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S1. Binary labeling of cytosines in BS-seq and TAB-seq 
data 
For methylation prediction, we chose a CCR threshold of 0.5 
(equidistant from the extremal CCRs of 0 and 1) for labeling 
methylation status for individual cytosines as high or low 
(≥0.5 or <0.5 respectively). For analyzing 5-hmC levels, a 
naive analysis yields a distribution with maximal frequency at 
the CCR of 0, and no other observable secondary modes in the 
distribution (Supp Fig 1B). However, it is well characterized 
that while most CpG sites have a CCR of 0, statistically 
significant hydroxymethylated CpG sites have a CCR 
frequency distribution with a mode of 0.18 (Supp Fig 1C) 
(Yu,M., et al. 2012). Thus, in order to label individual 
cytosines into significantly hydroxymethylated versus non-
hydroxymethylated/weakly hydroxymethylated classes, we 
choose a threshold of 0.09, equidistant from 0 and 0.18. 
S2. Feasibility of 5-hmC status prediction 
Strong preference of 5-hmC for open chromatin regions, as 
well as its positive correlation with gene expression and bias 
towards exon inclusion were previously documented in 
literature (Marina,R.J., et al. 2015, Mellen,M., et al. 2012), 
suggesting a functional role and consistency of 5-hmC 
modifications across biological replicates. 5-hmC 
modifications have also been shown to be temporally stable 
(Bachman,M., et al. 2014) further suggesting a strong signal 
to noise ratio in hydroxymethylation assays. At the outset, we 
performed pairwise comparison of hydroxymethylation levels 
across biological replicates in NPC, using binary discretization 
of hydroxymethylation levels. TAB-seq CCR correlation 
across biological replicates is less faithful than BS-seq by 
exhibiting some stochasticity in the signal. However, we 
obtain a concordance rate (fraction of cytosines where 5-hmC 
status between replicates agree) of 82% (in CpG sites with 
coverage >60) for 5-hmC status between biological replicates 
in NPC (Supp Fig 1D). For practical purposes, this may be 
considered as an approximate upper bound of possible 
predictive accuracy when evaluating 5-hmC status 
predictions.  
Further we looked at consistency of our BS-seq and TAB-seq 
datasets in NPC. MLML (Qu,J., et al. 2013) is a method that 
uses read counts from data obtained by TAB-seq (or oxBS-
seq), and BS-seq; to estimate CCRs for the 5-mC and 5-hmC 
modifications jointly. It identifies indices exhibiting 
“overshoot” where the sum of estimated CCRs for 5-mC and 
5-hmC sum to greater than 1. Upon running MLML on our 
BS-seq and TAB-seq datasets in NPC we obtained the 
maximum likelihood distribution of 5-mC levels (Supp Fig 
1E) that strongly resembled the one of BS-seq levels (Supp Fig 
1A). Additionally, out of the 52,531,101 CpG sites being 
analyzed (sites without coverage in either of the experiments 
are discarded) the number of overshoot indices was only 3,186 
or 0.006% in NPC. Most of the overshoot indices contained 
very low coverage (2,654 CpG sites) in both BS-seq and TAB-
seq experiments and were systematically discarded prior to 
training our model. 
S3. Design decisions for training and testing the SVM and 
Random Forest 
SVM model decisions: The parameters used to train the SVM 
are as follows: kkt violation fraction =0.05, maximum number 
of sampled training sets used for training in order to achieve 
SVM convergence =3, maximum number of iterations in each 

training for SVM convergence =107. The average number of 
support vectors per 8000 training examples within different 
BS-seq optimal feature sets varied between 1200-1300, 
suggesting an upper bound of the experimental error rate range 
of 0.15-0.1625.  
RF model decisions: When training the RF, we randomly 
sample one third of all available features in the training set, 
and perform sampling of training data-points with 
replacement. Splitting on input features is performed in a way 
that minimizes Gini Impurity score. Depending on the 
prediction paradigm we grow between 50 and 150 decision 
trees in the forest (for example CGI methylation status 
predictions can be successfully performed using 50 decision 
trees: when classification error reaches its minimum). 
Additional information about different modes implemented in 
our toolkit can be found in Supp Table T2. 
Training and testing set sizes: In order to evaluate the 
performance of our SVM and RF based predictive model we 
perform 5 fold cross-validation using balanced sets having 
10,000 data points. The balanced sets are comprised of 5,000 
positive and 5,000 negative examples, where 4,000 of each 
class are used for training and the remaining 1,000 of each 
class for testing. We discovered that the aforementioned 
design decisions govern the best trade-off between stably and 
accurately estimating prediction metrics versus computational 
time (Supp Figs 2A, 2B, Supp Table T12). We thus chose k=5 
for k-fold cross-validation on 10,000 sampled training 
examples (5,000 of each class) to balance out the trade-off 
between the testing set size. Namely, if k is too high the testing 
set size will be too small, and conversely if k is too small the 
training set size is too small and the number of experiments 
may not be enough to estimate the prediction performance. If 
k is too large, it is worth noting that using more than 20,000 
data points to train the SVM may cause the MATLAB built-in 
function svmtrain to be very slow, which may effectively 
result in non-convergence from a practical point of view. 
Increasing label fidelity for training and testing samples: We 
identified the sequencing depth required for cytosines used for 
training (inclusion in the training set) and evaluating 
(inclusion in the testing set) our models based on the minimum 
sequencing depth that would always distinguish unmethylated 
(or non-hydroxymethylated) cytosine from marginally 
methylated or hydroxymethylated (CCR of 0.5 or 0.09 for BS-
seq and TAB-seq respectively) given representative sampling. 
Due to sampling variance at low sample sizes causing small 
sample sizes to often not be representative, we performed a 
non-parametric categorical test (Fisher’s Exact Test) between 
categorical distributions where for one sample the CCR is 
zero, versus another sample where CCR of the marginally 
methylated or hydroxymethylated sample is faithfully 
represented in the sample. We perform this over a range of 
sequencing depths fixed for both samples to identify when 
Fisher’s Exact Test is able to identity a statistically significant 
difference between the two samples. This was performed to 
ensure label fidelity of training and testing samples. For BS-
seq datasets, we need to minimally differentiate between 
completely unmethylated cytosines with a CCR of 0 with 
respect to marginally methylated cytosines with a CCR of 0.5. 
Given representative sampling, the minimum sequencing 
depth at a cytosine required to differentiate between the cases 
is two. However, we find that for the Fisher’s Exact Test, we 
get a statistically significant p-value (p≤0.05) when 
sequencing depth for both samples is 10. In practice, for the 
SVM and RF models, both balanced set predictions and whole 
genome predictions were performed with cytosines where 
coverage ≥ 20. We find that out of 56,434,896 annotated CpG 
cytosines, 50,379,832 have coverage ≥ 20 in H1, and 
49,134,499 have coverage ≥ 20 in NPC, suggesting that even 
in datasets with high sequencing depth, between 11% and 13% 
of cytosines do not have satisfactory coverage depth and can 



be imputed using DIRECTION.  For the Reference 
Methylome predictor variable based predictions, and SVM 
model is compared with the Reference Methylome predictor, 
since sequencing depth ≥ 20 across all reference methylomes 
causes a large drop in the number of cytosines eligible for 
training and testing, a more modest sequencing depth 
constraint of ≥ 5 was used. Similarly, when Nearest Neighbor 
evaluations were performed, the more modest sequencing 
depth constraint of ≥ 5 was used in order to capture more 
cytosines in the evaluation process. 
Additionally, Consensus Reference Methylome and Nearest 
Neighbor were introduced as input predictor variables into our 
toolkit, and cytosines with sequencing depth ≥ 5 were chosen 
for this purpose. 
For TAB-seq datasets, we need to minimally differentiate 
between completely non-hydroxymethylated cytosines with a 
CCR of 0 with respect to marginally hydroxymethylated 
cytosines with a CCR of 0.09. Given representative sampling, 
the minimum sequencing depth at a cytosine required to 
differentiate between these cases is 20. We find that for the 
Fisher’s Exact Test, we get a statistically significant p-value 
(p< or ~0.05) when sequencing depth for both samples is 60. 
In practice, for the SVM model, both balanced set predictions 
and whole genome predictions were performed with cytosines 
where coverage ≥ 60. See Supp Table T13A for p-values.  
S4. Relevant metrics for evaluating classification of 
cytosine modifications 
The metrics commonly used to assess the performance of a 
supervised learning algorithm belong to one of the following 
three categories: threshold metrics, rank metrics, or probability 
metrics (Caruana,R. and Niculescu-Mizil,A. 2006). Since we 
perform classification using non-likelihood based approaches 
(SVM and RF), we use appropriate metrics in the “threshold-
based” metrics category. The decision of which one to chose 
mostly depends on the nature of the problem that needs to be 
addressed. For prediction of skewed classes, special care needs 
to be taken such that the metric does not get inflated by simply 
predicting one class more often than the other. Concretely, we 
perform both methylation and 5-hmC predictions using 
balanced sets (avoiding skewed classes) and report the 
performance using Precision, Recall, F-Score (harmonic mean 
of Precision and Recall), and AUC while whole-genome 
prediction performance (where the frequency of the two 
classes are skewed for both methylation and 5-hmC status 
prediction) is evaluated using True Positive Rate (Sensitivity 
or Recall), True Negative Rate (Specificity) and Accuracy. 
Evaluation metrics used in our analyses are formulated as 
follows: 
 

1. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 
2. 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝑜𝑜𝑜𝑜 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

3. 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑜𝑜𝑜𝑜 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

 

4. 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

 
5. 𝐹𝐹 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝐹𝐹1 − 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =

2∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆∗𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆+𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

 
6. AUC: Which is created by plotting the False 

Positive Rate (1-True Negative Rate) on the x-axis 
and the True Positive Rate on the y-axis, and the 
resulting area under the curve is calculated. 

 
where TP=number of true positives, TN=number of true 
negatives, FP=number of false positives, and FN=number of 
false negatives. 
AUC calculations were only performed for RF models due to 
the ease of ranking predictions using the MATLAB native 
random forest function.  

S5. Feature preprocessing 
We use a variety of genomic and epigenomic traits as input to 
train our classifier (Supp Table T3). Features we do not model 
include gene annotation because histone modification data 
implicitly contain this information and enable us to discern 
between active, poised, and repressed cis-regulatory (Ernst,J. 
and Kellis,M. 2012) and transcribed regions. Such 
annotation-based features may be incorporated when histone 
modification datasets are not available. Additionally, we do 
not model spatial contiguity explicitly into our predictive 
model. Since DNA methylation response variable 
(thresholded BS-seq CCRs) and various input features (e.g. 
histone modifications) are very well correlated spatially, our 
predictions are able to identify stretches of similar 
methylation without a need for explicit spatial auto-
correlative models like Hidden Markov Model (HMM) or 
explicit spatial input features. TAB-seq CCRs are not 
spatially auto-correlated as well as BS-seq CCRs, but 5-hmC 
enriched regions and large stretches of 5-hmC depletion can 
be identified. Finally, features such as discriminative k-mers 
and motifs or ChIP-seq datasets of TF binding that can predict 
the methylation status were not used since the expression of 
such TFs are likely to be cell-type specific and accordingly 
not suitable for transfer learning purposes in the context of 
whole methylome reconstruction. Only the near ubiquitously 
expressed CTCF and p300 TF ChIP-seq data were used in the 
Initial Feature Set for predicting H1 methylation status, and 
these features were not used for NPC methylation status 
prediction, transfer learning for methylation status prediction, 
or 5-hmC status prediction.  
All genomic features (tracks) such as Alu repeats, CGI as well 
as the genomic positions of CpG sites in the human genome 
(hg19 assembly) were obtained from the UCSC genome 
browser (Speir,M.L., et al. 2016), or calculated based on the 
downloaded sequence and annotation. Histone mark ChIP-
seq, DNase-seq  and Transcription Factor binding ChIP-seq 
data (CTCF, p300) were obtained from the Roadmap 
Epigenome consortium 
(http://egg2.wustl.edu/roadmap/web_portal/processed_data.h
tml)  (Kundaje,A., et al. 2015) under the NCBI GEO 
GSE16256 accession. Genome-wide signal coverage tracks 
(negative log10 transform of the p-value) based on the 
uniformly processed Roadmap Epigenome Consortium 
datasets were used for ChIP-seq and DNase-seq features 
(Kundaje,A., et al. 2015). BS-seq and TAB-seq preprocessing 
is detailed in Supp Text S11. For 5-hmC status prediction, 
BS-seq CCR (and not the predicted methylated status) was 
used as an input feature. All the raw features were matched 
against the list of available CpG sites using the IntersectBed 
tool from the Bedtools toolkit (Quinlan,A.R. and Hall,I.M. 
2010). After initial processing all the features were stored into 
a single matrix. The features were normalized to zero mean 
and variance=1 (also called standardization), before training 
the model (Bishop,C. 2007). 
An additional feature was created for methylation status 
imputation based on the methylation status of the CpG 
cytosine nearest to the cytosine in question (nearest neighbor 
feature). However, a similar feature was not used for 5-hmC 
status imputation since 5-hmC modifications do not occur in 
long stretches even though they can be somewhat locally 
enriched. We find that the 5-hmC status of the nearest CpG 
cytosine has poor predictive ability when performing 
imputation (Supp Table T14).  
S6. Recursive feature elimination and beam search 
pseudocode 
Typically, machine learning models with more parameters 
tend to fit the response variable better, occasionally resulting 
in overfitting (Bishop,C. 2007). This leads to a trade-off 
between predictive power and feature sparsity. Some previous 
approaches to perform optimal feature selection include 
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dimensionality reduction (Zheng,H., et al. 2013), and removal 
of individual features from the full feature set to create the 
Gini index (Yan,H., et al. 2015, Zhang,W., et al. 2015) which 
will rank the features according to their contributions to the 
prediction metric. In order to gain additional insight about 
features and their additive effects we implemented a modified 
version of the recursive feature elimination algorithm that 
provides information about the discriminative nature of 
individual features and features subsets. Recursive feature 
elimination is a well established strategy that was successfully 
used to determine the most predictive features and feature sets 
for methylation prediction (Das,R., et al. 2006). However, 
performing a top-down exhaustive search given a high 
number of input features (N) can be extremely time 
consuming and computationally demanding since the number 
of explored feature sets may reach 2N-1, leading us to consider 
heuristic approaches in determining the OFS . 
Our recursive feature elimination algorithm is implemented 
using beam search : 
 
BeamSearch(beam width b, Initial Feature Set I, cross-validation fold k, maximum number of 
iterations m, number of top feature sets returned t ) 
 
fit and test models on Initial Feature Set I on training data using k-fold cross-validation ; 
calculate evaluation metric score eI by comparing predictions and known labels ; 
update list of top optimal feature sets L based on evaluation ; 
initialize priority queue Q with feature set I using priority eI ; 
initialize number of evaluations n ; 
while ( Q is not empty AND n < maximum number of iterations m ) 
{ 
          S = feature set dequeued from head of Q having highest priority ; 
          for each feature f in S 

           { 
                  initialize candidate feature set list C = { } ; 
                  S’ = S – { f } ; 

                   if  (S’ has not been evaluated previously) 
                  { 

fit and test models on feature set S’ on training data using k-fold cross-validation;     
if (model converges on training) 
{ 

calculate evaluation metric score eS’ by comparing predictions to known 
labels ; 
update list of evaluated feature sets L with (S’, eS’) ; 

          add (S’, eS’) to candidate feature set list C ; 
         increment n ; 

} 
              } 
              sort C based on evaluated metric scores ; 
             choose the top b (beam width) feature sets with highest evaluation metric scores from C  
             and enqueue into priority queue Q using evaluated metric score as priority ;           
        }  
} 
sort L based on evaluation metric score and return top t feature sets 

 
An integrated picture of Initial Feature Set selection and the 
identification of the OFS using beam search is shown in Supp 
Fig 3D. 
 
 
S7. Initial elimination of redundant features before beam 
search 
We identified and eliminated redundant features based on 
feature clustering and reduced the size of the full feature set, 
and ultimately created the “Initial Feature Sets” (IFS) (Supp 
Table T15). We identify clusters of highly correlated features 
and keep only one representative feature for each cluster and 
eliminate the others. The total set of predictor variables 
include several features that were engineered at multiple 
genomic resolutions (in bins of 50bp, 100bp, 200bp, 400bp, 
and 800bp) to predict DNA methylation and 
hydroxymethylation in genomic regions of corresponding 
size, and these naturally cluster in redundant groups. Since 
DIRECTION is trained to classify methylation and 5-hmC 
status at single nucleotide resolution, engineered features at 
the smallest resolution (50bp) were kept for the IFS, and the 
lower resolution features were discarded. These decisions 
resulted in saving a reasonable amount of computational time, 
and significantly reduced the possibility of overfitting our 
model (Supp Fig 3D). 
 
 

S8. Characterization of feature subset contributions to 
predictive ability of the OFS 
While creating the IFSs eliminated highly correlated features, 
OFSs identified by the beam search algorithm can still contain 
somewhat correlated, partially redundant features. For 
performance issues, we want to have some degree of 
redundancy in the OFS to make the prediction robust, but on 
the other hand we want to also assess the contribution to the 
predictive ability by subsets of features in the OFS. We thus 
performed the following assessment. We performed a 
standardization (Z-transformation (Bishop,C. 2007)) across 
all features and hierarchically clustered them to identify 
similarity across features. Based on the feature clustering in 
the OFS, we left out individual features and feature subsets 
according to the nodes of the dendrogram, and retrained our 
classifier. The difference in performance metrics with respect 
to the OFS provides a clear indication of both feature 
redundancy and contributions of subsets of features to the 
OFS prediction metric.  
While max-margin models do not explicitly posses a 
likelihood-based inferential framework to directly apply 
information theoretic approaches to sparse model selection 
like the Aikake Information Criterion (Bishop,C. 2007), our 
approach provides an intuitive platform to identify smaller 
subsets of the OFS having comparable predictive power, and 
also identifies subsets of features that have major 
contributions to the precision and recall (Fig 4C and Supp 
Figs 2C, 2D).  
The notion behind identifying a “minimal” feature set was 
based on the notion of several correlated input features 
potentially being part of the OFS, each only contributing a 
limited amount of predictive power to the overall OFS. By 
clustering the individual features in the OFS and eliminating 
them one at a time, we identified the effect each (or a subset) 
possesses on the predictive power, in a manner agnostic to the 
classification algorithm. The tradeoff between obtaining a 
smaller feature set versus improving classification 
performance metrics can thus be clearly identified, allowing 
the user to decide on a choice of the input feature set for 
related experiments.  
 
S9. Predictive power of neighboring CpG sites 
Since the predictive power of neighboring CpG sites drops 
with distance, we wanted to determine what fraction of CpG 
sites with low coverage (< 5) has high coverage (≥ 5) 
neighboring CpG sites within 500bp, making them a good 
candidate for imputation. To answer this question, we 
computed the Cumulative Distributive Function (CDF) of the 
fraction of low coverage sites with respect to distance to the 
nearest high coverage neighboring site (Fig 3D), in high 
coverage (NPC) and low coverage (Fetal Small Intestine) 
Roadmap Epigenome consortium datasets. Even in a low 
coverage methylome such as Fetal Small Intestine (Supp Fig 
3B), more than 60% of low coverage CpG sites had a 
corresponding high coverage neighbor within 500bp, 
suggesting high probability of them being correctly imputed 
(Fig 3C).  
S10. Defining a consensus reference methylome 
The high predictive ability of DNA methylation predictors by 
using only sequence derived features (in multiple datasets) 
suggests that a portion of DNA methylation status in CpG 
sites is governed by the underlying sequence, and should be 
unchanged across tissue and cell types and across conditions. 
By utilizing the concept of similar methylation status across 
different tissues, we identified the regions of invariant 
methylation and implemented it into our prediction 
framework. We obtained 25 publicly available cell line and 
tissue WGBS datasets (Supp Table T9B) from the Roadmap 
Epigenome consortium excluding H1 and H1-derived cells, 
estimated its methylation status by thresholding the CCR at 



0.5 for each cytosine, and compared the respective binary 
methylation statuses (high and low methylation) across all the 
CpG sites (with coverage ≥ 5 for all 25 reference methylomes 
not based on the H1 lineage).  
S11. DNA methylation and hydroxymethylation data 
sourcing and performance of DIRECTION for different 
BS-seq CCR values 
DNA methylation and hydroxymethylation data sourcing: 
Traditionally, Next Generation Sequencing (NGS) techniques 
require either a de novo assembly of the sequenced reads or 
mapping the reads to a known reference genome. Various 
tools like BSMAP, RMAP, BS-Seeker, and BISMARK 
(Guo,W., et al. 2013, Krueger,F. and Andrews,S.R. 2011, 
Smith,A.D., et al. 2009, Xi,Y. and Li,W. 2009) perform end 
to end mapping analysis or build “wrappers” around state-of-
the-art generic NGS read mapping tools like Bowtie 
(Langmead,B. and Salzberg,S.L. 2012) for this purpose. 
Typically, most such methylation calling strategies use a 
filtering scheme to count bases with high quality sequencing 
and alignment scores, followed by a simple binomial 
probability test (Yu,M., et al. 2012). We have devised the 
pipeline for end to end mapping and variant calling of raw 
BS-seq and TAB-seq reads using the BISMARK BS-seq read 
mapper (Krueger,F. and Andrews,S.R. 2011). Scripts that 
were used to calculate the reads sequencing depth and 
hydroxymethylation levels were coverage2cytosine and 
bismark methylation extractor. The final output to the .bed 
format was performed by the bismark2bedGraph. This was 
performed to generate H1 and NPC TAB-seq CCRs. H1, 
NPC, MSC, and IMR90 BS-seq CCRs were obtained from the 
uniformly processed datasets of the NIH Roadmap 
Epigenome Consortium 
(http://egg2.wustl.edu/roadmap/web_portal/processed_data.h
tml) processed from GEO series GSE16256 datasets by the 
Consortium as fractional methylation value and read coverage 
for each CpG cytosine. 
 
Performance of DIRECTION for different BS-seq CCR 
values: We analyzed the results for whole methylome 
predictions in H1 and NPC by binning all high-coverage 
cytosines (sequencing depth ≥20) in the BS-seq datasets 
based on their CCRs. We created 5 bins, based on intervals of 
0.2 from 0 (completely unmethylated) to 1 (completely 
methylated) based on the CCR. We find that for the SVM 
model (tested on the H1 dataset) and the RF model (tested on 
the NPC dataset), our accuracy for the extremal values of BS-
seq CCRs are accurate (Supp Figs 2I, 2J, respectively, Supp 
Table T6), while the performance is limited in the interval 
[0.4, 0.6) corresponding to intermediate methylation. This 
suggests that cytosines in these regions correspond to data 
points near the classification boundary, and are prone to be 
misclassified due to their proximity to the boundary. 
However, intermediate methylation is relatively uncommon 
in in vitro cell lines due to their homogeneity, and in 
mammalian systems (H1 and NPC: <3%, (Zeng,J., et al. 
2012a)). Thus, we find that the lower predictive ability of 
DIRECTION in cytosines with intermediate methylation only 
has a modest effect on the overall prediction metric by 
contrasting precision and recall in balanced sets sampled from 
the methylome by including or withholding cytosines with 
intermediate methylation (Supp Figs 2K, 2L). For datasets 
with significantly higher amounts of intermediate 
methylation, we recommend using regression based 
approaches (Zhang,W., et al. 2015). 
S12. Additional discussion on OFS feature contributions 
to DNA methylation status prediction and transfer 
learning 
OFS feature contributions to DNA methylation status 
prediction: We discovered that DNase and histone state 
features impacted the recall in CGI regions significantly, 

whereas high precision values were predominantly governed 
by H2AK5ac histone modification, known to be associated 
with regions of active chromatin and insulator region shores 
(Wang,T., et al. 2012). Similarly, if any of the aforementioned 
features or the clusters they belong to are removed, the DNA 
methylation prediction in non-CGI regions drops (Supp Fig 
2D), suggesting similar informational content of predictors in 
CGI and non-CGI OFSs. In summary, a small set of features 
(H3K4me3; either DNase or Histone states; and H2AK5ac, 
along with Repeats for Non-CGI regions) can near optimally 
predict methylation status at single nucleotide resolution.  
Many aspects of our learned models are consistent with 
previous findings: a significant gain in prediction accuracy 
when highly discriminative epigenomic features are included 
(Figs 2B and 2C) (Yan,H., et al. 2015), and significantly 
improved prediction performance in CGI regions with respect 
to non-CGI regions.  
Transfer learning: Successful transfer learning between two 
cell types requires that a set of discriminative features and its 
associated model decision boundary in one cell type, also 
have comparable predictive power in the other. In order to 
identify methylomes that are significantly dissimilar with 
respect to H1 and NPC, we performed clustering for all 
reference methylomes in the Roadmap Epigenome 
Consortium datasets (top eight principal components 
accounting for 81% of variation in the data, Euclidean 
distance measure and average linkage were used, Supp Fig 
3C). We chose to use the methylomes for Mesenchymal Stem 
Cells (MSC), and fetal fibroblast cell line IMR90, which show 
distinct divergence from the H1 and NPC methylomes. We 
analyzed the predictive performance for the NPC-trained 
predictive model on H1, MSC, and IMR90 methylomes.  
We find that H1 predictions using the NPC-trained model are 
comparable to the NPC whole methylome predictions. The 
metrics for the MSC cell line (totipotent, but nearly terminally 
differentiated) are still fairly accurate (TPR: 0.87, TNR: 0.71, 
Accuracy: 0.85) (Supp Table T6). However, we find that for 
the terminally differentiated IMR90, the metrics for the 
predictions are very modest (TPR: 0.86, TNR: 0.23, 
Accuracy: 0.69) (Supp Table T6). This suggests that transfer 
learning only works within similar methylation paradigms, 
where the relationship between methylation and 
discriminative input features are similar. Given that the 
methylation profile and prevalence in stem cells and 
terminally differentiated cells are very distinct, we find that 
such transfer learning is not feasible.  
NB: For evaluating IMR90, the sex chromosomes were left 
out during evaluation, as IMR90 is a female cell line, as 
opposed to H1, NPC, and MSC.  
S13. BS-seq driven 5-hmC status identification 
There is a vast number of BS-seq datasets which are publicly 
accessible, and only a handful of these have an accompanying 
TAB-seq counterpart. We used the NPC BS-seq and TAB-seq 
datasets to train and test a 5-hmC status prediction classifier 
using only CpG sites where BS-seq CCR could be reliably 
estimated (coverage ≥ 20). We trained our model using the 5-
hmC OFS, where the BS-seq level feature was excluded. Such 
a classifier performs comparably to our previously reported 
classifiers, achieving a precision of 0.74, recall of 0.8 and an 
F-score of 0.77 (Supp Table T10). Hence, we show that our 
method has the capability of performing de novo 5-hmC 
modification map reconstruction based on the BS-seq dataset 
and a handful of other features. Such an approach trades off 
the size and diversity of the training data for a smaller, higher 
quality training set, and can likely be useful in reconstructing 
5-hmC maps of experimental conditions with published BS-
seq data.  
S14. Enhancer identification 
The ChIP-seq H3K27ac raw SRA file for calling enhancer 
regions in NPC was obtained under the accession 

http://egg2.wustl.edu/roadmap/web_portal/processed_data.html
http://egg2.wustl.edu/roadmap/web_portal/processed_data.html
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(GSM818031). Raw SRA files were mapped to the reference 
human hg19 genome using Bowtie2 to create the bam file. 
The obtained bam file was used as an input to the enhancer 
calling tool ROSE (Whyte,W.A., et al. 2013). 
S15. 5-hmC prediction feasibility in enhancers for 
reduced representation datasets 
Simulations were performed in enhancer regions to create 
downsampled TAB-seq datasets. The overall number of 
TAB-seq reads (approx. 84,000,000) were downsampled to 
different downsampling levels (75, 50, 25, 12, 5, 1 percentage 
of original-not all shown) (Fig 5A). A linear regression was 
used to fit the number of reads mapping to the enhancer to the 
sum of sequencing depth (Fig 5B) across all cytosines in it. 
25 downsampling operations for each downsampling level 
were performed, and the obtained variance was low as shown 
in the box plot (Fig 5A). The histogram was divided into 3 
categories: low, medium and high sequencing depth. 
Enhancers with the sum of cytosine sequencing depths > 60 
were regarded as high, based on the Fisher test obtained p-
value < 0.05 for discriminating against high and low 
hydroxymethylation coverage (Supp Table T13A). 
As shown in Fig 5A, downsampling to 5% of the total number 
of reads still leaves more than 10,000 enhancer regions with 
the sum of cytosine sequencing depths (≥ 60) and over 2,000 
cytosines with individual sequencing depths ≥ 20 
(corresponding to our sequencing depth levels required for 
assigning class labels, (details on filtering training data based 
on sequencing depth in Supp Text S1) which suffices for the 
purpose of training our classifier at the resolution of 
individual enhancers. The downsampling size of 12% 
contains ~10 million reads, which corresponds to the amount 
of RRBS-seq reads obtained in previous studies (Bock,C., et 
al. 2010, Chatterjee,A., et al. 2012). This suggests that even 
for RRBS-seq datasets, it is possible to train a model to 
successfully reconstruct the hydroxymethylome in enhancer 
regions.  
S16. 5-hmC enrichment ratio calculation 
Unlike DNA methylation status, hydroxymethylation status 
cannot be successfully imputed using neighboring CpG site 
information (Supp Table T14), suggesting that CpG sites of 
similar hydroxymethylation status do not occur in as frequent 
and long stretches as similarly DNA methylated CpG sites. 
Hence, we devised a metric for identifying 5-hmC enrichment 
in a given genomic region. We used this to identify 5-hmC 
enrichment in enhancers.  
GTF hg19 files were obtained from UCSC Genome Browser 
(Speir,M.L., et al. 2016), and further intersected with an 
available list of annotated enhancers (Supp Data 1 on the tool 
website). The regions that contained less than 10 CpG sites 
upon intersecting with enhancer and gene annotations were 
discarded from analyses.  
We define the ratio of the number of 5-hmC modified 
cytosines to the sum of 5-hmC and 5-mC modified cytosines 
in an enhancer as the 5-hmC enrichment ratio. We performed 
calculation of 5-hmC enrichment ratio in the intragenic 
enhancer regions, using 5,000bp sliding windows spanning 
intragenic enhancers. 5-hmC enrichment ratio in a given 
region is defined as the ratio of the number of cytosines with 
5-hmC modification to the number of cytosines with 5-hmC 
or 5-mC modification. This may be estimated using BS-seq 
data, or based on SVM predictions. Genes depicted in Fig 5C 
were sorted based on the gain of 5-hmC enrichment ratio in 
intragenic enhancers in NPC vs H1 (Supp Data 2, Supp Data 
3 on the tool website). 
S17. Gene ontology analysis 
Gene sets that were used in gene ontology analysis were 
previously sorted based on the criteria described in the results 
section. We performed our analysis using the DAVID gene 
ontology toolkit (Huang,D.W., et al. 2009) using Gene 
Ontology database (The Gene Ontology Consortium. 2017) 

biological processes. The first 500 gene or pseudogene entries 
were used as input to DAVID to calculate the GO terms 
related to 5-hmC enrichment ratio in intragenic enhancer 
regions. Pseudogene entries were discarded by DAVID. All 
of the included GO terms had Benjamini corrected p-value < 
0.05 Supp Data 2, Supp Data 3 on the tool website).  
S18. Strengths, limits and relevance of DIRECTION 
Use of DIRECTION in reduced representation datasets: Both 
BS-seq (Meissner,A., et al. 2005) and TAB-seq 
(Plongthongkum,N., et al. 2014) protocols have reduced 
representation versions where assays query a limited set of 
CpGs. DIRECTION is ideally suited to impute methylation or 
hydroxymethylation status in such reduced representation 
datasets (as well as existing low coverage whole genome 
datasets), being able to make use of relevant genome-wide 
traits (based on genomic annotation, DNA sequence and 
relevant publicly available genome-wide assays) to create 
whole-genome scale datasets. 
Starting point for 5-hmC functional studies: One of the key 
differences that sets DIRECTION apart from other predictors 
is the ability to predict 5-hmC modifications. 5-hmC 
modifications are known to be cell-type or developmental 
stage specific (Wang,T., et al. 2012), and hence in silico 
detection of differentially hydroxymethylated regions can be 
performed by integrating reduced representation datasets and 
available genomic and epigenomic traits using DIRECTION. 
In silico detection of such differentially hydroxymethylated 
regions (as we show in H1 and NPC) can be the starting point 
of deeper functional studies in such regions. 
5-hmC status prediction and correlative studies: The 
molecular mechanisms underlying 5-hmC creation and 
potential maintenance in the genome, its stability and 
regulatory potential, are presently all subject to a lot of 
scientific debate (Hahn,M.A., et al. 2014, Shen,L. and 
Zhang,Y. 2013). As we have shown, DIRECTION is capable 
of testing predictive powers of different sets of genomic and 
epigenomic features with respect to 5-hmC status prediction. 
Such correlative studies, in conjunction with perturbation 
models, can lead to a better understanding of 5-hmC. 
Potential for use in oxBS-seq datasets: The oxBS-seq 
protocol (Booth,M.J., et al. 2012) allows for positive readouts 
of 5-mC modifications (as opposed to 5-hmC modifications 
in TAB-seq experiments). As future work, we will consider 
additional experiments to train a model for directly predicting 
5-mC modifications. However, likelihood based models like 
MLML (Qu,J., et al. 2013) can integrate datsets from any two 
of BS-seq, oxBS-seq and TAB-seq datasets, to estimate CCRs 
for the third. Estimated CCRs for TAB-seq or BS-seq datasets 
generated in this fashion can then be used for analysis in 
DIRECTION. 
Limits of transfer learning using DIRECTION: Transfer 
learning for the purposes of prediction requires that the set of 
input features used for prediction in the source dataset, are 
discriminative in the target dataset and have similar 
correlational structure (Pan,S.J. and Yang,Q. 2010).  While an 
in-depth analysis of transfer learning for methylation 
prediction is beyond the scope of this paper, we used the NPC-
trained methylation prediction SVM to predict the methylome 
in H1, MSC and IMR90. Based on our NPC-trained SVM’s 
performance in the whole genome NPC dataset, we find drops 
in accuracy in the pluripotent H1 (7% decrease) and near-
differentiated, totipotent MSC cell lines (11% decrease). 
However, the accuracy for the NPC-trained SVM in the 
terminally differentiated IMR90 cell line drops by over 25%, 
suggesting that the OFS and SVM decision boundary for NPC 
is not suited for predicting the IMR90 methylome.  Such 
results are in agreement with studies showing large-scale 
epigenetic reprogramming during differentiation  (Teif,V.B., 
et al. 2014) that likely cause a change in the correlational 
structure between the input features and the response variable 
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(DNA methylation status). The limited number of input 
features in the OFS used by DIRECTION, while practical, 
does not lend itself to transfer learning in such scenarios. 
However, transfer learning is potentially feasible in closely 
related cell types or conditions where methylation paradigms 
remain unchanged. 
Tradeoffs underlying classification frameworks for 
methylation prediction: DNA methylation is essentially a 
discrete phenomenon at the level of individual alleles. Hence, 
methylation prediction lends itself naturally to a classification 
framework. However, bisulfite-based sequencing assays 
typically agglomerate signal from both alleles across millions 
of cells, giving rise to CCRs that may be closer to 0.5 
(intermediate methylation) than 0 or 1 (completely 
unmethylated or methylated). Classification algorithms excel 
at predicting methylation status in cytosines with CCRs that 
have extremal values (near 0 or 1). However, their 
performance degrades for predicting methylation status in 
cytosines with CCRs commensurate with intermediate 
methylated levels due to the near-arbitrariness of class label 
assignments for such intermediate CCRs. DIRECTION is 
designed for predicting methylation and hydroxymethylation 
at CpG cytosines in mammalian genomes, which are well 
known to show a bimodal distribution of CCRs even in highly 
heterogeneous mammalian tissues like muscle (Couldrey,C., 
et al. 2014) and brain (Zeng,J., et al. 2012b). However, some 
mammalian datasets can possess some intermediate 
methylation (Lister,R., et al. 2009). Cancer datasets, with 
their underlying mixture of cell-types and genome 
heterogeneity, can be a source of such intermediate 
methylation in mammals (Ahn,J.B., et al. 2011).  
Additionally, for invertebrates, the degree of intermediate 
methylation is known to be higher (Elango,N. and Yi,S.V. 
2008). For such situations, a regression based approach is 
possibly more suitable (Zhang,W., et al. 2015). Given the 
flexibility of our learning framework, such regression-based 
predictors can be incorporated into our learning framework if 
needed. 
Relevance of in silico prediction: Widespread use of 
epigenome-querying assays like BS-seq naturally leads to a 
discussion of relevance of in silico epigenome prediction. 
However, for an in vivo sourced sample with a limited DNA 
yield (like clinical samples), only a few assays can be 
performed, necessitating the in silico prediction of some 
assays based on the outcome of others. Secondly, paralleling 
the rise of whole genome assays, are reduced representation 
BS-seq (Meissner,A., et al. 2005) and TAB-seq 
(Plongthongkum,N., et al. 2014) assays, for which in silico 
prediction is especially relevant. Recent developments in 
single cell technologies allow BS-seq assays to be performed 
on individual cells (Kantlehner,M., et al. 2011), with some 
studies contemplating single-cell TAB-seq as future work 
(Guo,H., et al. 2013). Given the destructive nature of next 
generation sequencing, in silico prediction tools can be 
potentially useful for using single-cell methylation data and 
underlying genomic sequence to make a model-based 
prediction for 5-hmC status, or for imputing methylation 
status.  
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Supplementary Figures and Captions 

Supplementary Figure 1: (a) Empirical distributions of methylation levels in NPC and liver tissue. (b) Distribution of 
hydroxymethylation levels in H1 and NPC. (c) Distribution of 5-hmC levels in the set of CpG sites identified as significantly 
hydroxymethylated in (Yu,M., et al. 2012). (d) Concordance rate between NPC replicates as a function of minimum depth of mapping at 
either replicate. (e) Inferred 5-mC level distribution in NPC by the tool MLML (Qu,J., et al. 2013) by jointly analyzing BS-seq and TAB-
seq CCRs.  
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Supplementary Figure 2: (A, B) F-score trajectories with increase of training (A) and testing (B) set size for SVM classification on balanced sets in NPC for DNA 
methylation status. (c, d) Hierarchical clustering of features in OFS for predicting methylation status in NPC CGI (C) and non-CGI (D) regions, and corresponding 
changes in precision and recall with respect to OFS (E, F) Prediction metrics for DNA methylation status prediction in H1 cells CGI (E) and non-CGI (F) regions. 
(G, H) AUC curves for DNA methylation status predictions in NPC CGI (G) and NPC non-CGI (H) regions. (I, J)  Methylation status prediction accuracy obtained 
by binning the whole genome based on the BS-seq level in H1 (I), and NPC (J). (K, L) Balanced sets predictions in H1 and NPC based on exclusion and inclusion of 
intermediate methylation  [0.4 0.6) in CGI (K), and Non-CGI (L). 
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Supplementary Figure 3: (a) Precision/Recall plot for prediction of DNA methylation status using the methylation status of the 1st, 2nd, and 3rd nearest 
neighbor, and a vote amongst all three. (b) Empirical distributions of high coverage methylome such as NPC (yellow) and low coverage methylome such as 
Fetal Small Intestine (blue) c) Hierarchical clustering of reference methylomes from the Roadmap Epigenome Consortium depicting distinctive methylation 
profile of IMR90 with respect to H1 and NPC cell lined d) Schematic representation of optimal feature set finding algorithm embedded within DIRECTION. 
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Supplementary Figure 4: (a) Precision/Recall plot for 5-hmC status predictions in NPC in enhancer regions using balanced sets for 
SVM. (b, c) Precision/Recall plot for 5-hmC status predictions in H1 in balanced sets (b) and whole genome (c) for SVM. (d) ROC 
curve for 5-hmC status predictions in NPC RF model. (e) ROC curve for 5-hmC status predictions using threshold of 0.25 in NPC RF 
model. (f) ROC curve for 5-hmC predictions in enhancer regions in NPC RF model. (g) Precision/Recall plot for 5-hmC status 
predictions in NPC using various 5-hmC level thresholds for SVMs. Threshold of 0.09 is marked red to symbolize the default value 
that was used in this paper (Underlying data: Supp Table T13B).   
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Supplementary Tables 

Citations Samples Model Features Response variable Performance metric 
(Feltus,F.A., et al. 2003) Restriction Landmark Genome Scanning for control fibroblast 

and DNMT1-overexpressed fibroblast cell lines 
LDA k-mer and consensus motifs in CGI Methylation prone CGIs vs Methylation 

resistant CGIs for DNMT1 overexpression 
among unmethylated CGIs in controls 

ACC: 0.82 

(Bhasin,M., et al. 2005)  MethDB (curated database of ~5,000 experimentally determined 
methylation of DNA fragments in species from plants to 
humans)1 

SVM (best), ANN, NB, 
LR, k-NN, decision tree 

Genomic features (binary sparse encoding of sequence) Methylation status of DNA fragments of 
39bp 

SVM (polynomial kernel degree 
6) metrics: ACC: 0.7506, MCC: 
0.504, AUC: 0.82 

(Feltus,F.A., et al. 2006) Restriction Landmark Genome Scanning for control fibroblast 
and DNMT1-overexpressed fibroblast cell lines 

LDA Discriminative motifs in CGI obtained using MAST Methylation prone CGIs vs Methylation 
resistant CGIs for DNMT1 overexpression 
among unmethylated CGIs in controls 

ACC: 0.84 

(Bock,C., et al. 2006) Methylation status of CGI in the non-repetitive parts of human 
Chromosome 21 (HpaII-McrBC PCR method)- 149 CGIs2  

SVM linear kernel 
(best), RBF SVM, 
Decision tree, AdaBoost 

k-mer and nucleotide content, predicted DNA structure, repeat 
regions, TFBS, evolutionary conservation, SNP frequency 

CGI methylation status for whole CGI Linear SVM metrics: CC:0.74, 
ACC:0.915 

(Das,R., et al. 2006) Human brain data3 with methylation status of ~5,500 genomic 
domains 

SVM RBF kernel (best), 
K-means, LDA, LR 

k-mer content and repeat regions Methylation status of 800bp regions RBF SVM metrics: ACC: Overall: 
0.86, CGIs: 0.965, non-CGIs: 0.84 

(Fang,F., et al. 2006) Human brain data3 with methylation status of ~5,500 genomic 
domains 

SVM (linear kernel) Nucleotide and dinucleotide content, Alu element, TFBSs Methylation status of CpG-rich 200-500bp 
regions (CGI fragments) 

ACC: 0.8303-0.8499, CC: 0.567-
0.686 

(Kim,S., et al. 2008) Bisulfite treated tumor and normal human samples followed by 
targeted 454 sequencing of 25 gene-related CGIs 

NB (best), SVM (SMO), 
ANN, kNN (k=3) 

30bp flanking sequence of each CpG site Methylation status of randomly selected 41 
CpG sites from sequenced dataset 
(methylation level ≥0.5 or ≤ 0.01) 

NB metrics: ACC:>0.75 

(Bock,C., et al. 2007) Methylation status of CGI in the non-repetitive parts of human 
Chromosome 21 (HpaII-McrBC PCR method)2 

SVM (linear kernel) DNA sequence patterns, repeat distribution, predicted DNA 
helix structure, predicted TFBS, genetic variation, and CGI 
attributes 

Methylation status of CGI CC: 0.698, ACC: 0.868 

(Fan,S., et al. 2008) Human Epigenome Project4 data for chromosomes 6, 20, and 
22, using methylation status in human CD4+ T lymphocytes 

SVM (linear kernel) Nucleotide content, Alu annotation, TFBS, and histone 
methylation (H3K4me1, H3K4me2, H3K4me3, and H3K9me1) 

CGI methylation status ACC: 0.8994 

(Carson,M.B., et al. 2008) Methylation status of CGI in the non-repetitive parts of human 
Chromosome 21 (HpaII-McrBC PCR method)2 

Alternative decision tree 
(best), decision tree, 
AdaBoost, SVM 

4-mer frequencies in CGI Methylation status of CGIs on chromosome 
21 

Alternating decision tree metrics: 
ACC: 0.9063, AUC: 0.8906, 
MCC: 0.742 

(Bock,C., et al. 2009) Various vertebrate epigenomic datasets5  AdaStump, Decision 
Tree, RF, NB, LR, SVM 
(linear, RBF kernels) 

DNA sequence content, predicted DNA structure, evolutionary 
history and population variation, annotation of repeats, genes, 
regulatory regions, chromosomal bands and isochores, histone 
modification 

Prediction of various epigenetic features 
(including DNA methylation) 

AdaStump metrics: for all 
epigenome predictions: CC: 
0.498, ACC: 0.749 

(Previti,C., et al. 2009) Human Epigenome Project4 data for chromosomes 6, 20, and 
22, using methylation status for all samples, and Epigraph 
datasets5 

Decision tree (best), 
SVM 

Nucleotide content, evolutionary conservation, DNA structure 
prediction 

CGI methylation status (2-way: 
methylated/unmethylated, or 4-way: 
methylation patterns across tissues) 

Decision tree metrics: 2-way: 
CC:0.775, ACC: 0.9167; 4-way: 
CC: 0.707, ACC: 0.8939 

(Lu,L., et al. 2010) Human Epigenome Project4 data for chromosomes 6, 20, and 
22, using methylation status in human CD4+ T lymphocytes 

k-NN 5-mer frequency in 499bp upstream and downstream of CpG 
site 

Methylation status of CpG sites ACC: 0.7745 

(Fan,S., et al. 2010) Human Epigenome Project4 data for chromosomes 6, 20, and 22 
across 1.9 million CpG sites, using methylation status in human 
CD4+ T lymphocytes 

SVM (linear kernel) DNA sequence derived features: GC content, GC 
observed/expected ratio, Alu repeats, and repeat masker. 214 
TFBS and 38 histone marks. 

CGI methylation status in chromosomes 6, 
20, and 22 

ACC: 0.94, CC: 0.81 

(Zhang,W., et al. 2011) Human Epigenome Project4 data for chromosomes 6, 20, and 
22, using methylation status in human CD4+ T lymphocytes 

SVM Sequence length, nucleotide and dinucleotide content, promoter 
and TFBS annotation, nucleosome positioning 

Methylation status of CGI in chromosome 
22 

ACC: 0.9059, CC: 0.65 

(Zhou,X., et al. 2012) MethDB (curated database of ~5,000 experimentally determined 
methylation of DNA fragments in species from plants to 
humans)1 

SVM (RBF kernel) 3-mer composition of DNA fragments Methylation status and level for 400 human 
DNA fragments in MethDB 

Methylation status prediction: 
ACC: 0.8207, MCC: 0.6411 
Methylation level prediction: R: 
0.8223, RMSE: 0.2042 

(Zheng,H., et al. 2013) Human Epigenome Project4 data for chromosomes 6, 20, and 
22, using methylation status in several human tissue or cell 
types 

SVM Gardiner-Garden criteria, 4-mer composition, conserved TFBSs 
and conserved elements, predicted DNA structure, functional 
annotation of proximal genes, nucleosome positioning, histone 
methylation and acetylation 

Methylation status of CGI Metric in human CD4+ 
lymphocyte: ACC: 0.9313, CC: 
0.8302 

(Gaidatzis,D., et al. 2014) BS-seq for H1 and IMR90 cell lines Linear regression Dinucleotide sequence derived features created using the 
sequence environment of 78bp. Each nucleotide interpreted as a 
categorical variable with 16 states. 

DNA methylation levels at CpG nucleotides 
within partially methylated domains 

R=0.86 (for the sequence context 
of 140bp) 

(Ma,B., et al. 2014) Methylation array data of multiple human tissues Support vector 
regression (RBF kernel) 
(best), linear regression 

Methylation beta values in surrogate tissue Methylation beta values for different tissues Methylation level prediction: For 
probes in beta-value range 0.2 to 
0.8:  R2: 0.89-0.98 

(Yan,H., et al. 2015) BS-seq for H1, NPC, IMR90 cell lines RF (best), SVM (RBF 
kernel), LR, Decision 
Tree, NB 

Nucleotide composition, 16 histone marks, RNA-seq Methylation status of genomic segments 
(based on CpG_MPs tool) 

RF metrics: H1: AUC: 0.99, NPC: 
AUC: 0.99, IMR90: AUC: 0.92 

(Zhang,W., et al. 2015) 100 blood samples for 450K arrays RF Sequence composition, evolutionary rate, copy number 
variation, haplotype score, recombination rate, SNP presence, 
annotation of gene body, promoters, CGIs, repeats, DNase, Pol2 
and TF ChIP-seq, histone marks, neighboring CpG site 
methylation level and distance, chromatin states 

Methylation status and levels at single CpG 
sites 

Classification: CGI: ACC: 0.98, 
Whole genome: ACC: 0.92, 
Regression: R=0.9, RMSE=0.19 

(Wang,Y., et al. 2016) GM12878 and K562 cell lines (RRBS-seq) Deep Nets (ANN) and 
SVM 

Genomic features, neighboring CpG sites, and Hi-C Methylation status at CpG dinucleotides 
across 1kb windows 

ACC: 0.721-0.897 

(Fan,S., et al. 2016) BS-seq and methylation arrays for H1 and H9 cell lines RF (best), LR, SVM Nucleotide, dinucleotide frequencies and NpN ratios for 500bp 
flanks, methylation data for 1000bp flanks, histone marks, 
chromosome organization, chromatin structure, evolutionary 
features, repeats, TFBS 

Methylation status and levels at CpG sites Metrics for RF: Classification: 
ACC: 0.93, MCC: 0.86, 
Regression: Spearman correlation 
coefficient: 0.7602 

Supplementary Table T1: Literature survey of methylation prediction (Methods: NB: Naive Bayes, LR: Logistic Regression, k-NN: k Nearest Neighbor, RF: Random Forest, SVM Support Vector Machine, 
LDA: Linear Discriminant Analysis, ANN: Artificial Neural Network) (Metrics: ACC: Accuracy, MCC: Matthews Correlation Coefficient, CC: Correlation Coefficient, R: Regression Coefficient, RMSE: Root 
Mean Square Error) 1(Amoreira,C., et al. 2003) 2(Yamada,Y., et al. 2004) 3(Rollins,R.A., et al. 2006) 4(Eckhardt,F., et al. 2006) 5(Bock,C., et al. 2009) 
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Mode Description 
training This mode outputs a trained model (SVM or RF) for a given feature set, by sampling balanced sets from given input data 
testing This mode performs testing to provide prediction metrics. It outputs the precision/recall metric on a testing data using user-specified 

previously trained model with feature set. 
whole-genome This mode performs testing to provide predictions. It outputs the actual predictions of the model for a given input dataset, using user-

specified previously trained model with feature set. It can be used to perform imputation, prediction limited to a certain set of 
genomic regions, or whole genome prediction. 

cross-validation This mode samples balanced sets from the training data, partitions them into k sets for cross validation purposes, and performs testing 
for each partition, by training on the remaining partition, for a given feature set. It outputs precision/recall metrics across different test 
partitions, along with the associated model and feature set. 

beam_search This mode takes as input an initial feature set, and training data. It performs beam search to identify the best feature set (a subset of 
the initial feature set) according to user specified prediction metric, and outputs the best feature set, trained model along with the 
metric. It also outputs all evaluated feature sets with respective metrics. It has the cross-validation mode embedded inside it. 

bed_to_binary This mode is for database management. It takes as input multiple feature sets in bed format, and merges them together into 1 matrix 
and saves it in binary file (.mat binary MATLAB format) format. This ensures a consistent, compact input matrix which enhances 
overall computational performance. 

append_bed_to_binary This mode is also for database management. It takes a single feature in .bed format as an input, appends it to a larger matrix in a user-
specified .mat file and eventually updates the .mat binary file. 

Supplementary Table T2: Summary of different modes in our epigenome prediction toolkit 
 
 
 



Feature Type Description Motivation 
Genome-derived features (processed from UCSC Genome Browser datasets (Speir,M.L., et al. 2016)) 

CpG island (CGI) Binary Presence/absence of CGI annotation at CpG site CGIs tend to be significantly unmethylated in 
comparison to non-CGI regions of the genome 

Distance to nearest 
CGI (in bps) 

Non-negative 
integer 

Helps distinguish CpGs in CGI, CGI “shores” and non-CGI Cytosines on the CGI shores (near CGIs) tend to be 
highly methylated and govern most of methylation 
within non-CGI regions) 

Distance to nearest 
CGI (in CpGs) 

Non-negative 
integer 

Alternative feature for distance to CGI, measured in number of intervening 
CpGs, rather than genomic coordinates 

As above 

GC content Continuous 
∈ 0,1  

Percentage of nucleotides which are G/Cs in centered window around 
CpG site (window sizes: 50, 100, 200, 400, 800bp used) 

Higher GC content empirically shows lower 
methylation levels: fact corroborated in CGIs 

CpG density Continuous 
∈ 0,1  

Percentage of dinucleotides which are CpGs in centered window around 
CpG site (window sizes: 50, 100, 200, 400, 800bp used) 

As above 

Strand-specific 
guanine density 

Continuous 
∈ 0,1  

Percentage of guanines in centered window around CpG site (window 
sizes: 50, 100, 200, 400, 800bp used) 

5-hmC levels can be asymmetrically distributed in a 
CpG site between strands (Yu,M., et al. 2012) 

Repeats (SINEs, 
LTRs) 

Binary Presence/absence of SINE or LTR annotation at the CpG site Higher methylation suppresses transcription in 
repeat regions (Hackett,J.A., et al. 2013) 

Alu Binary Presence/absence of Alu annotation at the CpG site As above 
Epigenome-derived features 

Enhancers Binary Created using a cutoff value of the ChIP-seq H3K27ac and H3K4me3 
signal generated using MACS tool1 

5-hmC is known to be overrepresented in enhancers 
(Stadler,M.B., et al. 2011)  

Core histone 
modification ChIP-seq 
signal 

Continuous -log10 transformed ChIP-seq p-values based on ChIP binding and input 
control, as calculated by the MACS tool1. (H3K9me3, H3K4me3, 
H3K4me1, H3K36me3, H3K27me3, H3K27ac: available for 109 
epigenomes)2 

Repressive marks like H3K9me3 and H3K27me3 
are often mutually exclusive with DNA methylation 

Auxiliary histone 
modification ChIP-seq 
signal 

Continuous Similarly processed data for additional histone modifications available for 
a limited number of epigenomes (H2AK5ac, H2AZ, H2BK120ac, 
H2BK12ac, H2BK15ac, H2BK20ac, H2BK5ac, H3K14ac, H3K18ac, 
H3K23ac, H3K23me2, H3K4ac, H3K4me1, H3K4me2, H3K56ac, 
H3K79me1, H3K79me2, H4K20me1, H4K5ac, H4K8ac, H4K91ac)2 

As above 

Histone states Discrete: 1-15 Using core histone modification signal for core marks to segment data into 
posterior decoded 15-state HMM annotation tool ChromHMM3, based on 
(Chadwick, 2012) 

Histone states have been shown to be well 
correlated with DNA methylation (Kundaje,A., et 
al. 2015) 

BS-seq CCR Continuous 
∈ 0,1  

Percentage of cytosines remaining unchanged based on the Roadmap 
Epigenome consortium datasets2 

Used only for predicting 5-hmC status, since 5-hmC 
modifications show up as part of the BS-seq CCRs 

ChIP-seq TF binding-derived features 
DNase-seq signal Continuous Regions of open chromatin characterized by DNase digestion and 

sequencing: coverage signal contrasted with uniformly distributed read set 
simulation, and -log10 transform of p-value used2 

DNase hypersensitive regions positively correlated 
to active regulatory regions, negatively correlated to 
5-mC 

CTCF ChIP-seq signal Continuous -log10 transformed ChIP-seq p-values based on ChIP binding and input 
control for CTCF binding2 

Well-known insulator. Used only for H1 
methylation and 5-hmC status prediction. 

p300 ChIP-seq signal Continuous -log10 transformed ChIP-seq p-values based on ChIP binding and input 
control for p300 binding2 

p300 marks active transcription sites. Used only for 
H1 methylation and 5-hmC status prediction 

Supplementary Table T3: List of features used for predicting DNA methylation and hydroxymethylation. All features for methylation prediction were used for 5-hmC 
prediction as well, since 5-hmC is on the demethylation pathway. 1(Zhang,Y., et al. 2008), 2(Chadwick,L.H. 2012), 3(Ernst,J. and Kellis,M. 2012) 
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Supplementary Table T4: Similarity of OFS across different beam widths for beam search using SVM model for methylation status 
prediction in NPC CGI dataset. 
 
 
 

	Optimal	Feature	Selection	in	NPC	CGI	using	SVM	for	different	values	of	beam	width	parameter	

Beam	Width	

2	 3	 4	 5	

DNase	 DNase	 DNase	 DNase	

H2AK5ac	 H2AK5ac	 H2AK5ac	 H2AK5ac	

H3K4me3	 H3K4me3	 H3K4me3	 H3K4me3	

H3K9me3	 H3K9me3	 H3K9me3	 H3K9me3	

Histone_states	 Histone_states	 Histone_states	 Histone_states	

Bp_to_CGI	 Bp_to_CGI	



 

  
Supplementary Table T5: Balanced set evaluations for DNA methylation status predictions 
 
 
 

Evaluation on genomic loci subsets by sampling balanced sets

Comparison of different predictive models in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq )SFO FR(FRsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.96 0.95
BS-seq )SFO MVS(eerT noitacifissalCsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.94 0.95 0.94

BS-seq CGI cytosines
Ensemble model 
with SVM and 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines RF (RF OFS) NPC (depth >= 20) NPC (depth >= 20) 0.89 0.74 0.81
BS-seq non-CGI cytosines Classification Tree (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.71 0.71 0.71

BS-seq non-CGI cytosines
with SVM and 
consensus 

SVM OFS + nearest neighbor 
feature) + Consensus NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in NPC dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.96 0.95 0.95
BS-seq FGMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.75 0.61 0.67
BS-seq HCMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.95 0.85 0.90
BS-seq PHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.97 0.88 0.92
BS-seq RHMVSsenisotyc IGC NPC (depth >= 20) NPC (depth >= 20) 0.78 0.97 0.86

BS-seq MVSsenisotyc IGC

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.97 0.95 0.96

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines SVM (SVM OFS) NPC (depth >= 20) NPC (depth >= 20) 0.91 0.72 0.80
BS-seq non-CGI cytosines SVM GF NPC (depth >= 20) NPC (depth >= 20) 0.70 0.67 0.68
BS-seq non-CGI cytosines SVM CH NPC (depth >= 20) NPC (depth >= 20) 0.88 0.65 0.75
BS-seq non-CGI cytosines SVM HP NPC (depth >= 20) NPC (depth >= 20) 0.94 0.60 0.73
BS-seq non-CGI cytosines SVM HR NPC (depth >= 20) NPC (depth >= 20) 0.87 0.72 0.79

BS-seq non-CGI cytosines SVM

SVM + N  = (SVM features: 
SVM OFS + nearest neighbor 
feature) NPC (depth >= 20) NPC (depth >= 20) 0.93 0.77 0.84

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparison of predictive abilities for different feature sets in H1 dataset

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq SFOMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq FGMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.72 0.65 0.68
BS-seq HCMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.95 0.91 0.93
BS-seq PHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.96 0.96 0.96
BS-seq RHMVSsenisotyc IGC H1 (depth >=20) H1 (depth >=20) 0.76 0.99 0.86
BS-seq non-CGI cytosines SVM OFS H1 (depth >=20) H1 (depth >=20) 0.96 0.69 0.80
BS-seq non-CGI cytosines SVM GF H1 (depth >=20) H1 (depth >=20) 0.56 0.62 0.59
BS-seq non-CGI cytosines SVM CH H1 (depth >=20) H1 (depth >=20) 0.93 0.65 0.77
BS-seq non-CGI cytosines SVM HP H1 (depth >=20) H1 (depth >=20) 0.98 0.62 0.76
BS-seq non-CGI cytosines SVM HR H1 (depth >=20) H1 (depth >=20) 0.61 0.70 0.65
Comparisons of predictions involving the Consensus Reference Methylome

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 0.87 0.99 0.93

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.98 0.99 0.98

BS-seq
Cytosines with disagreement 
threshold <= 4

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.93 0.99 0.96

BS-seq
Cytosines with disagreement 
threshold <= 8

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.88 0.98 0.93

BS-seq
Cytosines with disagreement 
threshold <= 12

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 0.85 0.97 0.91

BS-seq CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.97 0.96 0.96

BS-seq non-CGI cytosines

with SVM and 
consensus 
reference 
methylome based 
predictor

SVM + N + C = (SVM features: 
SVM OFS + nearest neighbor 
feature) + Consensus 
Reference Methylome NPC (depth >= 20) NPC (depth >= 20) 0.93 0.78 0.85

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.96 0.98 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.95 0.97 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.91 0.95 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.81 0.92 0.86

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.70 0.89 0.78

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.62 0.89 0.73

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 0.59 0.88 0.71

Prediction metrics with intermediate methylation removed

Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore

BS-seq )SFO MVS(MVSsenisotyc IGC

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

H1 (depth >= 20, no 
intermediate 

methylation sites)

H1 (depth >= 20, no 
intermediate 

methylation sites) 0.96 0.72 0.82

BS-seq )SFO MVS(MVSsenisotyc IGC

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.97 0.97 0.97

BS-seq non-CGI cytosines SVM (SVM OFS)

NPC (depth >= 20, no 
intermediate 

methylation sites)

NPC (depth >= 20, no 
intermediate 

methylation sites) 0.94 0.77 0.85

scirtem noitaulavEstesataD

Datasets

Datasets

Datasets

Datasets

Datasets

Evaluation metrics

Evaluation metrics

Evaluation metrics

Evaluation metrics

Evaluation metrics
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Supplementary Table T6: Whole genome evaluations for DNA methylation status predictions 
 
 
 

Evaluation on genomic loci subsets

Comparison of SVM predictive model in NPC and H1 datasets

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq A )SFO MVS(MVSsenisotyc ll H1 (depth >=20) H1 (depth >=20) 43625145 3253354 1440859 2060474 0.95 0.69 0.93
Transfer learning between datasets using SVM predictive model scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) H1 (depth >=20) 41317737 3727930 966283 4367882 0.90 0.79 0.89
BS-seq A )SFO 1H MVS(MVSsenisotyc ll H1 (depth >=20) NPC (depth >= 20) 42286042 2999939 2437140 1411378 0.97 0.55 0.92
BS-seq A )SFO CPN MVS(MVSsenisotyc ll NPC (depth >= 20) MSC (depth >=20) 23703248 2779019 1132119 3528772 0.87 0.71 0.85

BS-seq )SFO CPN MVS(MVSsenisotyc llA NPC (depth >= 20)
IMR90 (depth >=20, no 
sex chromosomes) 24457244 2292688 7853852 3990412 0.86 0.23 0.69

Comparison of different predictive models in NPC dataset scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq A )SFO MVS(MVSsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43477143 3808315 1628764 220277 0.99 0.70 0.96
BS-seq  susnesnoC + )SFO MVS dna MVS htiwsenisotyc llA NPC (depth >= 20) NPC (depth >= 20) 43516018 4072279 1364800 181402 0.99 0.75 0.97
BS-seq A )SFO FR(FRsenisotyc ll NPC (depth >= 20) NPC (depth >= 20) 43409038 3928194 1508885 288382 0.99 0.72 0.96
Comparisons of predictions involving the Consensus Reference Methylome scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
Cytosines with disagreement 

)SFO MVS(MVS0 = dlohserht NPC (depth >= 20) NPC (depth >= 5) 22892862 1724692 298403 48224 0.99 0.85 0.99

BS-seq
Cytosines with disagreement 
threshold = 0

Single predictor 
variable

Consensus Reference 
Methylome NPC (depth >= 5) NPC (depth >= 5) 22931737 1988656 34439 9349 0.99 0.98 0.99

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq
All cytosines with nearest neighbor 
distance within 2 - 20 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 29550709 14763379 564837 564881 0.98 0.96 0.98

BS-seq
All cytosines with nearest neighbor 
within distance 20 - 50 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 49875774 24255756 1059991 1063485 0.98 0.96 0.97

BS-seq
All cytosines with  nearest neighbor 
within distance 50 - 100 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 74673162 38853553 1929159 1939160 0.97 0.95 0.97

BS-seq
All cytosines with nearest neighbor 
within distance 100 - 200 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 134860662 72343025 4301602 4328057 0.97 0.94 0.96

BS-seq
All cytosines with nearest neighbor 
within distance 200 - 500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 343604957 178749445 18992938 19013419 0.95 0.90 0.93

BS-seq
All cytosines with  nearest neighbor 
within distance 500 - 1000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 535404825 184117716 49462992 49353293 0.92 0.79 0.88

BS-seq
All cytosines with nearest neighbor 
within distance 1000 - 1500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 516462743 97126961 61567274 61614285 0.89 0.61 0.83

BS-seq
All cytosines with nearest neighbor 
within distance 1500 - 2000 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 506944740 57313501 65247592 64967145 0.89 0.47 0.81

BS-seq
All cytosines with nearest neighbor 
within distance 2000 - 2500 bp

Single predictor 
variable Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 502844979 40255457 65773735 65603667 0.88 0.38 0.81

Comparisons of predictions involving the Nearest Neighbor Methylation Status predictor scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy

BS-seq All cytosines
Nearest neighbor 
status (N1) Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92474170 9903311 2108509 2075216 0.98 0.82 0.96

BS-seq All cytosines

2nd Nearest 
neighbor status 
(N2) 2nd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92279738 9765000 2246820 2269648 0.98 0.81 0.96

BS-seq All cytosines

3rd Nearest 
neighbor status 
(N3) 3rd Nearest neighbor status NPC (depth >= 5) NPC (depth >= 5) 92127642 9647770 2364050 2421744 0.97 0.80 0.96

BS-seq All cytosines

Vote among 3 
Nearest neighbor 
status (V)

Vote among 3 Nearest 
neighbor status NPC (depth >= 5) NPC (depth >= 5) 46819091 4897408 1108502 455602 0.99 0.82 0.97

Comparisons of predictions in H1 and NPC for different ranges of BS-seq CCRs scirtem noitaulavEstesataD

Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on Accuracy

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0,0.2)

NPC (depth >= 20, 
methylation CCR 
range [0,0.2) 0.81

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4)

NPC (depth >= 20, 
methylation CCR 
range [0.2,0.4) 0.61

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6)

NPC (depth >= 20, 
methylation CCR 
range [0.4,0.6) 0.54

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.6,0.8)

NPC (depth >= 20, 
methylation CCR 
range [0.6,0.8) 0.92

BS-seq )SFO FR(FRsenisotyc llA

NPC (depth >= 20, 
methylation CCR 
range [0.8,1.0]

NPC (depth >= 20, 
methylation CCR 
range [0.8,1.0] 0.99

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0,0.2)

H1 (depth >= 20, 
methylation CCR 
range [0,0.2) 0.72

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.2,0.4)

H1 (depth >= 20, 
methylation CCR 
range [0.2,0.4) 0.69

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.4,0.6)

H1 (depth >= 20, 
methylation CCR 
range [0.4,0.6) 0.57

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.6,0.8)

H1 (depth >= 20, 
methylation CCR 
range [0.6,0.8) 0.96

BS-seq )SFO MVS(MVSsenisotyc llA

H1 (depth >= 20, 
methylation CCR 
range [0.8,1.0]

H1 (depth >= 20, 
methylation CCR 
range [0.8,1.0] 0.97

scirtem noitaulavEstesataD



 
 

  

 
  

 
 
Supplementary Table T7: (A) Feature sets for methylation status prediction using SVM in H1 CGI and non-CGI datasets. (B) OFS 
for methylation status prediction using RF in NPC CGI and non-CGI datasets 
 
 
 

                 (A):	Biologically	meaningful	feature	sets	H1	BS-seq	using	SVM	
CGI	 Non-CGI	

OFS	 HR	 HP	 CH	 GF	 OFS	 HR	 HP	 CH	 GF	
Alu_repeat	 ü ü Alu_repeat	
Bp_to_CGI	 ü ü ü ü Bp_to_CGI	

CG_sat_50bp	 ü ü ü ü ü ü CG_sat_50bp	
CpG_sat_50bp	 ü ü CpG_sat_50bp	
CpG_to_CGI	 ü ü ü ü ü CpG_to_CGI	

DNase	 ü ü ü ü ü DNase	
G_sat_50bp	 ü ü G_sat_50bp	
H2AK5ac	 H2AK5ac	
H3K27ac	 ü ü ü ü ü H3K27ac	
H3K27me3	 ü ü ü ü ü ü ü H3K27me3	
H3K36me3	 ü ü ü H3K36me3	
H3K4me1	 ü ü ü H3K4me1	
H3K4me3	 ü ü ü ü ü ü ü ü H3K4me3	
H3K79me1	 H3K79me1	
H3K9ac	 ü ü H3K9ac	
H3K9me3	 ü ü ü H3K9me3	

Histone_states	 ü ü 	 ü Histone_states	
Repeats	 ü ü Repeats	
CTCF	 ü ü CTCF	

ü

ü

(B): Random Forest Optimal 
Feature Sets in NPC 

Feature List CGI Non-CGI 
CG_sat_50bp 

CpG_sat_50bp ü 

CpG_to_CGI ü 

G_sat_50bp ü 

Alu_repeat 
Bp_to_CGI ü ü 

DNase ü ü 

Repeats ü 

H2AK5ac ü ü 

H3K27ac 
H3K27me3 ü ü 

H3K36me3 ü ü 

H3K4me1 ü 

H3K4me3 ü ü 

H3K79me1 ü 

H3K9ac 
H3K9me3 ü ü 

Histone_states ü ü 
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Supplementary Table T8: Underlying data for Figure 2E, showing F-score (for H1 non-CGI methylation status prediction) 
trajectory as beam search algorithm searches through feature space. (A) For incrementally improved F-scores, the feature sets are 
shown. (B) For each improved F-score, the corresponding precision and recall values are shown. 
 

 

 
Supplementary Table T9: (A) Underlying data for Figure 3B, showing the size of the consensus reference methylome with 
disagreement thresholds 0, 4, 8, and 12 as a fraction of the entire methylome (in terms of CpG cytosines). (B) List of reference 
methylomes used to create the consensus reference methylome. 

(A):	Various	beam	search	feature	sets	used	to	show	
metric	improvement	in	H1	BS-seq	non-CGI	using	

SVM	
Feature	Sets	

A	 B	 C	 D	 E	 F	 G	

Alu_repeat	 ü 
Bp_to_CGI	 ü ü 

CG_sat_50bp	 ü ü ü 

CpG_sat_50bp	 ü 
CpG_to_CGI	 ü ü ü ü 

DNase	 ü ü ü ü ü ü 
G_sat_50bp	 ü 
H2AK5ac	 ü ü ü ü ü ü 

H3K27ac	 ü ü ü ü ü ü ü 
H3K27me3	 ü ü ü ü 

H3K36me3	 ü ü ü 
H3K4me1	 ü ü ü ü ü 

H3K4me3	 ü ü ü ü 
H3K79me1	 ü 
H3K9ac	 ü 

H3K9me3	 ü 
Histone_states	 ü ü ü ü 

Repeats	 ü ü ü ü ü ü ü 

(B):	Prediction	metric	for	H1	
Beam	Search	BS-seq	in	non-CGI	

using	SVM	
Precision	 Recall	

A	 0.7970	 0.7292	

B	 0.8170	 0.7262	

C	 0.8180	 0.7363	

D	 0.8470	 0.7340	

E	 0.8570	 0.7439	

F	 0.8970	 0.7334	

G	 0.9200	 0.7342	

Disagreement	threshold	
Size	of	the	reference	methylome	
relative	to	the	whole	methylome	

0	 4	 8	 12	
0.44236051	 0.664482316	 0.716133503	 0.751079765	

(A): Reference methylome sizes

(B): Cell	lines	&	tissues	used	to	create	reference	methylome	

H9	Cell	Line	 Gastric	
HUES64	Cell	Line	 Left	Ventricle	
iPS	DF	6.9	Cell	Line	 Lung	
iPS	DF	19.11	Cell	Line	 Ovary	

4star	 Pancreas	
IMR90	Cell	Line	 Psoas	Muscle	

Mobilzied	CD34	Primary	Cells	Female	 Right	Atrium	
Neurosphere	Cultured	Cells	Cortex	Derived	 Right	Ventricle	

Penis	Foreskin	Keratinocycte	Primary	Cells	skin03	 Sigmoid	Colon	
Aorta	 Small	Intestine	

Adult	Liver	 Thymus	
Brain	Hippocampus	Middle	 Spleen	

Esophagus	



 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Supplementary Table T10: Balanced set and whole genome evaluations for 5-hmC status predictions 
 
 
 

Evaluation on genomic loci subsets by sampling balanced sets
Comparison of predictive abilities for different feature sets in NPC dataset Datasets Evaluation metrics
Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 0.75 0.80 0.77
TAB-seq All cytosines SVM GF NPC (depth >= 60) NPC (depth >= 60) 0.73 0.63 0.68
TAB-seq All cytosines SVM CH NPC (depth >= 60) NPC (depth >= 60) 0.62 0.76 0.68
TAB-seq All cytosines SVM HP NPC (depth >= 60) NPC (depth >= 60) 0.80 0.73 0.76
TAB-seq All cytosines SVM HR NPC (depth >= 60) NPC (depth >= 60) 0.65 0.84 0.73
Comparison of predictive abilities for different feature sets in H1 dataset Datasets Evaluation metrics
Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore
TAB-seq All cytosines SVM (SVM OFS) H1 (depth >= 60) H1 (depth >= 60) 0.67 0.74 0.70
TAB-seq All cytosines SVM GF H1 (depth >= 60) H1 (depth >= 60) 0.62 0.64 0.63
TAB-seq All cytosines SVM CH H1 (depth >= 60) H1 (depth >= 60) 0.58 0.74 0.65
TAB-seq All cytosines SVM HP H1 (depth >= 60) H1 (depth >= 60) 0.67 0.65 0.66
TAB-seq All cytosines SVM HR H1 (depth >= 60) H1 (depth >= 60) 0.57 0.76 0.65
Comparison of predictive abilities for different feature sets in NPC enhancer dataset Datasets Evaluation metrics
Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore
TAB-seq Enhancer cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 0.77 0.82 0.79
TAB-seq Enhancer cytosines SVM GF NPC (depth >= 60) NPC (depth >= 60) 0.73 0.63 0.68
TAB-seq Enhancer cytosines SVM CH NPC (depth >= 60) NPC (depth >= 60) 0.63 0.75 0.68
TAB-seq Enhancer cytosines SVM HP NPC (depth >= 60) NPC (depth >= 60) 0.93 0.53 0.68
TAB-seq Enhancer cytosines SVM HR NPC (depth >= 60) NPC (depth >= 60) 0.63 0.82 0.71
Comparison of different predictive models in NPC dataset Datasets Evaluation metrics
Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 0.75 0.80 0.77
TAB-seq All cytosines RF (RF OFS) NPC (depth >= 60) NPC (depth >= 60) 0.78 0.82 0.80
Comparison of different predictive models in NPC dataset Datasets Evaluation metrics
Data type Sampling loci constraints Predictive Model Input Features Used Trained on Tested on Precision Recall Fscore
TAB-seq Cytosines with high BS-seq levels SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 0.74 0.80 0.77
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 0.75 0.80 0.77

Evaluation on genomic loci subsets
Comparison of SVM models in NPC and H1 datasets Datasets Evaluation metrics
Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 339376 7269832 1578026 114373 0.75 0.82 0.82
TAB-seq All cytosines SVM (SVM OFS) H1 (depth >= 60) H1 (depth >= 60) 84682 1664105 552163 40920 0.67 0.75 0.75
Comparison of SVM models in NPC enhancer regions, non-enhancer regions, & whole genome Datasets Evaluation metrics
Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy
TAB-seq Enhancer cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 67008 311652 123148 12030 0.85 0.72 0.74
TAB-seq Non-enhancer cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 272368 6958180 1454878 102343 0.73 0.83 0.82
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 339376 7269832 1578026 114373 0.75 0.82 0.82
Comparison of different predictive models in NPC dataset Datasets Evaluation metrics
Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy
TAB-seq All cytosines SVM (SVM OFS) NPC (depth >= 60) NPC (depth >= 60) 339376 7269832 1578026 114373 0.75 0.82 0.82
TAB-seq All cytosines RF (RF OFS) NPC (depth >= 60) NPC (depth >= 60) 348195 7260210 1587648 105554 0.77 0.82 0.82
Transfer learning between H1 and NPC datasets using SVM predictive model
Data type Evaluation loci constraints Predictive Model Input Features Used Trained on Tested on TP TN FP FN TPR TNR Accuracy
TAB-seq All cytosines SVM (SVM NPC OFS) NPC (depth >= 60) H1 (depth >=60) 80328 1510583 705685 45364 0.64 0.68 0.68
TAB-seq All cytosines SVM (SVM H1 OFS) H1 (depth >=60) NPC (depth >= 60) 295697 6559183 2288675 158052 0.65 0.74 0.74
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Supplementary Table T11: Feature sets for 5-hmC status prediction in NPC, NPC enhancers, and H1 using SVM model (A) and in 
NPC dataset using RF model (B) 

(A) Biologically	meaningful	feature	sets	for	5-hmC	ƐƚaƚƵƐ
ƉƌĞĚŝĐƚŝŽŶ on	balanced	sets	using	SVM	

NPC	enhancers	 NPC	 H1	
OFS	 HR	 HP	 CH	 GF	 OFS	 HR	 HP	 CH	 GF	 OFS	 HR	 HP	 CH	 GF	

Alu_repeat	 ü ü ü ü ü ü ü ü 
BS-seq_CCR	 ü ü ü ü ü ü ü 

Bp_to_CGI	 ü ü ü 
CG_sat_50bp	 ü ü ü ü ü ü ü ü ü 

CpG_sat_50bp	 ü ü ü ü 
CpG_to_CGI	 ü ü ü ü 

DNase	 ü ü ü ü 

G_sat_50bp	 ü ü ü ü ü 
H2AK5ac	
H3K27ac	 ü ü ü ü 
H3K27me3	 ü ü ü 
H3K36me3	 ü ü ü ü ü 

H3K4me1	 ü ü ü ü ü ü ü ü 
H3K4me3	 ü ü ü 

H3K79me1	
H3K9ac	
H3K9me3	 ü ü ü ü 

Histone_states	 ü ü ü 
Repeats	 ü ü ü ü ü ü ü 

CpG_Island	 ü 

CTCF	 ü ü ü

(B) Random Forest
2)6 IRU NPC ��KP&

VWDWXV SUHGLFWLRQ

Features
Alu_repeat	
Bp_to_CGI	

CG_sat_50bp	 ü 

CpG_sat_50bp	 ü 
CpG_to_CGI	 ü 

DNase	 ü 

G_sat_50bp	
H2AK5ac	
H3K27ac	 ü 
H3K27me3	 ü 
H3K36me3	
H3K4me1	 ü 
H3K4me3	 ü 

H3K79me1	 ü 
H3K9ac	
H3K9me3	 ü 

Histone_states	 ü 
Repeats	

BS-seq_CCR	 ü 
CpG_Island	



 
 

  

     
Supplementary Table T12: Underlying data for Supplementary Figures 2A and 2B showing how precision and recall are affected 
by training and testing set size. 

    
Supplementary Table T13: (A) Fisher’s Exact Test shows statistical significance (p< or ~0.05) for distinguishing between a sample 
that is unmethylated (or non-hydroxymethylated) versus a sample that is marginally methylated (or hydroxymethylated) at 
sequencing depths of 10 for BS-seq data and 60 for TAB-seq data. (B) Underlying data for Supp Figure 4G, showing smooth change 
in prediction metric with change in CCR threshold for identifying 5-hmC status in training and testing sets for NPC datasets. 

Dependence	of	BS-seq	prediction	metric	in	NPC	CGI	on	
training	and	testing	set	size	using	SVM	

Training	 Testing	
Size	 Precision	 Recall	 Size	 Precision	 Recall	
1000	 0.92	 0.89	 500	 0.956	 0.888	
2000	 0.948	 0.91	 1000	 0.956	 0.9428	
6000	 0.958	 0.94	 2000	 0.967	 0.9548	
10000	 0.968	 0.95	 3000	 0.9677	 0.9555	
15000	 0.68	 0.951	 5000	 0.97	 0.9555	

(A): Distinguishing between XQPHWK\ODWHG (RU QRQ�
K\GUR[\PHWK\ODWHG) DQG PDUJLQDOO\ PHWK\ODWHG (RU 

K\GUR[\PHWK\ODWHG) CpG sites in BS-seq and TAB-seq 
experiments based on sequencing depth using Fisher Exact Test 

BS-seq TAB-seq 
Sequencing Depth Sequencing Depth 

Sample1: #C 

p-value

Sequencing Depth 8 Sequencing Depth 48 
4 4 

0.077 
4	 44	

0.117 0 8 0	 48	
Sequencing Depth 10 Sequencing Depth 60 

5 5 
0.0325 

5	 55	
0.057 0 10 0	 60	

Sequencing Depth 12 Sequencing Depth 72 
6 6 

0.014 
6	 66	

0.028 0 12 0	 72	

Sample1: #T 

Sample2: #C Sample2: #T 

Sample1: #C 

p-value

Sample1: #T 

Sample2: #C Sample2: #T 

(B): Precision/Recall	values	across	
different	5-hmC	thresholds	in	NPC	

Threshold	 Precision	 Recall	
0.01	 0.5838	 0.588152327	
0.02	 0.5514	 0.623473541	
0.03	 0.569	 0.644686155	
0.04	 0.5886	 0.689550141	
0.05	 0.625	 0.732021551	
0.06	 0.6558	 0.756401384	
0.07	 0.6892	 0.768338907	
0.08	 0.7338	 0.792954398	
0.09	 0.7528	 0.814894999	
0.10	 0.771	 0.817430025	
0.11	 0.7872	 0.822914489	
0.12	 0.8128	 0.832275241	
0.13	 0.8218	 0.842180775	
0.14	 0.8356	 0.841829539	
0.15	 0.8536	 0.855482061	
0.16	 0.8564	 0.845910707	
0.17	 0.8602	 0.85371179	
0.18	 0.8658	 0.863210369	
0.19	 0.8652	 0.857312723	
0.20	 0.882	 0.870337478	
0.25	 0.8846	 0.884246301	
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Supplementary Table T14: Prediction metric: TP, TN, FP, FN (A) and Precision and Recall (B) for 5-hmC status prediction based 
on nearest neighbor’s 5-hmC status, showing that such an approach is not feasible for 5-hmC status imputation.  

(A) Counts	for	genome	wide	imputation	of	5-hmC	
using	neighbouring	sites	across	different	window	
sizes		(A-I evaluation sets:	same	as	table below)	

Ids	 TP	 TN	 FP	 FN	
A	 418464	 41328087	 1241926	 1241202	
B	 579873	 69248852	 2140558	 2139104	
C	 738763	 105991323	 3422785	 3424418	
D	 1082363	 193305489	 6536477	 6529338	
E	 2296306	 497242071	 18672602	 18674921	
F	 2737617	 718888372	 30939446	 31002174	
G	 2278368	 642428371	 30193001	 30290416	
H	 2090107	 603801513	 29347926	 29401784	
I	 1978227	 585763859	 28813642	 28723890	

(B) Predicting	Tab-seq	level	status	
using	neigbouring	CpG	sites	with	
respect	to	the	distance	to	the	

predicted	site:	results	on	balanced	
sets	

Window_size	 Precision	 Recall	
A	 2-20bp 0.8963	 0.2521	
B	 20-50bp 0.8767	 0.2133	
C	 50-100bp 0.8501	 0.1775	
D	 100-200bp 0.813	 0.1422	
E	 200-500bp 0.7516	 0.1095	
F	 500-1000bp 0.6629	 0.0811	
G	 1000-1500bp	 0.6091	 0.07	
H	 1500-2000bp	 0.5888	 0.0664	
I	 2000-2500bp	 0.5788	 0.0644	



 
 

  

 
Supplementary Table T15: Initial Feature Sets for NPC and H1 methylation status prediction  

Initial feature sets for BS-seq predictions in NPC and H1 

Initial Feature Set NPC BS-seq Initial Feature Set H1 BS-seq 

Alu_repeat Alu_repeat 

Bp_to_CGI Bp_to_CGI 

CG_sat_50bp CG_sat_50bp 

CpG_sat_50bp CpG_sat_50bp 

CpG_to_CGI CpG_to_CGI 

DNase DNase 

G_sat_50bp G_sat_50bp 

H2AK5ac H2AK5ac 

H3K27ac H3K27ac 

H3K27me3 H3K27me3 

H3K36me3 H3K36me3 

H3K4me1 H3K4me1 

H3K4me3 H3K4me3 

H3K79me1 H3K79me1 

H3K9ac H3K9ac 

H3K9me3 H3K9me3 

Histone_states Histone_states 

Repeats Repeats 

CTCF 

p300 
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