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Supplementary Methods: 

Description of Features: 
The basic features for the expression dataset includes nucleotide counts, trinucleotide counts, amino acid              
counts, and the length of the sequences. We also calculated the GC content of both the entire sequence                  
and the first 30 nucleotides. The stability of the mRNA was calculated using UnaFOLD (Markham and Zuker                 
2008) for both the entire mRNA length and for the first 40 nucleotides, which has been shown to affect                   
protein expression (Kudla et al. 2009). The tRNA adaptation index was also computed for each mRNA                
strand using the tRNA counts from GtRNAdb for E. coli BL21DE3 (dos Reis, Savva, and Wernisch 2004;                 
Chan and Lowe 2009). Physical properties of the peptides were calculated using the Biopython ProtParam               
module, such as molecular weight, isoelectric point, aromaticity, instability, grand average value of             
hydropathy (GRAVY), and overall charge. We also calculated the fraction of various types of amino acids,                
such as aliphatic, hydrophobic, polar, uncharged polar, positive, negative, sulfur-containing,          
amide-containing, and alcohol-containing amino acids. Presence of Shine-Dalgarno and         
Shine-Dalgarno-like sequences were included as features in both the forward and reverse strands, as              
defined in (Ebrahim et al. 2016). Additional features were generated using structural predictors, since only               
the primary structure was known for the peptides. We ran all sequences through the secondary structure                
predictor SCRATCH-1D to generate secondary structure predictions using 3 and 8 letter predictors, and              
generated solvent accessibility profiles for each sequence (Cheng et al. 2005). From this data, we were able                 
to calculate the fraction of buried and exposed hydrophobic residues. The intrinsically disordered regions of               
each PrEST were predicted using three different disorder predictors: DisEMBL, RONN, and DISOPRED3             
(Jones and Cozzetto 2015; Linding et al. 2003; Yang et al. 2005). All 147 properties were combined to form                   
the feature matrix of the expression dataset. A limited feature set was constructed for the solubility data,                 
including the amino acid counts, the length of the sequences, and the physical properties of the amino acids                  

https://paperpile.com/c/gWB7i4/fm7n
https://paperpile.com/c/gWB7i4/fm7n
https://paperpile.com/c/gWB7i4/SjgJ
https://paperpile.com/c/gWB7i4/z4F3+4FHV
https://paperpile.com/c/gWB7i4/z4F3+4FHV
https://paperpile.com/c/gWB7i4/YqKF
https://paperpile.com/c/gWB7i4/gyzp
https://paperpile.com/c/gWB7i4/xKZw+Q63d+d4ed
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and peptides for a total of 38 features (Bazett-Jones et al. 2008). The pipeline to generate the expression                  
feature matrix is included in the GitHub repository at https://github.com/SBRG/Protein_ML as           
“create_feature_matrix.ipynb”, and the condensed solubility pipeline can be found in the “solubility”            
directory as “solubility_create_feature_matrix.ipynb”. 
 

Data Preprocessing: 
The raw expression dataset consisted of the concentration, source protein, amino acid sequence, and              
nucleotide sequence for 46,521 PrESTs. Duplicate measurements existed for 1,315 PrESTs, and these             
measurements were merged by averaging the concentration. The resulting 45,206 PrESTs were split into              
three expression levels: high expression for PrESTs in the top 25% of concentrations, low expression for the                 
bottom 25%, and mid-expression for all other PrESTs. The mid-expression peptides were removed from the               
dataset to minimize the effect of noise on the labels.  

The initial 16,082 PrESTs from the solubility dataset were divided into 5 solubility classes. The most soluble                 
class consisted of 7,667 PrESTs, and the bottom three solubility classes consisted a total of 3,324 PrESTs.                 
One solubility class was dropped to improve class separation. In order to remove the effects of imbalanced                 
class sizes, the class weightings for the machine learning algorithms were balanced, resulting in similar               
scores for accuracy, precision, recall, AUC, and F-1 score. 

The datasets were then split into a training set consisting of 70% of the data, and a testing set with the                     
remaining data. After the split, the training data was scaled to have zero mean and unit variance. This same                   
scaling factor was applied to the testing set to ensure that no bias was introduced by the testing data in the                     
pre-processing steps. 

Machine Learning: 

The random forest, support vector machine, and logistic regression machine learning algorithms were             
implemented using the Sci-kit Learn (Pedregosa et al. 2011) packages for Python, and the neural network                
was implemented using TensorFlow (Abadi et al. 2015). The free parameters for the Sci-kit Learn models                
were optimized against a subset of the training data (n = 1000) using 3-fold cross validation. The free                  
parameter for the SVM and Logistic Regressor is the penalty term C . The free parameters for the Random                  
Forest classifier were the number of trees in the forest, maximum tree depth, minimum samples per leaf,                 
and minimum samples per split. Increasing the forest size can improve classification accuracy, but reduces               
speed of computation. The other three parameters can prevent overfitting common to tree-based methods.              
The deep learning algorithm requires a longer training time, so each hyperparameter (optimization             
algorithm, architecture, and dropout rate) was individually optimized against the training data. The neural              
network used 3 layers with 100, 200, and 100 hidden units respectively. A dropout rate of 0.5 was                  
implemented to prevent neuron overfitting (Srivastava et al. 2014), and the network was optimized using the                
RMSProp optimization algorithm (Tieleman and Hinton 2012). After optimizing the parameters and training             
the models, an ensemble model was generated by averaging the prediction probabilities of the top two                
models. Neither dimension reduction using PCA nor feature selection using a Linear Support Vector              
Classifier provided any improvement on the classification accuracies. This pipeline is included in the github               

https://paperpile.com/c/gWB7i4/6BD3
https://github.com/SBRG/Protein_ML
https://paperpile.com/c/gWB7i4/6mId
https://paperpile.com/c/gWB7i4/2X4g
https://paperpile.com/c/gWB7i4/Ad2g
https://paperpile.com/c/gWB7i4/NU7A
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repository as “classification_workflow.ipynb” and “solubility/solubility_classification_workflow.ipynb” for the       
expression and solubility datasets, respectively. 

Computer-aided Selection of Highly-expressed Proteins: 

As with the machine learning workflow, the preprocessing steps included averaging together duplicate             
measurements and discarding peptides not in the top and bottom 25th percentiles. When generating the               
HPA dataset, more PrESTs were tested for proteins when their original PrESTs were poorly expressed. This                
increased the proportion of poorly expressed PrESTs from certain proteins. In order to reduce this bias,                
proteins with over 5 PrESTs were discarded from the dataset. The training set consisted of all PrESTs from                  
proteins with only one PrEST and PrESTs generated from a randomly selected subset of the remaining                
proteins. The testing dataset consisted of the remaining PrESTs. The machine learning algorithms were              
fitted to the data as described above. 

In order to minimize the number of experiments, we selected the PrEST from each protein that had the                  
highest probability of success as predicted by the model. The selected PrESTs were validated against their                
true concentrations from the experimental data, and the PrESTs from all proteins with a correctly selected                
PrEST were discarded from the testing dataset. This process was repeated until the dataset was exhausted                
(See Figure 5e and an IPython notebook titled “retrospective_analysis.ipynb”). 
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Supplementary Tables 

Supplementary Table 1. Relative importance of the top 20 features from the random forest 
classifier on the expression dataset. 
 

# Feature Relative 
Importance 

1 Isoelectric Point 1.000000 

2 Grand Average Value of Hydropathy 0.819925 

3 % Leucine 0.775152 

4 Average Charge 0.732603 

5 % Polar Residues 0.728989 

6 Extended Secondary Structure (8-letter) 0.693007 

7 % Hydrophobic Solvent-Inaccessible Residues 0.688061 

8 Extended Secondary Structure (3-letter) 0.672070 

9 % Tyrosine 0.661099 

10 Average GRAVY of Solvent-Inaccessible Residues 0.614977 

11 % Hydrophobic Residues 0.561206 

12 Alpha Helix Secondary Structure (8-letter) 0.555996 

13 Helical Secondary Structure (3-letter) 0.554443 

14 Average Disorder (RONN) 0.505789 

15 Molecular Weight 0.500565 

16 Fraction of Disordered Residues (DisEMBL COILS) 0.454956 

17 % Negatively Charged Amino Acids 0.454504 

18 % Uncharged Polar Amino Acids 0.444589 

19 % Threonine 0.433684 

20 % Proline 0.432263 
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Supplementary Figures 

a) 

 
b) 

 
Supplementary Figure 1: Decision tree to separate a) soluble and insoluble proteins and b) 
high- and low-expression proteins based on the top 5 features from their respective random 
forest models. The trees have been pruned to a depth of 3 for readability. 
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Supplementary Figure 2: Heatmap displaying the separation in expression level achieved by            
the top five features as determined from the random forest algorithm. Features with a strong               
influence on expression level will have discernable clusters of dark red or blue, indicating              
regions of mostly high or mostly low expressed proteins respectively. Note the nonlinear effects              
of the combined features. 
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Supplementary Figure 3: Number of dimensions captured by the feature set as calculated by 
PCA. 57 components capture 90% of the variance, displaying both the level of redundancy in 
some features and the multidimensionality of the feature set. 
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