0.8137
IMR90 PEP-Integrate 0.9609 0.8731 0.9232 0.7607 0.8341 0.8309
HeLa-S3 TargetFinder(EE/P) 0.9671 0.8669 0.8785 0.7852 0.8292 0.8226
HeLa-S3 RIPPLE 0.9569 0.8265 0.8646 0.7260 0.7893 0.7829
HeLa-S3 PEP-Motif 0.9668 0.8725 0.8962 0.7563 0.8203 0.8153
HeLa-S3 PEP-Word 0.9662 0.8684 0.8723 0.7548 0.8093 0.8028
HeLa-S3 PEP-Integrate 0.9715 0.8792 0.8935 0.7590 0.8208 0.8155

HUVEC TargetFinder(EE/P) 0.9376 0.7559 0.8025 0.6351 0.7090 0.7015
HUVEC RIPPLE 0.9310 0.7006 0.7340 0.6113 0.6670 0.6550
HUVEC PEP-Motif 0.9410 0.7799 0.8094 0.6615 0.7280 0.7198
HUVEC PEP-Word 0.9447 0.7793 0.7702 0.6801 0.7224 0.7109
HUVEC PEP-Integrate 0.9473 0.7953 0.8082 0.6869 0.7426 0.7334
NHEK TargetFinder(EE/P) 0.9721 0.8759 0.8738 0.7864 0.8278 0.8209
NHEK RIPPLE 0.9640 0.8535 0.9033 0.7492 0.8191 0.8147
NHEK PEP-Motif 0.9656 0.8750 0.9134 0.7716 0.8366 0.8323
NHEK PEP-Word 0.9727 0.8927 0.8883 0.7858 0.8339 0.8278
NHEK PEP-Integrate 0.9752 0.9019 0.9133 0.7903 0.8473 0.8426

Table S4: Performance evaluation of TargetFinder(EE/P), RIPPLE, PEP-Motif, PEP-Word, and PEP-Integrate on EE/P data
of six cell lines. K=6 is used for K-mer by PEP-Word for training the word embedding model. PEP-Integrate features are
PEP-Word features combined with the top 300 ranked important motif features selected from PEP-Motif. The performance
of PEP-Motif, PEP-Word or PEP-Integrate that shows improvement over the corresponding performance of TargetFinder
(EE/P) is in bold font.
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Cell line Estimated cell-type specific top 5% important predictive motif features in enhancer region
GM12878 (RORG,RORA,NR1D1), ETV5, EOMES, (PBX1,PKNOX1,PBX2), BRCA1, (TCF3,TAL1(S)),

(NKX23,NKX22), SRF, (PBX3,NFYB,FOXI1,NFYA), TLX1(S), (HNF1B,HNF1A), TEAD1, TGIF1,
(ZNF589,SPZ1), EBF1, KLF13, HSFY1

K562 (TAL1,GATA1,GATA1(S)), E2F8, FOXC2, BATF, RARB, SMAD1, BPTF, NR6A1, PKNOX2, HOXD4

IMR90 (MEIS2,TGIF2LX,TGIF2), (ESR1,ESR1(S),ESR2), ZNF384, (NFIA,NFIC,TLX1), TCF7L2, PRD14,
(SCRT2,SCRT1), RREB1, (MEF2D,MEF2A,MEF2C), TBX2, FOXH1, (THRB,THRB(S),THRA)
(HES7,HES5,HEY1), FOXO6, MSC, (GLIS1,GLIS2,GLIS3), ZNF219, HOXA10, HOXA11

HeLa-S3 (GLI2,GLI3,GLI1), ZBTB6, (FOXA1,FOXA2,FOXF2), FOXO3, MYOD1, HMGA2, IRX3, CENPB

HUVEC (TP63,TP53,TP73), YBX1, IRX2, ZSCA4, (RFX5,RFX1), AIRE, (SREBF1,SREBF2), ZBTB18, VDR,
ZNF410, MAFB, RBPJ, MYF6, HOXC13, POU2F3, BSX

NHEK TBX20, NR1H4, ZEB1, PITX3, FIGLA, NKX21, KLF8, (FOS,FOSL1,JUND,FOSB), SMRC1

Table S5: Enhancer-associated motif representatives with top 5% feature importance in a single cell line. A motif represen-
tative is either a single motif or a motif cluster. If it is a motif cluster, all the members are shown in combination and by the
order of their estimated feature importance. A motif is denoted by its corresponding TF.

Cell line Estimated cell-type specific top 5% important predictive motif features in promoter region
K562 PAX5(S), (RARG,NR2C1,RARA,RARG(S)), UBIP1, INSM1, TBX19, POU6F2
HeLa-S3 MYOG, IRF5, IRF9
HUVEC (NRF1,ZNF639), KLF15, CLOCK, FOXO4, HIF1A
NHEK EGR4, MZF1, ETV7

Table S6: Promoter-associated motif features with top 5% importance in a single cell line.

Cell line Features Total Comparable Top 50% Top 50% Top 30% Top 30% Top 25% Top 25%
(E/W) TFs TFs (T) (T-P) (T) (T-P) (T) (T-P)

GM12878 100 85 60 53 48 38 25 34 21
K562 136 120 59 58 55 48 40 42 27
IMR90 56 23 7 7 7 4 4 4 3
HeLa-S3 73 58 29 26 25 20 15 16 12
HUVEC 23 8 6 6 6 4 2 4 2
NHEK 20 5 1 1 1 1 1 1 1

Table S7: Comparison of the predictive features discovered by TargetFinder(E/P/W) in enhancer/window region with PEP-
Motif. “(T)” in the header line represents TargetFinder (E/P/W). “(T-P)” represents TargetFinder (E/P/W) and PEP-Motif. Top
50% (T-P) represents features estimated both by TargetFinder (E/P/W) and PEP-Motif to be at top 50% feature importance
level.
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Cell line Common TFs of top 25% feature importance in enhancer/window region
GM12878 ZNF384, CTCF, RUNX3, SPI1, EBF1, SP1, IRF3, ELF1, NFKB1, PAX5, MAFK, NFIC,

BCL11A, EGR1, SRF, IRF4, NFYB, PBX3, STAT3, NFATC1, TBP

K562 CTCF, SRF, ZNF384, YY1, MAZ, SPI1, MAFF, MEF2A, CEBPD, REST, NR2F2, EGR1,
ELF1, TEAD4, GATA2, TAL1, USF1, STAT5A, ZBTB7A, CEBPB, NFYB, BACH1, MAFK,
GABPA, SP1, NFE2, CTCFL

IMR90 CTCF, MAFK, MAZ

HeLa-S3 CTCF, JUND, CEBPB, JUN, STAT1, MAFK, STAT3, PRDM1, MAZ, USF2, NFYB, FOS

HUVEC CTCF, GATA2

NHEK CTCF
Cell line Common TFs of top 40% feature importance in promoter region
GM12878 EGR1, RUNX3, PAX5, ELF1, MAZ, NRF1
K562 ELF1, MAZ, EGR1, ZNF384, YY1, CTCF, TBP, E2F6, GABPA
IMR90 MAZ, CTCF
HeLa-S3 CTCF

Table S8: TFs with top 25% feature importance discovered both by TargetFinder (E/P/W) and PEP-Motif in en-
hancer/window region in six cell lines (the upper part) and TFs with top 40% feature importance discovered both by
TargetFinder (E/P/W) and PEP-Motif in promoter region in four cell lines (the lower part). There are no TFs with top
40% feature importance estimated by TargetFinder (E/P/W) in HUVEC and NHEK. The displayed TFs are ordered by their
feature importance estimated by TargetFinder (E/P/W).

Cell line Features Total Comparable Top 50% Top 50% Top 40% Top 40% Top 30% Top 30%
(P) TFs TFs (T) (T-P) (T) (T-P) (T) (T-P)

GM12878 100 85 60 22 14 10 6 2 2
K562 136 120 59 24 16 12 9 3 2
IMR90 56 23 7 2 2 2 2 0 0
HeLa-S3 73 58 29 12 6 4 1 0 0
HUVEC 23 8 6 1 1 0 0 0 0
NHEK 20 5 1 1 1 0 0 0 0

Table S9: Comparison of the predictive features discovered by TargetFinder(E/P/W) in promoter region with PEP-Motif.
“(T)” in the header line represents TargetFinder (E/P/W). “(T-P)” represents TargetFiner (E/P/W) and PEP-Motif.
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Feature in enhancer region Feature in promoter region
CTCF, CTCFL HOXD8, POU2F2, POU3F3, POU5F1B

VSX2 GSC2
CTCF, CTCFL GLI3, GLI1, GLI2
CTCF, CTCFL CTCF, CTCFL

NKX25 KLF16, MAZ, SP1, SP2
CTCF, CTCFL ETV6, ELK1, ERG, ELK4
CTCF, CTCFL AP2D

MEF2B ETV6, ELK1, ERG, ELK4
CTCF, CTCFL TF2LX, MEIS2, TGIF2
CTCF, CTCFL TEF

BACH1, NF2L2, NFE2, MAFK(S) CTCF, CTCFL
CTCF, CTCFL KLF4, KLF1, KLF3

NR2C1, RARA, RARG, RARG(S) CTCF, CTCFL
CTCF, CTCFL STAT4, STAT1, STAT1(S)

NR2F1, NR2F1(S), NR1H2, NR2F2(S) BACH1, NFE2, NF2L2, MAFK(S)
CTCF, CTCFL FOXD3

PITX2 CTCF, CTCFL
CTCF, CTCFL RUNX1, PEBB, RUNX3

ZNF713 HES5, HES7, HEY1
CTCF, CTCFL HOXC8
CTCF, CTCFL NRF1, ZNF639

PRDM1 CTCF, CTCFL
CTCF, CTCFL GFI1B, GFI1
CTCF, CTCFL SOX18

EHF(S) MBD2
CTCF, CTCFL MNT, SPIC

ZNF652 E2F1, TFDP1(S), E2F4
CTCF, CTCFL PKNX1, PBX2, PBX1
CTCF, CTCFL FOXF2, FOXA1, FOXA2
CTCF, CTCFL KLF14

RARB CTCF, CTCFL
PLAL1 RFX2, ZBT7B, RFX3, RFX4

ZNF219 MYC, MAX, MYCN
MEF2D, MEF2A, MEF2C ETV6, ELK1, ERG, ELK4

STAT6 SP1(S)
CTCF, CTCFL TBP

FOXO1 TEAD3
SOX3 RARG, NR2C1, RARA, RARG(S)

STAT1, STAT4, STAT1(S) FOSB, FOSL1, FOS, JUND
HESX1, HEY2 TWST1, SNAI1

Table S10: Highly predictive interactions between the motif features in enhancers and the motif features in promoters (E-P
feature interactions) shared by at least two cell types. The interactions are selected from the union of around top 300
important E-P feature interactions in each cell type. The E-P feature interactions appear in the order of their highest rank in
the respective cell types. If a motif is from a motif cluster, all the members of this motif cluster are displayed in combination.
For example, (CTCF, CTCFL) represents either CTCF or CTCFL since the two motifs are very similar and clustered.
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Figure S1: AUPR (Y-axis) of PEP-Motif with increasing number of selected TF motif features on E/P data from six cell lines.
There are about 1280 dimensional motif features (enhancer-associated features and promoter-associated features con-
catenated together) for each cell line. The motif features were selected by their estimated feature importance in descending
order. The sorted feature index (X-axis) represents the number of selected features.
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Figure S2: Performance evaluation of PEP-Integrate on E/P data of six cell lines with respect to different sets of selected
motif features. The motif features were selected in the order of their estimated feature importance. The selected motif
features were concatenated with features from PEP-Word for joint feature representation. AUPR, F1 score, and MCC were
used for evaluation.
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Figure S3: Performance evaluation of PEP-Motif, PEP-Word, and PEP-Integrate (K=6 for K-mer) on EE/P data of six cell
lines in comparison with TargetFinder (EE/P) and RIPPLE.
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Figure S4: Examples of constructed motif clusters in the motif similarity connectivity graph. Each vertex represents a motif.
The border color of a vertex indicates the number of cell lines in which the corresponding motif feature is top 25% important,
as annotated in the graph, e.g., blue represents the motif is not top 25% predictive in any cell line and yellow represents the
motif is top 25% predictive in one cell line. Components of the constructed graph that have more than 5 vertices and at least
two vertices (motifs) possessing top 25% feature importance in at least one cell line are shown. Any two vertices (motifs)
in a component are connected to each other by paths and vertices of different components are not connected. There are
357 components found in the graph, representing coarse-level motif clusters based on motif similarity. The largest three
components consist of 51, 46, and 22 motifs, respectively, which are shown in the figure with another 10 smaller-scale
components.
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Figure S5: Performance evaluation of PEP-Word on E/P data on three cell lines (GM12878, K562, HeLa-S3) with respect
to different choices of length of K-mer, length of flanking region and embedded feature vector size.
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Figure S6: t-SNE visualization of a randomly selected set of 1000 positive samples and 1000 negative samples in
GM12878. The 600 dimensional feature vector was first reduced to 64-dimensions using autoencoder and then reduced
to two-dimensions for visualization. An autoencoder neural network was used in the first dimension reduction stage and
output of the middle layer with 64 neurons was extracted for further dimension reduction and visualization.
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Figure S7: Mean value of subsample features (from PEP-Word) in cell line GM12878. 500 positive samples (EPI) and 500
negative samples (non-EPI) were randomly selected at the ith sampling step, named respectively as positive subsample SPi

and negative subsample SNi . Mean of feature vectors of the subsample was calculated within SPi and SNi , respectively,
noted as xPi and xNi , both of which are n-dimensional vectors. We repeated the sampling 20 times and obtained subsample
average feature vectors {xPi}20i=1 and {xNi}20i=1. On each feature dimension, we computed mean and standard deviation
of {x(k)

Pi
}20i=1 and {x(k)

Ni
}20i=1 respectively, where x(k) stands for the kth dimension of a feature vector, k = 1, · · · , n. The

mean and standard deviation of subsample averages on the each of n dimensions were shown in the figure. The sampling
process was performed to compare the mean feature values with balanced positive samples and negative samples, in order
to address comparison bias resulted from high imbalance of the datasets. We found that the positive samples and negative
samples are distributed differently in the feature space constructed by PEP-Word.
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Figure S8: Examples of important interacting TFBS motif features in GM12878. The interactions are between enhancer-
associated motif features and promoter-associated motif features.
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Figure S9: Examples of important interacting TFBS motif features in K562.
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Figure S10: Examples of important interacting TFBS motif features in HeLa-S3.
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