
i
i

“Faucet_Appendix” — 2017/4/10 — 13:33 — page 1 — #1 i
i

i
i

i
i

1

Appendix

Sizing Bloom filters

We used the tool ntCard to estimate the cardinality F0 of the set of k-mers
and the number of singletons f1. These counts are used for optimizing both
runtime and memory use by allowing us to minimize the size of Bloom
filters m and the number of hash functions h used for both B1 and B2, the
largest filters used. B1 and B2 share these parameters (and the same set of
hash functions) to allow insertions of each s into B2 for which B1(s) = 1

without recalculating h hash values. We use the fact that elements inserted
into B2 are either non-singletons or false positives due to B1. Thus, the
expected number of elements n2 in B2, is bound by their sum, i.e.,

n2 ≤ (F0 − f1) + f1p1 (1)

where p1 is the false positive rate of B1. We note that since p is the
effective false positive rate after all elements are inserted into B1, this
bound holds strictly and may be overly pessimistic regarding the number
of false positives inserted into B2, however it provides a simple means
of setting parameters. To do so, we first recall that B1 is discarded after
loading, while B2 is maintained and thus its false positive rate p2 is the
rate that affects all downstream queries. A default false positive rate of of
p2 = 0.01 is used to work backwards to derive a higher ratep1, and Bloom
filter parameters for both filters were set based on this derived value, using
knowledge of F0 and f1. To derive p1, we paired the expressions for the
expected false positive rates with the expression for the optimal number
of hash functions for a given false positive rate (Mitzenmacher (2002)):

p1 = (1− e
F0h
m )h (2)

p2 = (1− e
n2h
m )h (3)

h =
m ln(2)

F0
. (4)

By plugging the value of h from equation 4 into equation 2, we arrive at
m =

−F ln(p1)

ln(2)2
. Combining this and the above expressions, we arrive at

0 = − ln(2)ln(p2)− ln(p1) ln(1− 2
−F0+(1−p1)f1

F0 ) (5)

for which root-finding methods can be applied to finally extract p1, the
sole remaining unknown.

Currently, we have not yet found similar means of optimizing the sizes
of filtersB3 andB4, as it is unclear how to estimate the number of elements
that will be inserted into them in advance. We therefore define their sizes
based on empirical observations. For diverse metagenomes, where the
number of singletons f1 may be very close to the cardinality F0, we
expect there to be few junctions, as a junction k-mer must by definition
occur at least twice in the data. Based on this observation, we set the
expected number of elements in both B3 and B4 to be F0

10
and found that

this bound was not exceeded on tested datasets. For higher coverage data,
where a significantly larger proportion of junctions is expected relative to
F0, we set the size of both filters to be F0

2
.

Solid junction counts

Total junction counts listed in the Table 1 below include real junctions,
those due to false positives, and dummy junctions inside long linear
stretches. We posit that the SYN 64 data set included many more fake
(false positive and dummy) junctions as a result of having a much larger
proportion of linear stretches, as reflected in the much larger genome
fraction and N50 size (relative to HMP) output by Faucet.

HMP SYN 64
Total junctions (M) 7.11 9.23
Real junctions (M) 4.55 1.34

genome fraction (%) 27.9 82.3
N50 2290 16707

Table 1.

Inserting into B4

When inserting intoB4, both the distance and relative orientation between
paired-end mates is unknown. Therefore, a tiling scheme such as that seen
in Figure 3 cannot be applied. Instead, we seek to ensure that in most cases
when querying approximately one insert size away from a given junction
u, there will be another junction v such that an extension of u will be
paired with an extension of v in B4. To achieve this end, and to avoid long
run times due to pair insertions, we apply the following logic: for each
junction u on the first mate, we only insert extensions of a new pair (u, v)
if u has no pair in B4. When a new pair must be inserted, v is chosen to be
the first junction found on the second mate. During the insertion process,
this logic allows us to break the querying process whenever one previously
inserted pair is encountered, and lets us avoid inserting too many pairs into
B4, and thus risking increasing B4’s effective false positive rate.

Additional disentanglement

Other forms of disentanglement include resolution of loops and
disentanglement by coverage. Loops are encountered when, e.g., sa
and sc in Figure 2 are the same unitig, and disentanglement requires
unwinding the loop and duplicating the s’s sequence to arrive at the walk
[sb, s, sc, s, sd]. Disentanglement by coverage is allowed only when s is
deemed too long for there to be support by junction pairs flanking opposite
ends of s, and is applied when the coverage distributions of Contig pairs
supporting a certain orientation (e.g., sa paired with sc and sb with sd for
the case presented in Figure 2 is significantly similar, as determined by Two
One Sided Tests (Walker and Nowacki (2011)) for each pair. To smooth
coverage levels when this test is applied, coverage values are updated each
time a cleaning step such as bulge removal is applied. For example, if a
bubble includes one low coverage Contig s1 and one high coverage Contig
s2, as extensions flanked by the same ContigNodes jL and jR, and s2’s
coverage is sufficiently higher than s1’s, Contig s1 will be removed, and
its average coverage will be assigned to all (expired or fake) junctions on
Contig s2.

Tools comparison details

Tools and flags:
Faucet was run with k= 31
MetaSPAdes 3.9.0, default parameters
Megahit 1.1.1, default parameters
Minia 3 Beta, git commit 4b0a83a, k = 31
LightAssembler, no version information available, downloaded 1/17 from
GitHub k = 31
MetaQUAST, 4.4.0, –fragmented flag

Data Sets:
SYN 64 (SRA accession SRX200676), 109M 100 bp paired end mates,
I.S. 206
HMP (SRX024329), 149.6 M 100 bp paired end mates, I.S. 213



i
i

“Faucet_Appendix” — 2017/4/10 — 13:33 — page 2 — #2 i
i

i
i

i
i

2

References
Mitzenmacher, M. (2002). Compressed Bloom filters. IEEE/ACM Transactions on

Networking, 10(5), 604–612.

Walker, E. and Nowacki, A. S. (2011). Understanding equivalence and noninferiority
testing. Journal of general internal medicine, 26(2), 192–6.


