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Supplementary Figure 1: CodonScores of different codons for the Gaol5 dataset. See the main text

for more details.
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Supplementary Figure 2: Prediction performance in the five-fold cross-validation tests evaluated
by (a) ROC and (b) PR curves as well as the corresponding AUROC and AUPR scores. “preTITER”
denotes a preliminary version of our deep learning framework consisting of an ensemble of 32
classifiers that only considered the context features of TISs, i.e., without incorporating the prefer-
ence of codon composition of TISs. “preTITER single” denotes the preTITER framework consist-
ing of only one classifier. “preTITER CNN” denotes the preTITER framework consisting of only
convolutional neural networks, i.e., without using the recurrent layer.
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Supplementary Figure 3: Additional tests on the correlations between the prediction scores of
TITER and the experimentally-quantified mutational effects of the sequence variants in the TIS
contexts. (a) and (b) correspond to the test results on the mutations derived from the studies in [1]
and [2], respectively, in which the corresponding sequences of the real transcripts instead of the
plasmid sequences were input into the TITER framework to compute the ContextScores.
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Supplementary Figure 4: Prediction performance on the mouse test dataset evaluated by (a) ROC
and (b) PR curves, respectively. “preTITER” denotes a preliminary version of our deep learning
framework that only considered the context features of TISs.
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Supplementary Figure 5: Prediction performance on different regions of the Gaol5 dataset eval-
uated by (a) ROC and (b) PR curves, respectively. In particular, we constructed the uTIS dataset
based on the same procedure as in the construction of the Gao15_test dataset, except that we only
considered TISs in the 5" UTRs and excluded all the samples that did not satisfy the input condi-
tions of PreTIS. Note that since PreTIS did not provide any specification on its training and test
data, the test data used for comparison here may include the training data of PreTIS (e.g., the
overlapped uTISs measured by QTI-seq and GTI-seq). Therefore, the comparison in this part is
only an under-estimation of the superiority of our method over PreTIS.



2 Supplementary Tables

Supplementary Table 1: The calibrated hyperparameter values
for the hybrid deep neural network used in TITER.

Hyperparameter value
Kernel number 128
Kernel size 3
Max norm of weights in the convolutional layer 3
Pooling length 3
Dropout rate after the pooling layer 0.214
Output dimension of the LSTM layer 256
Dropout rate after the LSTM layer 0.724
Optimizer Nadam [3]

The hyperparameters were optimized based on the TPE approach [4]
(see the main text for more details).
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