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1. The	model	

1.1. Absorbing	the	environmental	contribution	into	the	fitness	function	

Here,	we	show	that	the	additive	environmental	contribution	to	the	phenotype	can	be	
absorbed	into	the	fitness	function,	which	justifies	considering	only	the	additive	genetic	
contribution	in	our	analysis.	This	result	has	been	derived	multiple	times	for	the	one	
dimensional	case	(e.g.,	1).	The	argument	in	the	multi-dimensional	case	is	similar	and	
included	for	completeness.			

First,	assume	that	the	additive	environmental	contribution	to	the	phenotype,		𝑟) ,	is	
distributed	as	a	multi-normal	with	mean	0	and	isotropic	variance	𝑉) .	The	expected	absolute	
fitness	of	an	individual	with	additive	genetic	contribution	to	the	phenotype,		𝑟,,		is	given	by	

averaging	fitness	over	the	distribution	of	environmental	contributions.	Namely,	

W 𝑟, = /
"012 3 4	62

	𝑒8	
92 4

4:2 	W 𝑟, + 𝑟) = /
"012 3 4	62

	𝑒8	
92 4

4:2 	𝑒8	
9<=92

4

4>4 		 	 	 	

= /
/?12/A4 3/4 𝑒

8	
9<

4

4(>4=:2).											 	 	 	 	 	 	 (A1)	

Given	that	absolute	fitness	is	defined	up	to	a	multiplicative	constant,	we	can	therefore	
absorb	the	additive	environmental	contribution	by	using	the	Gaussian	fitness	function	

W 𝑟, = exp −	 6<
4

"A4 ,												 	 	 	 	 	 	 (A2)	

where	𝑤" = 𝑤" + 𝑉) .	Even	when	the	environmental	contribution	is	anisotropic,	we	can	
always	choose	a	coordinate	system	in	which	the	effective	fitness	function	takes	an	isotropic	
form	around	the	fitness	peak	(Eq.	1,	which	appears	in	the	Model	section	of	the	main	text).	

1.2. The	distribution	of	mutational	effect	sizes	on	a	given	trait	

In	the	main	text,	we	define	the	distribution	of	phenotypic	effects	of	newly	arising	mutations	
in	the	n-dimensional	trait	space,	𝑎.	Here,	we	consider	the	projection	of	these	effects	on	a	
given	trait,	𝑎/,	taken	without	loss	of	generality	to	be	on	the	1st	dimension.	The	distribution	
of	effect	sizes	on	a	focal	trait	will	depend	on	the	degree	of	pleiotropy,	n,	and	the	form	of	this	
dependency	becomes	important	when	we	consider	how	pleiotropy	affects	genetic	
architecture.	

We	want	to	calculate	the	distribution	of	effect	sizes	on	the	focal	trait,	𝑎/,	conditional	on	
their	overall	effect,	𝑎 = 𝑎 .	We	assume	that	the	distribution	of	effects	of	de	novo	
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mutations	is	isotropic	in	trait	space.	The	effect	of	a	mutation,	𝑎,	therefore	has	equal	
probability	to	occupy	any	point	on	an	n-dimensional	sphere	with	radius	𝑎.	Let	SI 𝑥 	
denote	the	surface	area	of	an	m-dimensional	sphere	of	radius	𝑥	and	𝜃	denote	the	angle	
between	the	vector	𝑎	and	its	projection	𝑎/,	i.e.,	𝑎/ = 𝑎 cos 𝜃.	In	these	terms,	the	surface	area	
element	corresponding	to	angle	𝜃	is	
SO8/ 𝑎 sin 𝜃 	𝑎	𝑑𝜃,											 	 	 	 	 	 	 	 (A3)	
and	by	a change	of	variables,	the	surface	area	element	corresponding	to	projection	𝑎/	on	
the	focal	trait	is	

SO8/ 𝑎 sin 𝜃 	𝑎	𝑑𝜃 = SO8/ 𝑎" − 𝑎/"
S

S48ST4
𝑑𝑎/,											 	 	 	 (A4)	

since	𝑑𝑎/ =
UST
UV

𝑑𝜃 = 𝑎 sin 𝜃 𝑑𝜃 = 𝑎" − 𝑎/"𝑑𝜃.	This	result	implies	that	the	probability	

density	of	𝑎/	is	

φO 𝑎/ 𝑎 = 	
X3YT S48ST4	

X3 S
S

S48ST4
=

Z 3
4

[	Z 3YT
4

1 − ST4

S4

3Y]
4 	 /

S
											 	 	 (A5)	

(for	a	similar	derivation,	see	(2)).		

Next,	we	consider	the	high	pleiotropy	limit	form	of	this	distribution.	For	any	degree	of	
pleiotropy,	the	symmetry	of	the	mutational	distribution	implies	that		
E 𝑎/ 𝑎 = 0											 	 	 	 	 	 	 	 	 (A6)	
and	the	equivalence	among	traits	implies	that		
V 𝑎/ 𝑎 = 𝑎" 𝑛												 	 	 	 	 	 	 	 (A7)	
(see	main	text	for	more	details).	It	follows	that	when	n	becomes	sufficiently	large,	𝑎/ 𝑎 ≪
1	and	therefore	

	 1 − ST4

S4

3Y]
4 ≈ exp − O

"
		ST

4

S4
.											 	 	 	 	 	 	 (A8)	

In	addition,	Γ O
"
/Γ O8/

"
≈ 𝑛/2.	Substituting	these	expressions	into	Eq.	A5,	we	find	that	

for	sufficiently	large	n	the	distribution	of	effect	sizes	approaches	the	normal	distribution	

φO 𝑎/ 𝑎 ≈ /
"0 S4 O

exp − /
"
		 ST

4

S4 O
.												 	 	 	 	 (A9)	

As	we	elaborate	in	the	main	text,	important	implications	about	quantitative	genetic	
variation	follow	from	this	high	pleiotropy	limit.	The	limit	also	holds	quite	generally	when	
the	distribution	of	effect	sizes	is	anisotropic	(see	Section	5.4).	
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2. Solving	for	summaries	of	genetic	architecture	

Here,	we	derive	closed	forms	for	summaries	of	genetic	architecture	under	our	model.	We	
begin	by	deriving	the	first	two	moments	of	change	in	allele	frequency	in	a	single	
generation.	With	these	moments	at	hand,	we	use	the	diffusion	approximation	to	calculate	
the	sojourn	time	for	alleles	that	contribute	to	quantitative	genetic	variation	(3).	Together	
with	the	distribution	of	effect	sizes	derived	in	the	previous	section,	the	sojourn	time	allows	
us	to	obtain	closed	forms	for	summaries	of	genetic	architecture.	Specifically,	we	can	obtain	
a	closed	form	for	any	summary	that	can	be	described	as	a	function	of	allele	frequencies	and	
effect	sizes	at	sites	contributing	to	quantitative	genetic	variation.	We	use	these	expressions	
to	calculate	the	summaries	used	in	the	main	text,	for	example	the	expected	additive	genetic	
variance	and	its	distribution	across	sites.	

2.1. The	first	two	moments	of	change	in	allele	frequency	

We	assume	that:	

• The	phenotypic	distribution	at	steady	state	is	well	approximated	by	an	isotropic	
multivariate	normal	distribution	centered	at	the	optimum,	namely	by	the	
probability	density	

𝑓 𝑟 = /
"0s4 3 4 𝑒𝑥𝑝 − 64

"s4
.											 	 	 	 	 	 (A10)	

• Both	𝑎"	and	𝜎" ≪ 𝑤".			
These	assumptions	are	justified	in	Section	3.3.	

We	rely	on	these	assumptions	to	calculate	the	first	two	moments	of	change	in	frequency	in	
a	single	generation	for	an	allele	with	phenotypic	effect	𝑎	and	frequency	q.	The	fitnesses	of	
the	three	genotypes	at	the	site	depend	on	its	distribution	of	genetic	backgrounds,	i.e.,	on	

the	total	phenotypic	contribution	of	sites	other	than	the	focal	one,	𝑅.	Following	Eq.	A10	and	
assuming	every	allele	contributes	only	a	small	proportion	of	the	genetic	variance,	the	

distribution	of	𝑅	is	well	approximated	by		

f 𝑅 𝑎, 𝑞 = /
"0s4 3/4 exp − {?"|S

4

"s4
.											 	 	 	 	 	 (A11)	

The	expected	fitnesses	of	the	three	genotypes	then	follow	from	integrating	over	
backgrounds:	

𝑊~~ = f 𝑅 𝑎, 𝑞 W 𝑅{ = A
A4?s4

O
exp − �S4|4

" A4?s4
,		 	 	 	 (A12)	
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𝑊~/ = f 𝑅 𝑎, 𝑞 W 𝑅 + 𝑎{ = A
A4?s4

O
exp − �S4(|8/ ")4

"(A4?s4)
	 	 	 (A13)	

and	

𝑊// = f 𝑅 𝑎, 𝑞 W 𝑅 + 2𝑎{ = A
A4?s4

O
exp − �S4(|8/)4

"(A4?s4)
.		 	 	 (A14)	

The	first	moment	of	change	in	allele	frequency	is	then	

E Δ𝑞 = −𝑝𝑞 � ���8��T ?� ��T8�TT
�

≈ − S4

A4 𝑝𝑞
/
"
− 𝑞 ,	 	 	 	 (A15)	

relying	on	our	assumptions	that	𝑎"	and	𝜎" ≪ 𝑤".	The	functional	form	of	the	first	moment	is	
equivalent	to	that	of	the	standard	viability	selection	model	with	under-dominance	and	

selection	coefficient	𝑠 = S4

A4	or	scaled	selection	coefficient	

𝑆 = 2𝑁 S4

A4.											 	 	 	 	 	 	 	 	 (A16)	

Similarly,	we	find	that		

V Δ𝑞 ≈ �|
"�
	,											 	 	 	 	 	 	 	 	 (A17)	

which	is	the	standard	second	moment	with	genetic	drift.		

2.2. Sojourn	time	

Based	on	the	first	two	moments,	we	can	use	the	diffusion	approximation	to	calculate	the	
sojourn	time	as	a	function	of	allele	frequency,	i.e.,	the	density	of	the	time	that	an	allele	
spends	at	a	given	frequency	𝑞	before	it	fixes	or	is	lost	(3).	For	a	mutant	allele	with	initial	
frequency	1/2𝑁	and	scaled	selection	coefficient	S,	the	sojourn	time	is	

τ 𝑞 𝑆 =

� 0 �
��� � "

		)
� TY4� 4/�

�(/8�)
	f8 𝑆, 𝑞 f? 𝑆, 1 2𝑁 0 ≤ 𝑞 ≤ 1/2𝑁

� 0 �
��� � "

		)
� TY4� 4/�

�(/8�)
	f? 𝑆, 𝑞 f8 𝑆, 1 2𝑁 1 2𝑁 ≤ 𝑞 ≤ 1

				 	 (A18)	

where	erf	is	the	error	function	and	f± 𝑆, 𝑦 ≡ erf 𝑆 2 ± erf 𝑆 1 − 2𝑦 2 .	

The	sojourn	time	takes	simple	limiting	forms	when	selection	is	effectively	neutral											
(𝑆 ≪ 1)	or	strong	(𝑆 ≫ 1).	In	the	effectively	neutral	range,	it	is	well	approximated	by	
τ 𝑞 𝑆 = 2/q,	and	in	the	strongly	selected	range,	it	is	well	approximated	by															
τ 𝑞 𝑆 = 2 exp −𝑆𝑞 /𝑞.		

2.3. Calculating	expectations	of	summaries	of	architecture	

Many	summaries	of	interest	can	be	expressed	as	sums	over	segregating	sites	of	some	
function	𝑐(𝑞, 𝑎/),	where	𝑞	is	the	derived	allele	frequency	and	𝑎/	is	the	effect	size	on	the	
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trait.	For	example,	the	additive	genetic	variance	in	a	trait	is	given	by	the	sum	of					
𝑣(𝑞, 𝑎/) = 	2𝑎/"𝑞(1 − 𝑞)	over	sites.	The	expectation	over	such	summaries	can	be	expressed	
as		
E 𝐶 = 2𝑁𝑈 𝑐(𝑞, 𝑎/)𝜌(𝑞, 𝑎/)ST| 	,											 	 	 	 	 	 (A19)	

where	𝐶	is	the	summery	summed	over	all	sites,	2NU	is	the	population	mutation	rate	per	
generation	and	𝜌(𝑞, 𝑎/)	is	the	density	of	sites	with	the	corresponding	frequency	and	effect	
size	per	unit	mutational	input.		

The	density	𝜌(𝑞, 𝑎/)	can	be	broken	down	into	contributions	from	sites	with	different	
selection	coefficients,	i.e.,	

𝜌 𝑞, 𝑎/ = f(𝑆) τ 𝑞 𝑆 η 𝑎/ 𝑆� ,											 	 	 	 	 	 (A20)	

where	f(𝑆)	is	the	distribution	of	selection	coefficients	and	𝜏 𝑞 𝑆 	is	the	sojourn	time	of	a	
mutation	with	selection	coefficient	𝑆	(Eq.	A18).	The	probability	density	η 𝑎/ 𝑆 	of	effect	
sizes	given	selection	coefficient	𝑆	follows	from	Eqs.	A5	and	A16	

η 𝑎/ 𝑆 = φ� 𝑎/ 𝑎(𝑆) = φ� 𝑎/ 𝑤" 2𝑁 𝑆 .											 	 	 	 (A21)	

This	allows	us	to	break	down	our	summaries	into	contributions	from	sites	with	different	
selection	coefficients	
E 𝐶 = 2𝑁𝑈 f(𝑆)E 𝐶 𝑆� 											 	 	 	 	 	 	 (A22)	

with	
E 𝐶 𝑆 = 𝑐(𝑞, 𝑎/)τ 𝑞 𝑆 η 𝑎/ 𝑆ST| .											 	 	 	 	 (A23)	

We	use	Eq.	A23	to	study	how	summaries	of	architecture	depend	on	the	strengths	of	
selection,	and	how	these	summaries	will	depend	on	different	distributions	of	selection	
coefficients.	This	allows	us	to	draw	general	implications	about	genetic	architecture	despite	
our	limited	knowledge	about	this	distribution.	
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3. Additive	genetic	variance	and	number	of	segregating	sites	

The	distributions	of	additive	genetic	variance	and	of	the	number	of	segregating	sites	are	
critical	to	understanding	genetic	architecture	and	specifically	to	interpreting	results	of	
GWAS.	Here	we	derive	closed	forms	for	both	distributions	as	well	as	simple	
approximations	under	strong	and	effectively	neutral	selection.		

3.1. Expectations		

We	begin	by	considering	the	expected	contribution	of	a	site	to	additive	genetic	variance.	
Substituting	the	contribution	to	variance	from	a	single	site	𝑣(𝑞, 𝑎/) = 2𝑎/"𝑞(1 − 𝑞)	into	
Eq.	A23,	we	find	that	

E 𝑉 𝑆 = 𝑣 𝑞, 𝑎/ τ 𝑞 𝑆 η 𝑎/ 𝑆
ST|

= 2𝑞 1 − 𝑞 τ 𝑞 𝑆 𝑎/"η 𝑎/ 𝑆
ST|

	

= "A4

O�
/
"
𝑆𝑞 1 − 𝑞 τ 𝑞 𝑆 	| .	 	 	 	 (A24)	

The	total	additive	genetic	variance	over	all	sites	is	
𝜎" = 2𝑁𝑈 f(𝑆)E 𝑉 𝑆� .	 			 	 	 	 	 	 	 (A25)	

The	closed	form	for	E 𝑉 𝑆 	in	Eq.	A24	was	integrated	numerically	to	obtain	Fig.	2a	in	the	
main	text.		We	can	use	the	results	of	Keightley	and	Hill	(4)	to	obtain	an	analytic	
approximation	for	E 𝑉 𝑆 :	

E 𝑉 𝑆 = "A4

O�
0�
�
erfi 𝑆/4 exp −S/4 + O /

"�
,		 	 			 			 	 (A26)	

where	erfi	is	the	imaginary	error	function	(erfi 𝑥 ≡ erf 𝑖𝑥 /𝑖).	

In	the	effectively	neutral	and	strong	selection	limits,	we	can	use	limit	forms	of	the	sojourn	
time	to	derive	simple	approximations	for	𝐸 𝑉 𝑆 .	In	the	effectively	neutral	limit,	i.e.,	when	
𝑆 ≪ 1,	τ 𝑞 𝑆 ≈ 2/𝑞	and	therefore		

E 𝑉 𝑆 ≈ "A4

O�
�
"
	.								 	 	 	 	 				 	 	 	 (A27)	

In	practice,	this	expression	provides	a	decent	approximation	when	𝑆 < 1	(Fig.	A1a).	In	the	
strong	selection	limit,	when	𝑆 ≫ 1,	τ 𝑞 𝑆 ≈ 2 exp(−𝑆𝑞) /𝑞	and	therefore	

E 𝑉 𝑆 ≈ "A4

O�
.										 	 	 	 	 		 	 	 	 (A28)	

In	practice,	this	expression	provides	a	decent	approximation	when	𝑆 > 30	(Fig.	A1a).	The	
constant	2𝑤" 𝑛𝑁,	which	recurs	in	our	derivations	(e.g.,	Eq.	A24),	thus	has	a	simple	
interpretation:	it	is	the	expected	contribution	of	strongly	selected	sites	to	additive	genetic	
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variance	(per	unit	mutational	input).	We	therefore	denote	it	by	𝑣¦,	and	henceforth	measure	
variance	in	these	units.	
	

	
Figure	A1.	 The	 effectively	 neutral	 and	 strong	 selection	 approximations	 for	 the	 expected	
contribution	to	genetic	variance	per	site.	(A)	The	expression	in	the	limit	of	𝑆 ≪ 1	provides	a	
decent	 approximation	 when	𝑆 < 1.	 (B)	 The	 expression	 in	 the	 limit	 of	𝑆 ≫ 1	provides	 a	
decent	approximation	when	𝑆 > 30.	
	
We	next	consider	how	the	expected	number	of	segregating	sites	depends	on	the	strength	of	
selection.	This	expectation	(per	unit	mutational	input)	is	simply	the	mean	sojourn	time	of	a	
newly	arising	mutation.	Formally,	it	follows	from	substituting	k 𝑞, 𝑎/ = 1	into	Eq.	A23,	i.e.,	
E 𝐾 𝑆 = τ 𝑞 𝑆 η 𝑎/ 𝑆 =ST| τ 𝑞 𝑆 η 𝑎/ 𝑆ST| = τ 𝑞 𝑆| .		 	 (A29)	

In	Fig.	A2,	we	calculate	this	integral	numerically	for	different	values	of	S,	to	find	that	the	
number	of	segregating	sites	depends	only	weakly	on	𝑆.	Intuitively,	this	follows	from	the	fact	
that	the	vast	majority	of	mutations,	be	they	effectively	neutral,	intermediate,	or	strongly	
selected,	spend	only	a	few	generations	in	the	population	at	low	copy	numbers	before	going	
extinct.		

	
Figure	A2.	 The	 number	 of	 segregating	 sites	
per	 unit	 mutational	 input	 (or,	 equivalently,	
the	expected	sojourn	time	of	a	newly	arising	
mutation),	Eq.	A29,	is	only	weakly	dependent	
on	the	strength	of	selection.	Calculated	for	a	
population	size	of	20,000.	
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3.2. Densities		

Here,	we	consider	how	the	additive	genetic	variance	is	distributed	among	sites.	We	begin	
by	deriving	a	closed	form	for	the	density	of	segregating	sites	with	a	given	contribution	to	
variance	𝑣.	This	density	follows	from	substituting	Dirac’s	delta	function																												

δ 𝑣 − 2𝑎/"𝑞 1 − 𝑞 	into	Eq.	A23:	

𝜌 𝑣|𝑆 = E δ 𝑣 − 2𝑎/"𝑞 1 − 𝑞 𝑆 = δ 𝑣 − 2𝑎/"𝑞 1 − 𝑞 τ 𝑞 𝑆 η 𝑎/ 𝑆ST| =		

= τ q? 𝑣, 𝑎/ 𝑆 «�= ¬,ST
«¬

+ τ q8 𝑣, 𝑎/ 𝑆 «�Y ¬,ST
«¬

η 𝑎/ 𝑆ST
					 	 				

= τ q? 𝑣, 𝑎/ 𝑆 + τ q8 𝑣, 𝑎/ 𝑆 /

"ST4 /8"¬/ST4
	η 𝑎/ 𝑆ST

,		 	 	 (A30)	

where	q± 𝑣, 𝑎/ = /
"
1 ± 1 − 2𝑣/𝑎/" 		are	the	two	frequencies	for	which	𝑣 = 2𝑎/"𝑞 1 − 𝑞 .	

This	integral	can	be	calculated	numerically	for	any	S	and	degree	of	pleiotropy	n	(by	using	
the	corresponding	density	η 𝑎/ 𝑆 ).	Moreover,	as	we	illustrate	below,	summary	statistics	of	
the	distribution	of	variances	among	sites	can	be	expressed	and	calculated	in	terms	of	
integrals	over	the	density	𝜌(𝑣|𝑆).		

We	can	greatly	simplify	the	expression	for	𝜌(𝑣|𝑆)	in	the	limits	of	effectively	neutral	and	
strong	selection,	and	especially	in	the	cases	without	pleiotropy	or	with	extensive	
pleiotropy.	When	selection	is	effectively	neutral	(𝑆 ≪ 1),	then	τ 𝑞 𝑆 ≅ 2/𝑞	and	thus		 	

𝜌(𝑣|𝑆) = 	
2

q? 𝑣, 𝑎/
+

2
q8 𝑣, 𝑎/

1
2𝑎/" 1 − 2𝑣/𝑎/"

	η 𝑎/ 𝑆
ST

	

= 	 �

/? /8"¬/ST4
+ �

/8 /8"¬/ST4

/

"ST4 /8"¬/ST4
	η 𝑎/ 𝑆ST

	= "

¬ /8"¬/ST4
	η 𝑎/ SST

,	 	 (A31)	

with	variance	measured	in	units	of	𝑣¦	and	effect	size	measured	in	units	of	 𝑣¦	.	Without	

pleiotropy	(𝑛 = 1),	the	effect	size	is	𝑎/ = ± /
"
𝑆	and	the	expression	for	the	density	

simplifies	to			

𝜌(𝑣|𝑆) = "
¬ /8¬ ¬®¯�

	,	 	 	 	 	 	 	 	 (A32)	

where	𝑣IS� ≡ 𝑆/8	is	the	maximal	contribution	to	variance	for	a	mutation	with	selection	
coefficient	𝑆,	which	is	obtained	when	both	alleles	have	frequency	½.	When	the	degree	of	
pleiotropy	is	high	(𝑛 ≫ 1),	𝑎/	is	approximately	normally	distributed	with	mean	0	and	
variance	𝑆/4	(Eq.	11,	which	appears	in	the	Results	section	of	the	main	text)	and	the	
expression	for	the	density	simplifies	to		
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𝜌(𝑣|𝑆) = "

¬ /8"¬/ST4

"

		"0�/� 		
exp −2𝑎/"/𝑆ST± "¬ = 2 exp −4𝑣 𝑆 /𝑣.		 	 (A33)	

When	selection	is	strong,	derived	alleles	are	rare	(𝑞 ≪ 1),	implying	that	𝑣 ≪ 𝑎/"	and									
𝑞 ≈ 𝑣/2𝑎/",	and	that	the	sojourn	time	is	well	approximated	by	τ 𝑞 𝑆 = 2 exp(−𝑆𝑞)/𝑞.	The	
density	𝜌(𝑣|𝑆)	then	simplifies	to	

𝜌(𝑣|𝑆) ≈ 	τ 𝑞 𝑣, 𝑎/ 𝑆
1
2𝑎/"

	η 𝑎/ 𝑆 ≈
4𝑎/"

𝑣 exp −𝑆𝑣/2𝑎/"
1
2𝑎/"

	η 𝑎/ 𝑆
STST

	

= "
¬
exp −𝑆𝑣/2𝑎/" η 𝑎/ 𝑆ST

.	 	 	 	 	 	 	 (A34)	

Without	pleiotropy,	this	expression	further	simplifies	to		
𝜌(𝑣|𝑆) ≈ 2 exp −2𝑣 /𝑣,	 	 	 	 	 	 	 	 (A35)	
and	when	the	degree	of	pleiotropy	is	high	(𝑛 ≫ 1),	then			

𝜌(𝑣|𝑆) ≈ "
¬
exp −𝑆𝑣/2𝑎/"

"
"0�/�

exp −2𝑎/"/𝑆ST
= 2 exp −2 𝑣 /𝑣.	 	 (A36)	

We	are	especially	interested	in	the	distribution	of	variances	among	sites	that	exceed	some	
threshold	contribution	𝑣∗.	As	we	discuss	in	the	main	text	and	in	Section	6,	to	a	first	
approximation,	the	loci	identified	in	a	GWAS	would	be	those	with	contributions	to	additive	
variance	that	exceed	the	study’s	threshold	contribution	𝑣∗.	In	particular,	our	inferences	
based	on	GWAS	data	rely	on	fitting	the	probability	density	of	the	number	of	segregating	
sites	with	variance	𝑣	that	exceed	a	given	threshold	contribution	𝑣∗	(Section	7).	This	
probability	density	is:				
f 𝑣 𝑆 = 𝜌 𝑣 𝑆 /K 𝑣∗ 𝑆 ,											 	 	 	 	 	 	 (A37)	
where		
K 𝑣∗ 𝑆 ≡ 𝜌 𝑣 𝑆¬±¬∗ 	 	 	 	 	 	 	 	 (A38)	

is	the	expected	number	of	segregating	sites	with	contributions	to	variance	exceeding	𝑣∗	per	
unit	mutational	input.		

In	our	analysis,	we	focus	on	the	expected	proportion	of	additive	genetic	variance	arising	
from	sites	that	exceed	a	threshold	contribution	𝑣∗,	which	approximates	the	heritable	
variance	explained	in	GWAS.	This	proportion	is	given	by		

G 𝑣∗ 𝑆 =
¬	µ(¬|�)¶·¶∗

¬	µ(¬|�)¶
=

¬	µ(¬|�)¶·¶∗

¸(1|�)
.										 	 	 	 	 	 (A39)	

Given	a	distribution	of	selection	coefficients,	f(𝑆),	the	corresponding	proportion	is	

G 𝑣∗ =
¹ ¬∗|� º(1|�)� �(�)

º(1|�)� �(�)
= G 𝑣∗|𝑆 º(1|�)�(�)

º(1|�)� �(�)� .											 	 	 	 (A40)	
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The	dependences	of	the	proportion	of	variance	G 𝑣∗ 𝑆 	and	the	number	of	sites	K 𝑣∗ 𝑆 	on	
the	strength	of	selection	𝑆	for	cases	without	pleiotropy	and	with	extensive	pleiotropy	are	
shown	in	Figs.	3	and	A3,	respectively.	We	rely	on	Eqs.	A32,	A33,	A35,	A36,	A38	and	A39	to	
derive	simplified	forms	for	these	summaries	in	the	effectively	neutral	and	strongly	selected	
limits	(Table	A1).	While	the	expressions	for	the	effectively	neutral	limit	were	derived	for	
𝑆 ≪ 1,	in	practice	they	provide	a	decent	approximation	when	𝑆 < 1	(Fig.	A4a	&	b).	In	the	
strong	selection	limit	(𝑆 ≫ 1),	the	expressions	for	the	case	without	pleiotropy	provide	a	
decent	approximation	for	𝑆 > 30	(Fig.	3a),	whereas	with	extensive	pleiotropy	they	already	
work	quite	well	for	𝑆 > 5	(Fig.	3b).	
	
Selection	 Effectively	neutral	(𝑆 ≪ 1)	 Strongly	selected	(𝑆 ≫ 1)	

#	of	traits	 𝑛 = 1	 𝑛 ≫ 1	 𝑛 = 1	 𝑛 ≫ 1	

E 𝑉 𝑆 	 𝑆/2	 1	

G 𝑣∗ 𝑆 	 1 − 8𝑣∗/𝑆	 exp −4𝑣∗/𝑆 	 exp	(−2𝑣∗)	 1 + 2 𝑣∗ exp(−2 𝑣∗)	

K 𝑣∗ 𝑆 	 4 ⋅ artanh( 1 − 8𝑣∗/𝑆)	 2⋅ I(4𝑣∗/𝑆)	 2⋅ I(2𝑣∗)	 4⋅ I(2 𝑣∗)	

Table	A1.	 Limits	 for	 the	 expected	 proportion	 of	 variance	 and	 expected	 number	 of	 sites	
corresponding	to	sites	that	exceed	a	threshold	contribution	to	additive	genetic	variance	𝑣∗.	
I 𝑥 ≡ exp(−𝑡)/𝑡¿±� 		 is	 an	 exponential	 integral	 and	artanh	is	 the	 inverse	 hyperbolic	
tangent.	
	

		
Figure	A3.	 The	 number	 of	 loci	 per	 Mb	 contributing	 more	 than	𝑣∗	to	 the	 variance,	 as	 a	
function	 of	𝑣∗,	 in	 the	 case	without	 pleiotropy,	𝑛 = 1	(a),	 and	 in	 the	 high	 pleiotropy	 limit,	
𝑛 ≫ 1	(b).	We	assume	a	 constant	population	 size	of	 20,000,	with	 a	mutation	 rate	 of	1.2 ⋅
108À	(5).		
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Figure	A4.	 The	 proportion	 of	 additive	 genetic	 variance	 that	 arises	 from	 sites	 that	
contribute	more	 than	 the	 value	on	 the	 x-axis,	 for	 a	 single	 trait	 (a)	 and	 in	 the	pleiotropic	
limit	 (b).	 We	 show	 the	 x-axis	 in	 units	 of	𝑣IS� = 𝑆/8 ⋅ 𝑣¦	in	 order	 to	 evaluate	 the	
approximations	in	the	effectively	neutral	limit	(in	dashed	black;	Eqs.	14	&	16,	which	appear	
in	the	Results	section	of	the	main	text);	note	that	𝑣IS�	is	not	the	maximal	variance	in	cases	
with	pleiotropy.		
	
Both	the	proportion	of	variance,	G 𝑣∗|𝑆 ,	and	number	of	variants,	K 𝑣∗|𝑆 ,	appear	to	
always	increase	with	the	degree	of	pleiotropy,	n	(Fig.	A5).	We	do	not	have	a	proof	for	this	
property	but	can	suggest	an	intuitive	explanation.	Without	pleiotropy	(n=1),	the	selection	
coefficient	determines	the	effect	size,	such	that	any	contribution	𝑣∗	to	genetic	variance	
corresponds	to	a	specific	minor	allele	frequency	𝑞∗.	The	sites	with	contributions	𝑣 > 𝑣∗	are	
therefore	those	with	minor	allele	frequencies	𝑞 > 𝑞∗.	Pleiotropy	causes	sites	with	a	given	
selection	coefficient	to	have	a	distribution	of	effect	sizes	on	the	trait	under	consideration.	
As	a	result,	some	sites	with	frequencies	above	𝑞∗	end	up	with	contributions	to	variance	
below	𝑣∗	while	others	exceed	𝑣∗.	To	understand	how	this	affects	G 𝑣∗|𝑆 ,	recall	that	for	any	
selection	coefficient,	the	density	of	variants	always	rapidly	increases	as	𝑞∗	decreases.	As	
long	as	the	contribution	𝑣∗	and	the	corresponding	frequency	without	pleiotropy	𝑞∗	are	not	
close	to	0,	we	may	therefore	expect	that	introducing	pleiotropy	would	result	in	pushing	
more	sites	above	𝑣∗	than	below	𝑣∗,	resulting	in	a	net	increase	to	the	proportion	G 𝑣∗|𝑆 .	
For	the	same	reasons,	the	number	of	variants	with	𝑣 > 𝑣∗	shows	a	similar	behavior	and	
also	grows	with	𝑛.	
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Figure	A5.	 The	 effect	 of	 pleiotropy	 on	 the	 proportion	 of	 the	 variance	 explained	 by	 sites	
contributing	 more	 then	𝑣∗ 	to	 the	 variance,	G(𝑣∗|𝑆) 	(see	 Eq.	 A39).	 For	 all	 selection	
coefficients,	the	proportion	of	variance	explained	increases	as	the	number	of	traits,	i.e.,	the	
degree	of	pleiotropy,	increases.		
	
3.3. Comparing	predictions	against	simulations	

We	tested	our	theoretical	derivations	for	the	total	genetic	variance	and	its	distribution	
among	sites	against	forward	computer	simulations.	The	code	and	documentation	are	
available	at	https://github.com/sellalab/GenArchitecture.	The	simulation	implements	the	
model	as	specified	in	the	main	text,	with	the	following	additional	details	and	one	exception.	
First,	we	assume	the	infinite	sites	model	for	mutation.	Second,	the	distribution	of	scaled	
selection	coefficients,	or	equivalently	the	distribution	of	mutation	sizes	(see	Eq.	7,	which	
appears	in	the	Results	section	of	the	main	text),	is	taken	to	be	a	Gamma	distribution,	with	
specified	parameters	(see	below).	For	computational	efficiency,	we	use	fecundity	rather	
than	viability	selection;	however,	we	ran	a	smaller	number	of	simulations	to	verify	that	this	
choice	does	not	lead	to	a	detectable	difference	in	the	results.	Each	simulation	is	run	for	a	
burn-in	period	of	10𝑁	generations,	to	ensure	convergence	to	the	steady	state	behavior,	
before	the	variances	at	segregating	sites	are	measured.		

We	explore	a	range	of	parameter	values	chosen	to	balance	biological	plausibility	(see	
Section	4)	and	manageable	running	times.	Notably,	we	used	a	population	size	of	𝑁 = 1000,	
with	a	burn-in	time	of	10,000	generations.	We	vary	the	number	of	traits	to	include	𝑛	 =
	1, 3, &	10,	and	vary	the	mutation	rate	per	haploid	genome	per	generation	within	the	range	
1/2N ≤ 𝑈 ≤ 1	(see	Section	4),	including	U=0.0005,	0.001.	0.002,	0.005,	0.01,	0.02,	0.05,	0.1,	
0.2,	0.5	&	1.	Selection	coefficients	are	chosen	from	an	exponential	distribution	(setting	the	
shape	parameter	for	the	Gamma	distribution	to	1)	with	means	E(S)	=	0.1,	10,	and	50.	For	
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simplicity,	we	take	𝑤" = 1,	which	is	equivalent	to	choosing	the	units	used	to	measure	effect	
sizes.		

The	simulation	results	for	the	total	genetic	variance	and	its	distribution	among	sites	are	in	
close	agreement	with	our	theoretical	predictions	(Fig.	A6).	Specifically,	within	the	
parameter	ranges	that	we	assume,	i.e.,	when	1 2𝑁 ≪ 𝜎"/𝑤" ≪ 1	(see	Section	4),	the	total	
genetic	variances	measured	in	simulations	are	indistinguishable	from	our	predictions	
(Fig.	A6a).	Moreover,	simulations	and	prediction	seem	to	agree	even	when	𝜎"/𝑤" ≤ 1/2N,	
although	we	consider	this	range	to	be	less	relevant,	given	our	focus	on	highly	polygenic	
traits	(see	Section	4.4).	We	also	compare	simulated	and	predicted	distributions	of	
variances	among	sites,	in	terms	of	G 𝑣 ,	the	proportion	of	the	variance	arising	from	sites	
that	contribute	more	than	𝑣	(Eq.	A40),	and	find	them	to	be	in	close	agreement	(Fig.	A6b).		

	
Figure	A6.	Testing	 theoretical	predictions	 for	genetic	variance	against	simulation	results.	
(a)	 Total	 genetic	 variance	 (in	 units	 of	𝑤")	 as	 a	 function	 of	 the	 mutation	 rate.	 The	
biologically	 relevant	 range	 of	mutation	 rates,	1/2𝑁 ≪ 𝑈 ≪ 1,	 and	 the	 range	 in	which	we	
expect	our	predictions	to	be	valid,	𝑤"/2𝑁	 ≪ 𝜎" ≪ 𝑤",	are	marked	by	a	grey	box.	(b)	The	
distribution	 of	 variances	 among	 sites,	 for	𝑈 = 0.01;	G(𝑣∗)	is	 the	 proportion	 of	 variance	
from	 sites	 contributing	 more	 than	𝑣∗	(Eq.	 A40).	 Error	 bars	 represent	 one	 standard	
deviation.	 For	 each	 set	 of	 parameters,	 the	 number	 of	 simulations	 was	 chosen	 to	 obtain	
standard	 deviations	 below	 10%.	 In	 practice,	 we	 often	 obtain	 much	 smaller	 standard	
deviations,	which	is	why	most	error	bars	are	too	small	to	be	visible.		
	
We	ran	two	additional	variations	on	the	basic	simulation	procedure	(also	available	at	
https://github.com/sellalab/GenArchitecture):	one	to	explore	the	effects	of	a	shift	in	the	
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optimal	phenotype	(Section	5.1	and	Fig.	A7)	and	another	to	explore	the	effects	of	
asymmetric	mutational	input	(Section	5.2	and	Fig.	A8).	To	these	ends,	for	simplicity,	we	
consider	the	case	without	pleiotropy,	i.e.,	with	𝑛 = 1.	In	the	first,	after	the	10𝑁	generations	
burn-in	period,	we	introduce	a	shift	in	the	optimal	phenotype,	and	trace	the	allelic	behavior	
over	an	additional	4,000	generations	(see	Section	5.1).	In	the	second,	after	the	10𝑁	
generations	burn-in	period,	we	introduce	asymmetry	in	the	rates	of	trait	increasing	and	
decreasing	mutations,	and	trace	the	allelic	trajectories	over	an	additional	10,000	
generations.	The	parameters	of	these	simulations	are	detailed	in	Sections	5.1	and	5.2,	
respectively.		
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4. Justification	for	assumptions	

Here,	we	justify	the	assumptions	that	we	relied	upon	in	deriving	the	first	two	moments	of	
change	in	allele	frequency	(see	Section	2.1;	modeling	assumptions	are	motivated	in	the	
introduction	of	the	main	text).	We	rely	in	part	on	self-consistency	arguments,	which	should	
not	be	mistaken	for	being	circular:	specifically,	we	make	assumptions	about	the	behavior	of	
the	system	and	show	that	the	solution	to	which	we	arrive	satisfies	these	assumptions.		

4.1. Normal	and	isotropic	phenotypic	distribution	around	the	optimum	

The	assumption	that	the	phenotypic	distribution	is	well	approximated	by	a	normal	
distribution	stems	from	the	additive	model	of	quantitative	traits.	By	assuming	that	the	
phenotype	arises	from	many	additive	contributions	and	that	these	additive	contributions	
arise	from	some	underlying	distribution,	normality	follows	from	the	law	of	large	numbers.	
In	terms	of	model	parameters,	we	would	expect	normality	to	hold	if	the	rate	of	mutations	
affecting	the	trait	is	sufficiently	large,	i.e.,	when	2𝑁𝑈 ≫ 1.	

We	further	assume	that	the	phenotypic	distribution	is	isotropic	and	its	mean	is	at	the	
optimum.	Isotropy	of	the	phenotypic	distribution	follows	from	assuming	isotropy	in	the	
mutational	input.	In	Section	5.4,	we	explore	the	consequences	of	anisotropy	in	the	
mutational	input.	In	Section	4.4,	we	further	show	that	the	fluctuations	of	the	mean	
phenotype	around	the	optimum	over	time	have	negligible	effects	on	allelic	dynamics;	a	
similar	argument	applies	to	fluctuations	in	the	variance.	

4.2. The	phenotypic	variance	satisfies	𝝈𝟐 ≪ 𝒘𝟐		

With	the	mean	phenotype	centered	at	the	optimum,	requiring	that	𝜎" ≪ 𝑤"	is	equivalent	to	
assuming	that	moving	a	standard	deviation	away	from	the	mean	phenotype	entails	only	a	
minor	reduction	in	fitness.	This	seems	plausible	for	many	phenotypes:	if,	for	example,	this	
assumption	did	not	hold	for	human	height,	then	individuals	whose	height	is	a	standard	
deviation	or	more	away	from	the	population	mean	would	suffer	a	substantial	reduction	in	
fitness.	Arguably,	deviations	from	the	mean	height	would	then	be	recognized	as	a	very	
common	and	severe	disease.	

Another	line	of	argument	that	it	is	likely	that	𝜎" ≪ 𝑤"	is	based	on	our	results.	If	we	assume	
that	mutations	are	strongly	selected,	then	our	results	suggest	that	
𝜎" = 2𝑁𝑈 ∙ 𝑣¦ = 4𝑈𝑤"/𝑛.	 	 	 	 	 	 	 	 	(A41)	
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It	follows	that	if	the	rate	of	mutations	affecting	the	phenotype	under	consideration	satisfies	
𝑈 ≪ 1	then	𝜎" ≪ 𝑤".	The	number	of	mutations	per	diploid	human	genome	per	generation	
is	estimated	to	be	~60	(5),	and	less	than	10%	of	the	genome	is	assumed	to	be	functional	
(6),	suggesting	that	the	number	of	de	novo	mutations	with	any	effect	on	function	is	less	
than	3	per	haploid	per	generation.	It	then	seems	plausible	that	the	(haploid)	mutation	rate	
affecting	a	specific	trait	satisfies	𝑈 ≪ 1.	Assuming	that	mutations	are	weakly	selected	
increases	the	variance	in	Eq.	A41	only	moderately	and	assuming	the	mutations	are	
effectively	neutral	would	suggest	it	is	much	smaller,	leaving	the	above	argument	intact.	

4.3. Mutational	effect	sizes	satisfy	𝒂𝟐 ≪ 𝒘𝟐	

As	we	argued	in	the	introduction	of	the	main	text,	variants	for	which	the	stronger	condition	
𝑎" ≪ 𝜎"	holds	account	for	most	or	all	of	the	heritability	explained	in	GWAS	for	many	traits	
(e.g.,	7,	8-10).	Moreover,	evidence	for	many	traits	suggests	that	the	same	is	true	for	the	
variants	that	underlie	the	heritability	that	remains	to	be	explained	(11-14).	Indeed,	for	this	
assumption	to	be	violated,	much	of	the	genetic	variance	would	have	to	arise	from	
mutations	that	have	a	very	large	impact	on	fitness	(i.e.,	with	s	on	the	order	of	1).	While	this	
may	be	the	case	for	some	diseases	(e.g.,	autism	(15)),	it	does	not	appear	to	be	the	case	for	
most	quantitative	traits	that	have	been	examined.		

4.4. Deviations	of	the	mean	phenotype	from	the	optimum	can	be	neglected	

In	reality,	the	mean	phenotype	of	the	population	fluctuates	around	the	optimum.	Here,	we	
derive	equations	for	the	dynamic	of	the	mean	phenotype	in	order	to	estimate	the	
magnitude	and	timescale	of	these	fluctuations.	We	then	show	that	these	fluctuations	have	a	
negligible	effect	on	the	first	two	moments	of	change	in	allele	frequency	and	thus	on	the	
results	that	follow	from	these	moments.	

We	begin	by	deriving	the	first	and	second	moment	of	change	in	mean	phenotype.	To	this	
end,	we	assume	the	distribution	of	phenotypes	is	a	multivariate	normal	centered	around	a	
mean	phenotype,	𝑟,	i.e.	that	

f 𝑟 = /
"0s4 3 4 exp − 686 4

"s4
.	 	 	 	 	 	 	 	(A42)	

The	expected	change	in	mean	phenotype	due	to	selection	in	one	generation	is	therefore	

E Δ𝑟 =
� 6 È 6 69
� 6 È 69

− 𝑟 = − s4

A4?s4
𝑟 ≈ − s4

A4 𝑟.	 	 	 	 	 	(A43)	

By	the	same	token,	the	variance	in	Δ𝑟	is	simply	the	sampling	variance	
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V Δ𝑟 ≈ s4

�
,	 	 	 	 	 	 	 	 	 	 	(A44)	

where	in	both	cases	we	relied	on	the	assumption	that	𝜎" ≪ 𝑤".	

These	two	moments	define	an	Ornstein-Uhlenbeck	process	in	𝑟,	allowing	us	to	rely	on	well-
known	results	(16).	Notably,	when	the	mean	phenotype	𝑟	starts	far	from	the	optimum,	it	
decays	exponentially	to	the	optimum	with	exponent	𝜎"/𝑤"	(see	Section	5.1	below).	At	
steady	state,	𝑟	will	fluctuate	with	mean	zero	and	E 𝑟" = 𝑛𝑤" 2𝑁	over	a	time	scale	of	

𝑤" 𝜎"	generations.	The	typical	displacement	of	𝑟	in	any	given	direction	will	be	 𝑤" 2𝑁,	
reflecting	a	balance	between	drift	and	the	pull	of	selection	toward	the	optimum.		

Next	we	show	that	these	fluctuations	of	the	mean	have	negligible	effects	on	allelic	
trajectories.	To	this	end,	we	derive	the	first	two	moments	of	change	in	allele	frequency,	but	
this	time,	we	include	the	effect	of	the	displacement	of	𝑟	from	the	optimum.	While	the	
second	moment	remains	the	same,	the	first	moment	becomes		

E Δ𝑞 ≈ − 	6⋅S
A4 𝑝𝑞 −

S4

A4 𝑝𝑞
/
"
− 𝑞 = − 6̄

A4/"�
�

"�
𝑝𝑞 − �

"�
𝑝𝑞 /

"
− 𝑞 ,										 (A45)	

where	𝑟S	is	𝑟’s	component	in	the	direction	of	𝑎.	However,	our	analysis	establishes	that	
6̄

A4/"�
	is	a	scalar	on	the	order	of	1,	which	fluctuates	around	zero	on	a	timescale	of	𝑤" 𝜎".		

We	can	therefore	compare	the	first	term	in	the	above	equation,	which	represents	
directional	selection,	and	the	second	term,	which	represents	stabilizing	selection.	When	
stabilizing	selection	is	strong,	𝑆 ≫ 1,	the	stabilizing	selection	term	dominates	over	the	
directional	selection	term.	In	contrast,	when	selection	is	weak,	i.e.,	𝑆 ≈ 1	or	smaller,	then	in	
any	given	generation,	the	directional	term	is	not	necessarily	negligible.	However,	in	this	
case,	both	terms	affect	substantial	change	in	allele	frequency	only	over	a	timescale	of	2𝑁	
generations;	on	this	timescale,	if	2𝑁 ≫ 𝑤" 𝜎",	the	directional	effect	would	average	to	zero.	
The	directional	term	will	become	important	only	when	2𝑁 ≤ 𝑤" 𝜎",	that	is	𝜎" ≤ 	𝑤" 2𝑁.	
For	𝜎"	to	be	that	small,	virtually	all	alleles	must	have	𝑆 ≪ 1,	such	that	their	trajectories	will	
be	determined	by	drift,	not	selection.		In	summary,	regardless	of	the	selection	acting	on	an	
allele,	fluctuations	of	the	mean	phenotype	around	the	optimum	will	have	a	negligible	effect	
on	its	trajectory.	
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5. Model	robustness	

In	this	section,	we	consider	the	sensitivity	of	our	results	to	relaxing	some	of	the	simplifying	
modeling	assumptions	about	selection	and	mutation.	Specifically,	we	show	our	results	to	be	
robust	to	moderate	changes	to	the	optimal	phenotype;	small	asymmetry	in	the	mutational	
input;	the	presence	of	major	loci	maintained	at	high	frequency	by	selection	on	traits	that	
are	not	included	in	the	model;	as	well	as	to	most	forms	of	anisotropic	mutation.		

5.1. Changes	to	the	optimal	phenotype	

We	first	consider	how	changes	to	the	optimal	phenotype	over	time	would	affect	our	results.	
It	is	easy	to	imagine	how	events	such	as	migration	from	Africa	to	Europe	or	the	onset	of	
agriculture	may	have	introduced	rapid	changes	in	optimal	phenotypes.	In	order	to	evaluate	
the	potential	impact	of	such	events,	we	consider	how	an	instantaneous	change	to	the	
optimal	phenotype	would	affect	the	allelic	dynamics.	Similar	models	have	recently	been	
analyzed	in	the	limit	of	infinite	population	size	(17,	18).	

We	begin	by	considering	how	such	an	instantaneous	change	to	the	optimum	would	affect	
the	mean	phenotype.	If	the	shift	to	the	optimum	is	small,	on	the	order	of	the	fluctuations	in	
the	mean	phenotype	at	steady	state	or	smaller,	then	the	arguments	provided	in	Section	4.4	
will	still	hold	and	the	shift	would	have	a	negligibly	small effect	on	our	results.	We	therefore	
assume	that	the	shift	in	optimum,	𝑧,	is	large	compared	to	the	scale	of	fluctuations	(𝑧" ≫
𝑤"/2𝑁).	This	assumption	means	that	we	can	use	a	deterministic	approximation	(based	on	
Eq.	A43)	and	describe	the	change	in	mean	phenotype	in	a	single	generation	by	

Δ𝑟 ≈ E Δ𝑟 = − s4

A4 𝑟 − 𝑧 	 	 	 	 	 	 	 (A46)	

(neglecting	higher	moments).	Further	assuming	that	the	mean	phenotype	was	at	the	

optimum,	0,	before	the	optimum	shifted	(at	time	𝑡 = 0)	and	neglecting	changes	to	the	
genetic	variance	𝜎,	we	find	that		

𝑟 𝑡 = 𝑧 1 − exp − s4

A4 𝑡 .		 	 	 	 	 	 	 	(A47)	

Thus,	the	mean	𝑟	adapts	to	the	new	optimum	on	a	timescale	of	𝑤"/𝜎"	generations	(see	(19)	
for	a	similar	derivation).		

We	can	rely	on	this	approximation	to	learn	when	a	shift	in	optimum	will	have	negligible	
effects	on	allele	trajectories.	Recalling	Eq.	A45,	the	first	moment	of	change	in	allele	
frequency	is	given	by	
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E Δ𝑞 ≈ − � ¿ 8Ê ⋅S
A4 𝑝𝑞 − S4

A4 𝑝𝑞
/
"
− 𝑞 ,	 	 	 	 	 	 	(A48)	

where,	based	on	our	approximation	(Eq.	A47),	the	directional	selection	term	introduced	by	
the	shift	in	optimum	takes	the	time-dependent	form	

E ΔË𝑞 = − � ¿ 8Ê ⋅S
A4 𝑝𝑞 ≈ Ê⋅S

A4 exp − s4

A4 𝑡 𝑝𝑞.	 	 	 	 	 	(A49)	

The	effect	of	this	directional	term	over	the	entire	adaptive	trajectory	can	be	quantified	by	
comparing	the	expected	allele	frequency	after	adaptation	to	the	shift,	𝑞Ë ,	with	initial	
frequency	before	the	shift,	𝑞~,	i.e.,	

ln 𝑞Ë 𝑞~ = º ÌÍ|
|(¿)¿ = Ê⋅S

A4 𝑝 𝑡 exp − s4

A4 𝑡¿ < Ê⋅S
A4 exp − s4

A4 𝑡¿ = Ê⋅S
s4

.				 (A50)	

This	result	suggests	that	the	relative	change	in	allele	frequency	will	be	negligible	so	long	as	
(𝑧 ⋅ 𝑎)/𝜎" ≪ 1.	 	 	 	 	 	 	 	 	 	 (A51)	
This	condition	suggests	that	mutations	with	smaller	effects	would	be	less	affected	by	the	
shift	in	the	optimum.	It	further	suggests	that	alleles	that	satisfy	𝑎" ≪ 𝜎",	as	appears	to	be	
the	case	for	most	loci	discovered	in	GWAS	(e.g.,	7,	8-10),	will	be	negligibly	affected	by	shifts	

in	optimum	on	the	order	of	the	total	genetic	variation	(i.e.,	𝑧 ≤ 𝜎).	These	analytic	
predictions	are	confirmed	by	simulations	(Fig.	A7).		
	

	
Figure	A7.	 Distribution	 of	 the	 contributions	 of	 sites	 to	 variance	 after	 a	 shift	 in	 the	
optimum.	 The	 y-axis	 is	 the	 proportion	 of	 the	 variance	 explained	 by	 sites	 that	 contribute	
more	 than	𝑣∗	to	 the	 variance.	 The	 theoretical	 prediction	without	 adaptation	 is	 shown	 in	
dashed	 black,	 and	 simulation	 results	 for	 different	 shifts	 in	 the	 optimal	 phenotype	 are	
shown	in	color.	When	the	root	mean	square	of	(𝑧 ⋅ 𝑎)/𝜎"	becomes	larger	than	1,	directional	
selection	substantially	affects	allele	frequencies	and	therefore	the	contributions	of	sites	to	
variance,	as	predicted	by	Eq.	A51.	 (Since	mutation	 is	 symmetric	 the	mean	of	(𝑧 ⋅ 𝑎)/𝜎"	is	
zero	 and	 we	 quantify	 its	 characteristic	 value	 by	 its	 root	 mean	 square	𝑧 𝐸 𝑎" /𝜎".)	
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Simulations	were	run	with	an	exponential	distribution	of	selection	coefficients	with	E(𝑆) =
25,	𝑁 = 1,000,	𝑛 = 1,	𝑈 = 0.01,	 and	 a	 burn-in	 time	 of	 10,000	 generations.	 Results	 were	
taken	50	generations	after	the	shift	 in	optimum,	which,	 for	these	parameters,	 is	 just	after	
the	population	mean	has	reached	the	new	optimum.		
	
5.2. Asymmetric	mutational	input	

In	this	section,	we	consider	the	sensitivity	of	our	results	to	asymmetries	in	the	mutational	
input,	i.e.,	to	the	case	in	which	mutations	in	a	given	direction	in	trait	space	are	more	likely	
to	arise	than	mutations	in	the	opposite	direction	(see	(20)	for	treatment	of	this	problem	in	
the	limit	of	high	per-site	mutation	rate).				

An	asymmetric	mutational	input	introduces	a	shift	in	the	mean	phenotype,	𝑟,	every	
generation.	With	new	mutations	arising	at	frequency	1/2𝑁,	the	expected	shift	is	
ΔÎ𝑟 = 4𝑁𝑈	EÎ 𝑎 ∙ 1 2𝑁 = 2𝑈EÎ 𝑎 ,	 	 	 	 	 		 (A52)	
where	EÎ	is	the	expectation	over	newly	arising	mutations.	For	each	trait,	effects	have	a	

characteristic	size	 E 𝑎" 𝑛= 𝑣¦ E(𝑆/4).	The	characteristic	effect	size	sets	the	scale	for	

the	maximal	shift	in	any	direction,	that	is	 ΔÏ𝑟 	is	of	the	order	of	2𝑈 E 𝑎" 𝑛	or	smaller.	

We	therefore	parameterize	the	shift	in	mean	phenotype	due	to	new	mutations	by		

ΔÎ𝑟 = 2𝑈EÎ 𝑎 = 2𝑈 E 𝑎" 𝑛 𝑏,		 	 	 	 	 	 	(A53)	

where	the	vector	𝑏	parameterizes	the	strength	and	direction	of	the	bias	and	𝑏 = 𝑏 	is	

assumed	to	be	<<	1.		

At	steady	state,	the	mutational	shift	must	be	offset	by	selection,	such	that		

ΔÎ𝑟 + ΔÑ𝑟 + ΔX𝑟 = 0,	 	 	 	 	 	 	 	 (A54)	
where	ΔÑ𝑟	and	ΔX𝑟	are	the	expected	shifts	due	to	directional	and	stabilizing	selection,	
respectively.	We	previously	found	that	the	expected	directional	shift	is	

ΔË𝑟 = − s4

A4 𝑟,		 	 	 	 	 	 	 	 	 (A55)	

where	𝑟	denotes	the	mean	phenotype	(see	Eq.	A43).	As	we	show	next,	when	mutations	are	
strongly	selected,	stabilizing	selection	offsets	the	mutational	shift	to	maintain	the	mean	
phenotype	at	the	optimum,	implying	that	directional	selection	is	negligible.	In	contrast,	
when	mutations	are	effectively	neutral,	stabilizing	selection	is	negligible	and	a	directional	
term	might	not	be	negligible	by	comparison.	However,	as	long	as	asymmetry	is	small,					
𝑏 ≪ 1,	we	show	that	this	directional	term	is	not	large	enough	to	change	the	allele	dynamics,	
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both	when	all	mutations	are	effectively	neutral	and	when	some	mutations	are	strongly	
selected.	

First,	we	consider	the	shift	in	mean	phenotype	due	to	stabilizing	selection.	This	shift	arises	
because,	with	asymmetric	mutational	input,	the	distribution	of	phenotypes	becomes	
skewed.	Therefore,	stabilizing	selection	may	change	the	mean	phenotype	even	if	it	is	at	the	
optimum.	We	have	already	shown	(Eq.	A15)	that	the	expected	change	in	allele	frequencies	
per	generation	due	to	stabilizing	selection	at	any	given	site	i	is	

𝐸 Δ𝑞Ò = − SÓ
4

A4 𝑝Ò𝑞Ò
/
"
− 𝑞Ò .		 	 	 	 	 	 	 (A56)	

The	expected	change	in	mean	phenotype	can	then	be	calculated	by	adding	up	the	
contributions	over	sites	

ΔX𝑟 = −E 2𝑎ÒÒ
SÓ
4

A4 𝑝Ò𝑞Ò
/
"
− 𝑞Ò .		 	 	 	 	 	 	(A57)	

The	right-hand	side	of	this	equation	reflects	the	skewness	of	the	phenotypic	distribution.	
Indeed,	in	one	dimension,	it	can	be	shown	that		

Δ�𝑟 = −Ô] 6
"A4 ,		 	 	 	 	 	 	 	 	 	(A58)	

with	µÖ(𝑟)	being	the	third	central	moment	of	the	phenotypic	distribution.	In	n-dimensions,	
for	every	direction	𝑥,	

Δ�𝑟� = − /
"A4 E 𝑟 − 𝑟 � 𝑟 − 𝑟 " = − /

"A4 µÖ 𝑟 �××× ,	 	 	 	 	(A59)	

with	µÖ 𝑟 Ø×Ù = E 𝑟 − 𝑟 Ø 𝑟 − 𝑟 × 𝑟 − 𝑟 Ù .	

When	sites	are	under	strong	selection,	ΔX𝑟	takes	a	simple	form.	Assuming	the	asymmetry	is	
small,	the	shift	due	to	stabilizing	selection	can	be	expanded	in	orders	of	𝑏.	The	leading	term	
in	the	frequency	distribution	takes	the	same	form	as	it	does	without	the	bias.	For	strongly	
selected	alleles	with	no	bias,	𝑞 ≪ 1	and	therefore	the	frequency	dependence	in	this	term	

can	be	approximated	by	𝑝𝑞 /
"
− 𝑞 ≈ /

"
𝑞.	Moreover,	q	scales	with	1/a2,	implying	that	the	

distribution	of	𝑎"𝑞	is	independent	of	𝑎	and	that	E 𝑎"𝑞 = 𝑤"/𝑁	(see	Section	3.1).	
Therefore,	when	all	sites	are	strongly	selected,	the	leading	term	in	the	shift	due	to	
stabilizing	selection	is	

Δ�~𝑟 = −E 2𝑎ÒÒ
SÓ
4

A4
|Ó
"
	 = − º S4|

A4 E 𝑎ÒÒ 	 = − /
�
2𝑁𝑈EÏ 𝑎 = −𝛥Ï𝑟.	 	(A60)	
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Thus,	to	a	first	order	in	𝑏,	the	shift	of	the	mean	phenotype	due	to	stabilizing	selection	
offsets	the	mutational	shift,	implying	that	there	will	be	no	directional	term	and	that	the	
allele	dynamics	will	not	be	affected	by	asymmetry.				

When	alleles	are	instead	effectively	neutral,	then	𝑎"/𝑤" ≪ 1/2𝑁	(see	Section	2.2)	and	
allele	frequencies	are	well	approximated	by	the	neutral	sojourn	time,	τ 𝑞 ≈ 2/𝑞.	The	shift	
due	to	stabilizing	selection	then	satisfies	

Δ�𝑟 = −E 2𝑎ÒÒ
SÓ
4

A4 𝑝Ò𝑞Ò
/
"
− 𝑞Ò ≈ −E 𝑝𝑞 /

"
− 𝑞 E 2𝑎ÒÒ

SÓ
4

A4 	 	 	

								= −/
Û
	E 2𝑎ÒÒ

SÓ
4

A4 ≪ − /
�
E 𝑎ÒÒ 	 = −ΔÏ𝑟,	 	 	 	 		 (A61)	

implying	that	it	makes	a	negligible	contribution	to	offsetting	the	mutational	shift.	In	this	
case,	the	mutational	effect	on	the	mean	phenotype	is	therefore	offset	by	directional	
selection,	where		

ΔË𝑟 = − s4

A4 𝑟 ≈ −ΔÏ𝑟,												 	 	 	 	 	 	 (A62)	

indicating	a	displacement	of	the	mean	phenotype	from	the	optimum		

𝑟 = A4

s4
ΔÏ𝑟.	 											 	 	 	 	 	 	 	 	 (A63)	

This	displacement	introduces	a	directional	selection	term	into	the	first	moment	of	change	
in	allele	frequency	that,	if	large	enough,	could	alter	allele	dynamics	(see	Section	4.4).	
However,	when	all	alleles	are	effectively	neutral,	we	have	

𝑟 = A4

s4
ΔÏ𝑟 =

A4

"�Ü¬Ýº(�) "
2𝑈 𝑣¦ E(𝑆/4)	𝑏 = /

"�
"A4

¬Ý º(�)
	𝑏,											 	 (A64)	

and	therefore	the	scaled	directional	selection	coefficient,	for	an	allele	with	effect	size	𝑎	and	

scaled	stabilizing	selection	coefficient	𝑆 = 2𝑁 S4

A4,	is	of	the	order	of	

2𝑁 	6⋅S
A4 =

2Þ¯𝑎
¬Ý º(�)

	~ "(Þ/ 𝑛)𝑎
¬Ý º(�)

= Þ ¬Ý �
¬Ý º(�)

= �
º �

	𝑏,											 	 	 	 (A65)	

with	𝑏S~𝑏/ 𝑛	being	the	projection	of	𝑏	in	the	direction	of	𝑎.	Since	𝑏 ≪ 1,	for	all	alleles	
other	than	those	with	unusually	large	selection	coefficients,	the	scaled	directional	selection	
coefficient	will	be	much	smaller	than	1	and	the	trajectories	will	still	be	determined	by	drift	
and	not	selection.	Even	in	this	case,	therefore,	we	do	not	expect	asymmetry	to	affect	allele	
dynamics.	

Next,	we	consider	the	case	where	there	is	a	mix	of	effectively	neutral	and	strongly	selected	
mutations.	The	existence	of	strongly	selected	mutations	in	addition	to	effectively	neutral	
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ones	reduces	the	deviation	of	the	mean	phenotype	from	the	optimum.	Denoting	the	
proportion	of	strongly	selected	mutations	by	𝑝¦,	we	have	

𝑟 = 𝑤2

𝜎2
𝑈 1 − 𝑝¦ 𝑣¦ E 𝑆).O. 	𝑏,											 	 	 	 	 	 (A66)	

where	E 𝑆�.�. ≤ 1	is	the	mean	scaled	stabilizing	selection	coefficient	for	effectively	neutral	
mutations.	Since	𝜎" > 2𝑁𝑈𝑝¦𝑣¦,	we	can	then	obtain	an	upper	bound	to	the	magnitude	of	
scaled	directional	selection	coefficient	for	an	allele	with	effect	size	𝑎	and	scaled	stabilizing	

selection	coefficient	𝑆 = 2𝑁 S4

A4:		

2𝑁 	6⋅S
A4 = 2𝑁 1

𝜎2
𝑈 1 − 𝑝¦ 𝑣¦ E 𝑆).O. 	𝑏 ⋅ 𝑎						 	 	 																								

< 1
𝑈𝑝𝑠𝑣𝑠

𝑈 1 − 𝑝¦ 𝑣¦ 𝐸 𝑆).O. 	𝑏 ⋅ 𝑎~ 1−�Ý
2𝑝𝑠

𝐸 𝑆).O. 	 𝑆	𝑏.											 	 (A67)	

With	a	substantial	proportion	of	strongly	selected	sites,	(1 − 𝑝¦)/2𝑝¦	is	of	the	order	of	1,	

and	therefore	/8𝑝𝑠
"�Ý

E 𝑆𝑒.𝑛. 	𝑏 ≪ 1.	This	condition	implies	that	for	effectively	neutral	alleles	

(i.e.,	𝑆 ≤ 1),	the	scaled	directional	selection	coefficient	is	≪ 1	and	allele	trajectories	will	be	
determined	by	genetic	drift,	whereas	for	strongly	selected	alleles	(i.e.,	when	𝑆 ≫ 1),	the	
scaled	directional	selection	coefficient	is	≪ 𝑆	and	therefore	negligible	compared	to	the	
scaled	stabilizing	selection	coefficient.		

Weakly	selected	alleles	(with	1 < 𝑆 < 30)	behave	largely	like	strongly	selected	alleles	
except	that	stabilizing	selection	on	them	only	partially	cancels	out	the	mutational	bias	(for	
example,	for	𝑆 = 10	only	85%	of	the	bias	is	canceled).	The	rest	of	the	bias	is	canceled	by	
directional	selection	and	therefore	induces	a	small	shift	in	the	mean	phenotype.	It	is	
straightforward	to	repeat	the	arguments	given	above	and	show	that	the	shift	in	the	mean	
phenotype	for	a	trait	with	only	weakly	selected	alleles	or	a	mixture	that	includes	weakly	
selected	alleles	negligibly	affects	allele	trajectories.	

Thus,	we	conclude	that	small	asymmetry	in	mutation	will	not	affect	the	allelic	dynamic	(see	
Fig.	A8).		
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Figure	A8.	 The	 effect	 of	 asymmetric	 mutational	 input	 on	 the	 contribution	 of	 sites	 to	
variance	and	the	mean	phenotype.	 (a)	Proportion	of	genetic	variance	as	a	 function	of	 the	
threshold	 contribution	 to	 variance	𝑣∗,	 i.e.,	GÞ(𝑣∗),	 for	 different	 bias	 strengths.	 (b)	 The	
maximal	distance	of	GÞ(𝑣∗)	from	G~(𝑣∗),	i.e.	max¬∗ GÞ v∗ − G~ v∗ 	,	as	a	function	of	𝑏.	(c)	
The	mean	phenotype	𝑟,	in	units	of	 𝑣¦,	as	a	function	of	mutational	bias	𝑏.	Simulations	were	
run	with	𝑁 = 1,000,	𝑛 = 1	and	with	different	mixtures	of	effectively	neutral	(exponentially	
distributed	 with	𝐸(𝑆) = 0.1)	 	 and	 strong	 (exponentially	 distributed	 with	𝐸(𝑆) = 50)	
selection	coefficients.	Asymmetry	was	simulated	by	having	more	trait	increasing	than	trait	
decreasing	 mutations;	 if	𝛽	is	 the	 proportion	 of	 trait	 increasing	 mutations	 then	 the	
asymmetry	coefficient	is	𝑏 = 2𝛽 − 1.	As	expected,	for	small	biases	(when	𝑏 ≪ 1),	there	are	
no	 substantial	 changes	 in	 the	 distribution	 of	 the	 contribution	 of	 sites	 to	 variance.	
Simulations	were	 run	with	 a	 10,000	 generations	 burn-in	 period	without	 asymmetry	 and	
then	10,000	generations	with	asymmetry	and	averaged	over	many	runs	 (>300),	with	 the	
number	of	runs	varied	across	plots	keep	errors	in	(a)	below	1%.	
	
5.3. Major	effect	loci	 	

In	this	section,	we	show	that	our	results	are	insensitive	to	the	presence	of	major	loci,	i.e.,	
individual	loci	that	contribute	substantially	to	quantitative	genetic	variation.	We	have	in	
mind,	for	example,	loci	whose	alleles	are	maintained	at	high	frequencies	by	balancing	
selection	on	a	Mendelian	trait	but	have	pleiotropic	effects	on	the	quantitative	traits	under	
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consideration	(e.g.,	HLA	loci	(21,	22)).	While	such	loci	violate	our	assumptions,	we	show	
that	they	do	not	affect	the	dynamics	at	other	loci	that	fulfill	them.		

To	this	end,	we	calculate	the	first	two	moments	of	change	in	allele	frequency	in	the	
presence	of	a	major	locus.	We	denote	the	frequency	and	effect	size	of	the	focal	allele	by	𝑞	
and	𝑎,	and	the	frequency	and	effect	size	of	the	major	allele	by	𝑞Ï 	and	𝑎Ï,	respectively.	As	in	
our	previous	derivations	(Section	2.1),	the	distribution	of	background	phenotypic	

contribution	from	all	other	loci,	𝑅,	is	well	approximated	by	the	normal	distribution		

f 𝑅 𝑎Ï, 𝑞Ï, 𝑎, 𝑞 = /

"0(s48sá
4 )

3/4 exp − {?"|S?"|áSá
4

"(s48sá
4 )

,	 	 		 (A68)	

where	𝜎Ï" 	is	the	contribution	to	genetic	variance	from	the	major	locus.	The	population	
mean	remains	close	to	the	optimum	because	any	shift	caused	by	the	major	locus	is	quickly	
compensated	for	by	the	other	loci	(see	Section	4.4).	We	then	average	over	both	this	
distribution	and	the	three	genotypes	at	the	major	locus	to	calculate	the	mean	fitness	
associated	with	each	genotype	at	the	focal	locus.	Namely,	

𝑊~~ = 1 − 𝑞Ï " f 𝑅 𝑎Ï, 𝑞Ï, 𝑎, 𝑞 W 𝑅{ 	+2𝑞Ï 1 − 𝑞Ï f 𝑅 𝑎Ï, 𝑞Ï, 𝑎, 𝑞 W 𝑅 + 𝑎Ï{ 	 	

+𝑞Ï" f 𝑅 𝑎Ï, 𝑞Ï, 𝑎, 𝑞 W 𝑅 + 2𝑎Ï{ ,	 	 	 	 	 	 (A69)	

and	similarly	for	the	other	genotypes.	In	this	way,	we	obtain	the	first	moment	of	the	change	
in	allele	frequency		

E Δ𝑞 = −𝑝𝑞 � ���8��T ?| ��T8�TT
�

≈ − S4

A4 𝑝𝑞 𝑞 − /
"
,		 	 	 	 (A70)	

which	is	the	same	as	we	derived	in	the	absence	of	a	major	locus	(Eq.	A15).	Similarly,	we	
find	the	second	moment	to	be	unaffected.	

5.4. Anisotropic	mutation	

In	this	section,	we	consider	how	relaxing	the	assumption	that	the	distribution	of	newly	
arising	mutations	is	isotropic	in	trait	space	would	affect	our	results.	As	noted,	we	can	
always	choose	an	orthonormal	coordinate	system	centered	at	the	optimum,	in	which	the	
trait	under	consideration	varies	along	the	first	coordinate	and	a	unit	change	in	other	traits	
(i.e.,	in	other	coordinates)	near	the	optimum	have	the	same	effect	on	fitness.	There	is,	
however,	no	obvious	reason	for	the	distribution	of	newly	arising	mutations	to	be	isotropic	
in	this	coordinate	system	(see	(23)	for	generalizations	of	Fisher’s	Geometric	Model	along	
similar	lines).		
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Anisotropy	in	mutation	does	not	affect	the	moments	of	change	in	allele	frequency,	as	these	
depend	only	on	the	selection	on	an	allele	or	equivalently	on	its	effect	size	but	not	on	its	
direction	in	trait	space.	Anisotropy	could	affect	the	distribution	of	allelic	effect	sizes	on	the	
focal	trait	conditional	on	the	selection	acting	on	them.	Here,	we	provide	heuristic	
arguments	suggesting	that,	barring	extreme	cases,	we	can	define	an	effective	number	of	
traits	𝑛) 	and	an	effective	strength	of	selection	we2	for	which	the	relationship	between	
selection	and	effect	size	in	anisotropic	models	is	well	approximated	by	the	relationship	
found	for	isotropic	ones	(Eqs.	9	&	11,	which	appear	in	the	Results	section	of	the	main	text;	
Section	1.2).	

We	focus	on	a	family	of	anisotropic	mutational	distributions	that	can	be	described	as	a	
projection	of	a	multivariate	normal	distribution	on	the	unit	sphere	in	trait	space.	Namely,	
we	draw	the	size	of	a	mutation	𝑎 = 𝑎 	from	some	distribution	and	to	obtain	its	direction,	
we	draw	a	vector	𝛼	from	a	multi-variate	normal	distribution	MVN(0, 𝜮)	and	normalize	it,	
i.e.,	

𝑎 = 𝑎 å
å
,	 	 	 	 	 	 	 	 	 	 (A71)	

and	therefore	

𝑎/ = 𝑎 åT
å
.	 	 	 	 	 	 	 	 	 	 (A72)	

This	family	of	mutational	distributions	gives	us	a	mathematically	tractable	framework	with	
which	to	examine	the	behavior	of	our	model	with	anisotropy.	

With	anisotropy,	the	behavior	of	our	model	greatly	depends	on	the	relative	contribution	of	
the	focal	trait	to	selection,	which	we	parameterize	by		

𝛾/ ≡
º åT4

º å4
= 𝜮TT

ç� 𝜮
.	 	 	 	 	 	 	 	 	 (A73)	

When	selection	acts	mainly	on	our	focal	trait,	i.e.	when	𝛾/ ≈ 1,	then	|𝛼/| ≈ 𝛼	and	therefore	
𝑎/ ≈ ±𝑎.	Such	a	relationship	between	the	strength	of	selection	and	effect	size	is	well	
approximated	by	an	isotropic	model	with	𝑛) = 1.	We	therefore	focus	on	cases	in	which	
there	is	a	significant	pleiotropic	contribution	to	selection,	i.e.,	𝛾/	is	substantially	less	than	1.	
Anisotropy	then	has	two	effects:	the	first	is	to	introduce	heterogeneity	in	the	strength	of	
selection	on	different	traits	and	the	second	is	to	introduce	correlations	in	the	effects	of	a	
mutation	on	different	traits,	notably	between	the	focal	trait	and	others.		

We	first	consider	the	case	in	which	the	strength	of	selection	differs	among	traits,	but	traits	
are	uncorrelated,	corresponding	to	a	diagonal	covariance	matrix,	𝜮.	When	many	traits	have	
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a	non-negligible	contribution	to	selection,	𝛼" = 𝛼/" + 𝛼"" + ⋯𝛼O"	would	have	a	small	
coefficient	of	variation,	i.e.,	Cê" 𝛼" = V 𝛼" /E 𝛼" " ≪ 1,	because	of	the	law	of	large	
numbers.	In	this	case,		

𝑎/ = 𝑎 åT
å
= 𝑎 åT

¸ å4
1 + O Cê" 𝛼" ≈ 𝑎 åT

º å4
	 = S

//ëT
		 åT

º åT4
,	 	 (A74)	

Since	𝛼// E 𝛼/" ~N(0,1)	and	𝑠 =
/
A4 𝑎",	this	implies	that,	conditional	on	the	selection	

coefficient	𝑆,	the	effect	size	on	the	focal	trait	will	be	distributed	as	

𝑎/~N 0, A
4

O2
𝑠		 	 	 	 	 	 	 	 	 	 (A75)	

with	𝑛) = 1/𝛾/.	This	is	the	same	relationship	between	selection	and	effect	size	as	in	the	
high	pleiotropy	isotropic	model	with	𝑛 = 𝑛) 	(Eq.	11,	which	appears	in	the	Results	section	
of	the	main	text).	This	result	suggests	the	concept	of	an	effective	number	of	traits,	which	
can	be	thought	of	as	the	number	of	traits	that	have	the	same	effect	on	fitness	as	the	focal	
one	and	are	required	to	produce	the	same	strength	of	selection	on	alleles.	The	effective	
number	of	traits	describes	the	distribution	of	effect	sizes	both	in	the	limit	of	high	pleiotropy	
𝑛) ≫ 1	and	low	pleiotropy	𝑛) ≈ 1	and	simulations	show	that	it	describes	the	distribution,	
at	least	qualitatively,	also	for	intermediate	values	of	𝑛) 	(Fig.	A9).		

However,	there	is	an	extreme	scenario	in	which	an	effective	number	of	traits	cannot	
describe	the	distribution	of	effect	sizes.	This	happens	when	Cê" 𝛼" ≥ 1,	that	is	when	
selection	acts	mainly	on	a	small	number	of	traits	but	our	focal	trait	contributes	very	little	to	
selection	(𝛾/ ≪ 1).	In	this	case,	we	might	be	tempted	to	use	𝑛) = 1/𝛾/ ≫ 1	but,	as	Eq.	A74	
suggests,	the	high	pleiotropy	limit	would	be	inadequate.	In	fact,	the	variance	in	selection	on	
newly-arising	mutations	(due	to	the	contribution	of	the	selected	traits)	will	result	in	a	long-
tailed	distribution	of	effect	sizes	on	the	focal	trait,	which	is	not	well-approximated	by	any	
isotropic	model.	Excluding	these	extreme	cases,	isotropic	models	provide	a	good	
approximation	for	the	relationship	between	selection	and	effect	size,	even	when	there	is	
heterogeneity	in	the	strength	of	selection	on	different	traits.			

To	illustrate	the	effect	of	heterogeneity	in	the	strength	of	selection	among	traits,	we	
consider	a	simple	example	in	which	all	non-focal	traits	make	the	same	contribution	to	
selection	and	therefore	can	be	modeled	by	
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𝜮 =
1 0 0
0 𝑐" 0
0 0 𝑐"

⋯

⋮ ⋱

,	 	 	 	 	 	 	 	 	(A76)	

where	𝑐"	is	the	ratio	between	the	expected	fitness	effects	of	non-focal	and	focal	traits.	In	
Fig.	A9	we	compare	numerical	results	of	this	model	with	isotropic	models	with	𝑛) =
1/𝛾/ = 1 + (𝑛 − 1)𝑐".	

	
Figure	A9.	The	effects	of	heterogeneity	 in	 the	 strength	of	 selection	on	different	 traits	on	
the	 distribution	 of	 effect	 sizes	 in	 the	 focal	 trait.	 Numerical	 results	 for	 models	 with	 the	
correlation	matrix	defined	 in	Eq.	A76	are	shown	 in	blue	and	 the	corresponding	 isotropic	
model	 in	 black	 dashes.	 When	 there	 are	 many	 selected	 traits,	 an	 isotropic	 model	 with							
𝑛) = 1/𝛾/ = 1 + (𝑛 − 1)𝑐"	provides	 a	 good	 approximation	 of	 the	 distribution	 of	 effect	
sizes,	both	when	the	focal	trait	contributes	substantially	to	selection	(a)	and	when	it	does	
not	 (b).	 When	 there	 are	 few	 traits,	 an	 isotropic	 model	 with	𝑛) = 1/𝛾/ = 1 + (𝑛 − 1)𝑐"	
provides	 a	 good	 approximation	 only	 when	 the	 focal	 trait	 contributes	 substantially	 to	
selection	(c	&	d).	
	
Next,	we	consider	the	case	in	which	the	effect	sizes	on	different	traits	are	correlated,	i.e.,	
when	the	covariance	matrix	𝜮	has	off-diagonal	terms.	𝑎/" ∝ 𝛼/"/𝛼"	and	therefore	we	
parameterize	the	effect	of	these	terms	using	the	correlation	between	𝛼/"	and	𝛼",	𝜌" ≡
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	corr α", 𝛼/" .	If	the	correlation	is	small,	𝜌" ≪ 1,	then	our	previous	reasoning	holds.	In	the	
other	extreme,	when	all	selected	traits	are	highly	correlated	with	the	focal	trait,	i.e.	𝜌" ≈ 1,	
then	the	proportional	contribution	of	the	focal	trait	to	selection	is	constant,																									
𝛼/"/𝛼" ≈ E(𝛼/")/E(𝛼") = 𝛾/,	and	the	effect	size	is	𝑎/ = ± 𝛾/	𝑎.	This	model	is	therefore	
equivalent	to	an	isotropic	one	with	𝑛) = 1	and	𝑤)" = 𝛾/𝑤";	the	latter	change	corresponds	
to	increasing	the	strength	of	selection	on	the	focal	trait	to	account	for	selection	on	the	
other,	highly-correlated	traits.	Intermediate	cases	are	more	complex:	while	effect	sizes	are	
still	of	the	order	of	 𝛾/	𝑎,	the	shape	of	the	distribution	of	effect	sizes	is	intermediate	
between	the	single	trait	and	high	pleiotropy	limits.	Isotropic	models	with	an	effective	
number	of	traits,	𝑛) < 1/𝛾/,	and	increased	selection	𝑤)" = 𝛾/𝑛)𝑤"	can	describe	these	cases	
qualitatively	but	may	not	completely	capture	the	distribution	of	effect	sizes.	The	value	of	𝑛) 	
would	change	from	1	when	𝜌" → 1	to	1/𝛾/	when	𝜌" → 0.	Note	that	with	a	large	number	of	
traits,	very	strong	correlations	among	many	of	the	traits	will	be	necessary	in	order	to	
create	a	large	enough	𝜌"	to	have	a	significant	effect	on	𝑛) 	(see	Fig.	A10).	

To	illustrate	the	effect	of	correlations	among	traits,	we	consider	the	following	simple	
example	(Fig.	A10).	We	assume	the	correlation	matrix	𝜮	takes	the	form	

𝜮 =
1 𝑟" 𝑟"
𝑟" 1 𝑟"
𝑟" 𝑟" 1

⋯

⋮ ⋱

,											 	 	 	 	 	 	 (A77)	

meaning	that	that	all	traits	contribute	equally	to	the	fitness	and	every	pair	of	traits	has	the	
same	correlation	coefficient	𝑟".	When	𝑟" = 0	this	becomes	an	isotropic	model.	When					
𝑟" = 1,	effect	sizes	are	always	identical	for	every	trait;	thus,	this	case	is	equivalent	to	
having	only	one	trait	with	the	strength	of	selection	increased	𝑛-fold.	Intermediate	cases	can	
be	approximated	by	finding	an	effective	number	of	traits	𝑛) < 1/𝛾/ = 𝑛,	such	that	an	
isotropic	model	with	𝑛) 	and	𝑤)" = 𝛾/𝑛)𝑤" = 𝑤"𝑛)/𝑛	qualitatively	describes	the	
distribution	of	effect	sizes.	Numerical	results	of	this	model	are	shown	in	Fig.	A10.			
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Figure	A10.	 Effects	 of	 correlations	 among	 traits	 on	 the	 distribution	 of	 effect	 sizes.	
Numerical	results	for	our	model	with	the	correlation	matrix	defined	in	Eq.	A77	and	𝑛 = 50	
traits	are	shown	in	blue	and	the	corresponding	isotropic	model	in	black	dashes.	(a)	When	
correlations	are	low,	the	isotropic	model	approximates	the	distribution	of	effect	sizes	well.	
(b)	With	 large	correlations,	we	need	 to	use	an	effective	number	of	 traits,	 in	 this	example	
𝑛) = 5 ,	 and	 rescale	 selection,	 in	 this	 case	 to	𝑤)" = 𝑤"𝑛)/𝑛 = 𝑤"/10 ,	 in	 order	 to	
approximate	 the	 distribution	 of	 effect	 sizes.	 (c)	 When	 the	 correlations	 approach	 1,	 the	
distribution	 of	 effect	 sizes	 becomes	 singular	 and	 approaches	 the	 distribution	 for	 an	
isotropic	model	with	𝑛) = 1	and	𝑤)" = 𝑤"/𝑛 = 𝑤"/50.		
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6. The	power	to	detect	loci	in	GWAS	

In	this	section,	we	summarize	the	results	that	we	rely	on	in	connecting	our	theoretical	
predictions	with	the	observations	from	GWAS	(see	Discussion	in	main	text).	These	results	
provide	a	first	approximation	of	the	power	to	detect	loci	in	GWAS	in	re-sequencing	and	
genotyping	studies.	In	Section	6.3	we	consider	potential	complications	that	arise	when	
GWAS	do	not	identify	causal	loci	but	rather	SNPs	in	LD	with	them.	

6.1. Re-sequencing	studies	

First,	we	consider	how	the	power	to	identify	a	locus	in	a	GWAS	depends	on	its	contribution	
to	genetic	variance.	To	this	end,	we	follow	Sham	and	Purcell	(24)	in	assuming	a	simplified	
model	for	a	GWAS	in	which	loci	are	detected	using	a	linear	regression	of	the	phenotype	
against	the	genotype	at	individual	loci,	and	the	dependence	of	phenotype	on	genotype	
follows	an	additive	model.	The	slope	of	the	regression	(the	regression	coefficient),	which	is	
also	the	estimate	of	the	effect	size,	𝑎/	is	then	approximately	normally	distributed	as	

𝑎/~N 𝑎/,
1ò/I
"� /8�

,	 	 	 	 	 	 	 	 	 (A78)	

where	𝑎/	is	the	true	effect	size	and	x	is	the	minor	allele	frequency	at	the	locus	(which,	due	
to	the	large	study	sizes,	we	assume	to	be	estimated	without	error),	𝑉ó	is	the	total	
phenotypic	variance,	and	𝑚	the	study	size	(which	in	reality	may	be	an	effective	size	
reflecting	study	design,	e.g.,	when	the	sample	is	split	into	discovery	and	validation	panels)	
(24).			

Under	the	null	hypothesis,	the	true	effect	size	is	0,	meaning	that	

𝑎/�õöö~N 0, 1ò/I
"� /8�

	 	 	 	 	 	 	 	 	 (A79)	

and	therefore,	the	estimated	contribution	to	variance	has	a	chi-squared	distribution	with	
one	degree	of	freedom	
¬÷øùù
1ò/I

= "ST4÷øùù� /8�
1ò/I

~χ/".	 	 	 	 	 	 	 	 (A80)	

The	power	to	identify	a	locus	as	significant	with	p-value	𝑝∗	is	the	probability	that	the	
estimated	contribution	of	the	locus	to	variance,	𝑣,	is	large	enough	that	
Pr 𝑣�õöö > 𝑣 < 𝑝∗.	 	 	 	 	 	 	 	 	 (A81)	
This	condition	can	be	translated	into	a	threshold	contribution	to	variance	𝑣∗	for	which	loci	
with	𝑣 > 𝑣∗	are	considered	significant,	i.e.	Pr 𝑣�õöö > 𝑣∗ = 𝑝∗,	with	𝑣∗	given	by		
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¬∗

1ò/I
= 2	 erf8/ 1 − 𝑝∗ ",	 	 	 	 	 	 	 	 (A82)	

and	erf	denoting	the	error	function.	The	power	to	identify	a	locus	with	a	contribution	𝑣	to	
the	genetic	variance	is	Pr 𝑣 > 𝑣∗|𝑣 	and	the	distribution	of	𝑣	is	given	by	
¬

1ò/I
= "S4� /8�

1ò/I
~χ/"

¬
1ò/I

,	 	 	 	 	 	 	 (A83)	

where	𝜒/"	denotes	a	non-central	chi-squared	distribution	with	one	degree	of	freedom.	
Therefore,	power	is	given	by	

H 𝑣, 𝑝∗ = Pr 𝑣 > 𝑣∗|𝑣 = h?
¬

1ò/I
, 𝑝∗ + h8

¬
1ò/I

, 𝑝∗ ,	 	 	 	 (A84)	

where	h± 𝑦, 𝑝∗ = /
"
1 ± erf 𝑦/2 ∓ erf8/ 1 − 𝑝∗ 	 	and	the	two	terms	correspond	to	

the	estimated	and	true	effect	sizes	having	the	same	or	opposite	sign.	

The	form	of	the	power	function	carries	important	implications	(Eq.	A84	and	Fig.	A11).	
Notably,	it	shows	that	(in	this	approximation)	power	depends	only	on	the	contribution	of	a	
locus	to	variance,	and	this	contribution	should	be	measured	relative	to,	or	in	units	of,	VP/m.	
This	scale	makes	intuitive	sense,	because	the	total	phenotypic	variance	generates	the	
background	noise	for	detecting	an	individual	locus,	and	the	background	noise	is	inverse	
proportional	to	the	study	size.	In	particular,	the	threshold	contribution	to	variance	𝑣∗,	as	
defined	above,	is	proportional	to	𝑉ó 𝑚	and	is	also	the	contribution	to	variance	at	which	
power	is	50%,	i.e.,		
H 𝑣∗, 𝑝∗ = 1 2.	 	 	 	 	 	 	 	 	 (A85)	
The	power	function	can	then	be	approximated	by	a	step	function	(see	Fig.	A11)	

H 𝑣 ≈ Θ 𝑣 − 𝑣∗ = 1
0	
			𝑣 > 𝑣∗
			𝑣 < 𝑣∗		.	 	 	 	 	 	 	 (A86)	

This	will	be	a	good	approximation	when	the	number	of	loci	that	fall	at	intermediate	range	
(e.g.,	with	power	between	0.1	and	0.9)	is	negligible	compared	to	the	number	that	falls	
outside	this	range.		

Figure	A11.	The	power	to	detect	loci	as	a	
function	of	their	contribution	to	genetic	
variance	(given	in	units	of	𝑉ó/𝑚).	Shown	are	
the	exact	power	function	(Eq.	A84)	and	its	step	
function	approximation	(Eq.	A86)	for	𝑝 = 5 ⋅
108À.		
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Further	insights	come	from	considering	this	power	function	in	conjunction	with	our	
theoretical	results	(Section	3).	Notably,	our	results	suggest	that	the	first	loci	to	be	detected,	
those	that	contribute	the	most	to	variance,	are	intermediate	and	strongly	selected,	and	that	
their	contributions	to	variance	are	on	the	order	of	vs.	We	therefore	expect	GWAS	to	begin	to	
identify	loci	(and	account	for	substantial	genetic	variance)	when	𝑣∗	is	on	the	order	of	𝑣¦,	
i.e.,	when	the	study	size	𝑚	is	on	the	order	of	𝑉ó 𝑣¦.	We	would	further	expect	the	rate	of	
increase	in	identifying	new	loci	(and	in	accounting	for	genetic	variance)	to	be	similar	for	
different	traits	when	variance	is	measured	in	units	of	𝑣¦.	

6.2. Genotyping	

Most	current	GWAS	rely	on	genotyping	instead	of	re-sequencing,	resulting	in	an	additional	
loss	of	power	(26).	Specifically,	these	studies	impute	the	alleles	at	loci	that	are	not	included	
in	the	genotyping	platform	(27),	and	the	imputation	becomes	imprecise	when	the	imputed	
alleles	are	rare	(Fig.	A12).	If	causal	loci	with	rare	minor	alleles	are	included	in	GWAS,	this	
imprecision	leads	to	an	under-estimation	of	their	effect	size,	resulting	in	loss	of	power	(26).	
For	loci	with	MAF	x	and	effect	size	a,	the	expected	estimate	of	the	effect	size	would	be	
reduced	by	a	factor	of	𝑟(𝑥),	where	𝑟"(𝑥)	is	the	mean	correlation	between	the	imputed	and	
real	alleles	(28),	and	the	distribution	of	estimates	can	be	approximated	by	

𝑎/~N 𝑟𝑎/,
1ò/I
"� /8�

.	 	 	 	 	 	 	 	 	 (A87)	

Employing	the	reasoning	of	the	previous	subsection,	we	can	therefore	approximate	the	
power	to	detect	a	locus	by	H 𝑟"𝑣, 𝑝∗ ,	where	H	is	the	power	function	defined	in	Eq.	A84.		
	 	

	
Figure	A12.	The	 precision	 of	 imputation	 decreases	 with	 MAF.	 Specifically	 we	 show	 the	
mean	 correlation	 between	 imputed	 and	 real	 genotypes	 as	 function	 of	 minor	 allele		
frequency,	for	a	study	using	an	Illumina	1M	SNP	array	and	the	1000	genomes	phase	III	as	
an	 imputation	 panel	 (based	 on	 Extended	 Fig.	 9A	 in	 (29)).	We	 approximate	 the	 effect	 on	
power	 by	 excluding	 loci	 with	MAF	 <	 1%	 and	 assuming	 that	 loci	 with	 greater	 MAFs	 are	
imputed	correctly.	
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In	practice,	GWAS	often	include	only	loci	with	MAF	above	a	threshold,	which	is	chosen	to	
ensure	precise	imputation.	We	therefore	approximate	the	effect	of	genotyping	on	power	by	
excluding	loci	below	a	threshold	MAF	and	assume	that	loci	that	exceed	this	threshold	are	
imputed	correctly.				

6.3. Tagging	

Our	inference	is	predicated	on	the	assumption	that	the	distribution	of	estimated	variances	
among	genome-wide	significant	(GWS)	associations	faithfully	reflects	the	distribution	
among	causal	loci.	We	have	no	obvious	alternative	but	to	make	this	assumption,	and	
arguably,	the	good	fit	of	our	theoretical	predictions	to	the	distribution	of	variances	among	
associations	provides	some	support	for	this	assumption.	While	this	assumption	cannot	be	
directly	tested	at	present,	existing	arguments	and	evidence	suggest	that	it	is	plausible,	for	
reasons	that	we	briefly	review.	

Most	of	the	variants	discovered	by	GWAS	are	common.	Specifically,	all	but	one	of	the	GWS	
associations	for	height	and	BMI,	which	we	rely	upon	in	our	inference,	have	MAF>1%,	and	
the	MAF	of	most	associations	is	considerably	greater.	In	considering	the	validity	of	our	
assumption,	we	therefore	consider	what	could	be	tagged	by	such	common	associations.	
One	possibility	is	that	a	given	common	association	is	tagging	a	single	common,	causal	
variant.	Given	the	accuracy	of	imputation	for	common	variants	(see	Fig.	A12),	we	would	
therefore	expect	that	the	tagging	variant	would	be	in	almost	perfect	LD	with	the	causal	one	
(including	the	possibility	that	the	association	is	actually	with	the	causal	variant).	If	that	
were	the	case,	then	we	would	expect	the	estimated	frequency	and	effect	size,	and	thus	the	
estimated	contribution	to	genetic	variance,	to	be	very	similar	to	those	of	the	causal	variant.	
A	second	possibility	is	that	a	given	association	tags	several	common	causal	variants	within	
the	same	genomic	region.	The	number	of	causal	variants	would	likely	be	small,	as	
otherwise	the	tagging	allele	is	highly	unlikely	to	be	in	LD	with	causal	alleles	that	affect	the	
trait	in	the	same	direction.	If	that	were	the	case,	given	the	accuracy	of	imputation	of	the	
causal	alleles,	we	would	expect	conditional	analysis	(e.g.,	30)	to	successfully	distinguish	
between	the	different	causal	variants,	thus	returning	us	to	the	previous	scenario.		

A	third	possibility	involves	a	common	association	tagging	rare,	causal	variants	(25).	While	
a	single	rare,	causal	variant	would	have	to	have	an	unreasonably	large	effect	size	in	order	
to	result	in	a	common	GWS	association	(31),	it	has	been	argued	that	several	rare,	causal	
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variants	in	the	same	genomic	region	may	be	tagged	by	a	single	“synthetic	association”	(25).	
In	this	case,	the	relatively	low	LD	between	the	association	and	each	of	the	causal	variants	
would	imply	that	the	estimated	contribution	to	variance	of	the	association	would	have	to	
be	much	smaller	than	the	combined	contribution	of	the	causal	variants	(25,	31).	If	this	were	
the	case	for	many	associations	identified	in	GWAS,	it	would	violate	the	premise	of	our	
inference.	

However,	multiple	lines	of	evidence	suggest	that	it	is	not	a	common	occurrence.	One	is	that,	
where	data	is	available,	associations	often	replicate	across	populations.	For	example,	there	
is	considerable	overlap	between	GWS	associations	for	height	in	Europeans	and	East-Asians	
(32).	While	we	would	not	expect	perfect	replication	even	if	associations	were	tagging	
single,	common,	causal	variant,	we	would	expect	practically	none	if	they	were	synthetic,	
both	because	the	underlying	rare,	causal	alleles	would	be	less	likely	to	be	shared	among	
populations	and	because	the	particular	LD	configuration	that	allows	for	their	tagging	in	one	
population	would	likely	break	down	in	others	(33,	34).	A	second	is	that	simulation	studies	
suggest	that	synthetic	associations	are	expected	to	have	much	lower	MAF	than	typically	
observed	among	associations	in	GWAS	(31).	Moreover,	these	simulations	suggest	that,	
because	synthetic	association	should	capture	only	a	fraction	of	the	variance	contributed	by	
the	tagged	loci,	having	many	synthetic	associations	would	imply	there	being	much	more	
heritable	variance	than	is	known	to	be	present	in	the	population.	A	third,	and	perhaps	most	
direct	line	of	evidence,	is	that,	to	the	best	of	our	knowledge,	none	of	the	studies	that	
pursued	fine-mapping	around	GWS	associations	have	uncovered	such	synthetic	
associations	(33,	35,	36).	These	arguments,	together	with	other	lines	of	evidence	(e.g.,	31)	
suggest	that	in	practice	synthetic	associations	are	likely	to	be	rare.		

Perhaps	a	more	plausible	alternative	is	for	an	association	to	primarily	tag	one	common,	
causal	variant,	with	which	it	is	in	high	LD,	but	also	to	pick	up	the	effects	of	one	or	a	few	
rare,	causal	variants,	which	are	more	poorly	tagged.	Under	this	scenario,	we	might	expect	
the	estimated	contribution	to	variance	to	slightly	overestimate	the	contribution	of	the	
dominant	causal	variant.	To	the	best	of	our	knowledge,	this	scenario	has	not	been	well	
characterized,	making	it	difficult	to	assess	how	common	it	is	or	whether	the	overestimation	
would	be	substantial.		

In	summary,	given	what	we	now	know,	our	assumption	about	the	distribution	of	estimated	
variances	among	associations	reflecting	the	distribution	among	causal	loci	seems	sensible.					
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7. Inference	

In	this	section,	we	describe	how	we	used	our	model	to	make	inferences	based	on	GWAS	
results	for	height	and	body	mass	index	(BMI).	As	we	note	in	the	Discussion,	these	
inferences	are	meant	as	an	illustration	and	do	not	incorporate	the	effects	of	demography	
and	a	few	other	factors	(e.g.,	genotyping	and	errors	in	the	estimation	of	effect	sizes	(24,	
26)),	which	lie	beyond	the	scope	of	this	study.		

7.1. The	composite	likelihood	

Our	inferences	are	based	on	a	composite-likelihood	approach.	We	begin	by	describing	the	
composite-likelihood	function	and	its	maximization,	when	the	loci	detected	by	GWAS	are	
strongly	selected	and	can	be	described	by	the	high-pleiotropy	limit.	In	this	case,	we	have	
shown	that	the	distribution	of	variances	among	loci	is	insensitive	to	the	distribution	of	
selection	coefficients,	depends	on	a	single	parameter	𝑣¦,	and	is	well	approximated	by	the	
probability	density	

𝜌 𝑣 = "�!" 8" ¬/¬Ý	
¬

		 	 	 	 	 	 	 	 (A88)	

(Section	3.2).	Further	approximating	the	power	in	GWAS	as	a	step	function	(see	Section	6),	
we	find	that	the	probability	density	of	sites	that	exceed	a	threshold	𝑣∗	can	be	approximated	
by			

f 𝑣 𝑣¦, 𝑣∗ = µ ¬
µ ¬¶·¶∗

= �!"(8" ¬/¬Ý	)
"¬	#(" ¬∗/¬Ý)

	,	 	 	 	 	 	 (A89)	

where	I 𝑥 ≡ exp(−𝑡)/𝑡¿±� 	(see	Eq.	A37).	We	therefore	approximate	the	log-composite-

likelihood	of	𝑣¦	given	the	contributions	to	variance	of	the	K	loci	detected	in	a	GWAS,	 𝑣Ò Ò$/
% ,	

by	

LCL 𝑣¦ 𝑣Ò Ò$/
% , 𝑣∗ = log f 𝑣Ò 𝑣¦ =

%

Ò$/

	

	 	 = − 2 𝑣¦ 𝑣Ò%
Ò$/ − 𝐾log I 2 𝑣∗ 𝑣¦ − log 𝑣Ò%

Ò$/ .		 (A90)	

It	follows	that	the	composite-likelihood	is	maximized	when		

𝑣¦ = argmin¬Ý 2 𝑣 𝑣¦ + log I 2 𝑣∗ 𝑣¦ ,	 	 	 	 	 (A91)	

where	 𝑣 ≡ /
%

𝑣Ò%
Ò$/ .	

We	also	consider	the	models	without	pleiotropy	and	in	which	the	degree	of	pleiotropy	is	a	
parameter.	In	the	case	without	pleiotropy,		
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𝜌 𝑣 = "�!" 8"¬/¬Ý
¬

	 	 	 	 	 	 	 	 	 (A92)	

(see	Section	3.2).	By	following	the	same	steps,	we	find	that	the	composite-likelihood	is	then	
maximized	when	

𝑣¦ = argmin¬Ý 2𝑣 𝑣¦ + log I 2 𝑣∗ 𝑣¦ ,	 	 	 	 	 	 (A93)	

where	𝑣 ≡ /
%

𝑣Ò%
Ò$/ 	.	When	the	degree	of	pleiotropy	𝑛	is	a	parameter	of	the	model,	we	find	

that	

𝜌O 𝑣 = 	"
¬
𝑒𝑥𝑝 − "¬/¬Ý

ST4/(S4/O)
𝜑O 𝑎/ 𝑎 	ST

		 	 	 	 	 	 (A94)	

(see	Section	3.2).	Again,	following	the	same	steps,	we	find	that	the	probability	density	of	
sites	that	exceed	a	threshold	𝑣∗	is	

fO 𝑣 𝑣¦ = µ3 ¬
µ3 ¬¶·¶∗

												 	 	 	 	 	 	 	 (A95)	

and	the	log-composite-likelihood	is	

LCL 𝑣¦, 𝑛 𝑣Ò Ò$/
% , 𝑣∗ = log 𝜌O 𝑣Ò%

Ò$/ − 𝐾 log 𝜌O 𝑣¬±¬∗ .	 	 	 (A96)	

In	the	latter	case,	we	used	numerical	maximization	to	show	that	the	composite-likelihood	
estimates	for	height	and	BMI	converge	to	the	high	pleiotropy	limit.	Specifically,	we	
maximized	the	composite-likelihood	specifying	an	interval	of	[1,1000]	for	n,	where	for	both	
traits	the	estimates	converged	to	the	upper	limit	of	1000.	While	numerical	optimization	
does	not	allow	us	to	specify	an	infinite	interval,	the	likelihood	function	and	maximal	value	
for	n=1000	are	indistinguishable	from	those	in	the	high-pleiotropy	limit.	

7.2. Determining	𝒗∗	and	removing	outliers	

Our	likelihood	maximization	requires	us	to	specify	the	value	of	the	threshold	𝑣∗.	We	choose	
this	threshold	based	on	the	empirical	distributions	of	the	contributions	to	variance	among	
genome-wide	significant	associations	(Fig.	A13a	&	b).	Specifically,	when	the	contributions	
to	variance	approach	the	lower	boundary	for	discovery,	we	observe	a	decline	in	the	density	
of	loci.	This	is	likely	due	to	a	gradual	reduction	in	power	and	suggests	that	our	
approximation	for	power	(as	a	step	function)	breaks	down	for	these	values	of	variance.	We	
therefore	choose	thresholds	that	appear	to	be	above	this	decline	(𝑣∗ = 1.4 ⋅ 108�𝑉ó	for	
height	and	𝑣∗ = 1.35 ⋅ 108�𝑉ó	for	BMI;	Fig.	A13a	&	b),	resulting	in	the	removal	of	53	loci	for	
height	and	11	for	BMI.	We	also	examine	how	our	estimates	of	𝑣¦	depend	on	the	choice	of	𝑣∗,	
and	find	that	they	are	much	more	sensitive	to	reducing	the	threshold	than	to	increasing	it;	
in	fact,	the	estimates	we	obtain	by	increasing	the	threshold	are	within	the	confidence	
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intervals	of	the	estimate	with	the	chosen	thresholds	(Fig.	A13c	&	d).	This	analysis	further	
supports	our	choice	to	exclude	the	loci	with	the	lowest	contribution	to	variance.	For	BMI,	
we	also	dropped	the	locus	with	the	largest	contribution	to	variance	(near	FTO),	which	
appears	to	be	an	outlier	(Fig.	A13b)	and	has	been	suggested	to	be	under	balancing	selection	
(37).		
	

	
Figure	A13.	Determining	𝑣∗	and	removing	outliers.	The	total	variance	from	significant	
associations	as	a	function	of	the	threshold	contribution	to	variance,	for	height	(a)	and	BMI	
(b).	The	insets	show	a	close	up	of	the	lower	range	of	contributions	to	variance,	highlighting	
the	decline	in	the	density	of	discovered	loci.	Our	chosen	thresholds	are	shown	by	the	
dashed	vertical	line	(in	all	graphs).	Our	estimates	of	𝑣¦	as	a	function	of	the	chosen	
threshold,	for	height	(c)	and	BMI	(d).	When	we	increase	the	threshold,	the	estimates	
remain	within	the	95%	CI	of	the	estimate	with	our	chosen	threshold.		
	
7.3. Estimating	target	size	and	explained	variance	

We	estimate	the	target	size	and	the	variance	explained,	both	for	varying	study	size	and	
total,	based	on	our	estimates	of	𝑣¦.	The	population-scaled	mutational	input	per	generation	
from	strongly	selected	loci,	2𝑁𝑈¦,	is	estimated	by	
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2𝑁𝑈¦ = 𝐾/ 𝜌 𝑣 𝑣¦¬±¬∗ ,	 	 	 	 	 	 	 	 	(A97)	

(see	Eq.	A38)	and	the	corresponding	estimate	for	the	target	size	is	

𝐿¦ = 2𝑁𝑈¦ 2𝑁𝑢,		 	 	 	 	 	 	 	 	 (A98)	
where	the	estimate	for	the	population	scaled	mutation	rate	per	site	per	generation					

2𝑁𝑢 ≈ 0.5 ⋅ 108Ö	is	based	on	heterozygosity	(29).	The	explained	variance	corresponding	to	
GWAS	with	study	size	𝑚	is	estimated	by		

𝜎¦" 𝑚 = 2𝑁𝑈¦ 𝑣𝜌 𝑣 𝑣¦¬±¬∗ I = 𝐾 𝑣𝜌 𝑣 𝑣¦¬±¬∗ I 𝜌 𝑣 𝑣¦¬±¬∗(I�)
,			 	(A99)	

where	we	approximate	the	threshold	corresponding	to	study	size	𝑚	based	on	the	study	
size,	𝑚~,	and	threshold,	𝑣∗,	in	current	GWAS,	by	
𝑣∗ 𝑚 = 𝑣∗ ⋅ 𝑚~ 𝑚 .						 	 	 	 	 	 	 	 (A100)	
To	estimate	the	total	variance	arising	from	strongly	selected	loci,	we	simply	set	the	
threshold	in	Eq.	A99	to	0.		

7.4. Estimating	confidence	intervals		

We	use	a	combination	of	non-parametric	and	parametric	bootstrap	to	estimate	confidence	
intervals	(CI).	We	use	non-parametric	bootstrap	to	estimate	the	CI	for	the	model	
parameters	𝑣¦	and	𝐿¦:	specifically,	we	perform	10,000	iterations,	in	which	we	resample	the	
loci	identified	by	GWAS	and	repeat	the	estimation	of	𝑣¦.	We	use	parametric	bootstrap	to	
estimate	the	confidence	intervals	in	Fig.	5a,	describing	the	explained	variance	as	a	function	
of	threshold	based	on	our	model.	To	that	end,	we	rely	on	our	model	with	the	point	
estimates	for	𝑣¦	and	𝐿�,	to	generate	10,000	samples	from	GWAS	with	the	specified	
threshold,	and	then	calculate	the	total	variance	explained	by	these	samples.	We	use	a	
combination	of	non-parametric	and	parametric	bootstrap	to	calculate	the	CI	for	model	
predictions,	including	the	total	variance,	𝜎¦",	and	the	explained	variance,	𝜎¦" 𝑚 ,	and	
number	of	loci	as	a	function	of	study	size	(Fig.	5b	&	c).	In	this	case,	we	generate	10,000	
samples	by:	i)	estimating	𝑣¦	based	on	a	resampled	set	of	GWAS	loci	(similar	to	the	non-
parametric	procedure),	and	ii)	using	the	estimated	𝑣¦	and	corresponding	𝐿¦	to	generate	a	
GWAS	hits	above	𝑣∗	based	on	our	model	(similar	to	the	parametric	procedure);	we	then	
calculate	the	appropriate	summary	based	on	the	latter	samples.	This	two	stage	procedure	
is	intended	to	capture	the	uncertainty	generated	by	both	the	errors	in	estimating	our	basic	
model	parameters	and	the	noise	generated	by	the	stochastic	processes	underlying	the	
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number	and	variance	at	segregating	loci	that	are	yet	to	be	discovered.	The	resulting	
estimates	and	CI	are	summarized	in	Table	A2.				
			

Parameter	 	 Height	 BMI	
Contribution	to	variance	per	
strongly	selected	locus,	in	units	
of	the	total	phenotypic	variance	

𝑣¦/𝑉ó	 1.8	[1.5,	2.3]´10-4	 1	[0.6,	1.7]	´10-4	

Expected	study	size	required	to	
capture	50%	of	the	strongly	
selected	variance	

𝑚.~%	
(≈ 43𝑉ó/𝑣¦)	

230	[190,	290]	K	 420	[250,	770]	K	

Number	of	newly	arising	
strongly	selected	mutations	per	
generation	in	the	population		

2𝑁𝑈¦	 2300	[1800,	3000]	 600	[300,	1900]	

Mutational	target	size	for	
strongly	selected	mutations	

𝐿¦	 4.6	[3.6,	6.0]	Mbp	 1.3	[0.6,3.8]	Mbp	

%	contribution	to	phenotypic	
variance	from	strongly	selected	
loci		

𝜎¦"/𝑉ó	 42	[39,	45]	%	 7	[5,	10]	%	

Proportion	of	heritability	from	
strongly	selected	loci	

𝜎¦"/𝑉0 	
(= 𝜎¦"/ℎ"𝑉ó)	

53	[49,	57]	%	 13	[10,	21]	%	

Table	A2.	Parameter	estimates	and	their	confidence	intervals	for	height	and	BMI	based	on	
GWAS	results;	the	heritability	was	assumed	to	be	0.8	for	height	and	0.5	for	BMI	(8,	10).	
	
7.5. Testing	goodness	of	fit	

We	use	the	Kolmogorov-Smirnov	D	statistic	(38,	39)	to	test	the	goodness	of	fit	of	our	
models	without	pleiotropy	and	in	the	high	pleiotropy	limit.	Since	our	parameter	estimates	
are	inferred	from	the	data	that	we	are	testing	against,	we	cannot	rely	on	the	standard	
tables	for	the	p-values.	We	therefore	generate	null	distributions	for	the	D	statistic	using	
parametric	bootstrap	based	on	our	models.	Specifically:	i)	we	generate	10.	samples	of	K	
significant	loci	based	on	the	model	under	consideration,	with	the	corresponding	estimate	of	
𝑣¦,	ii)	we	infer	𝑣¦	based	on	each	sample,	and	iii)	calculate	the	Kolmogorov-Smirnov	D	
statistic	between	the	distribution	of	variances	for	the	K	loci	in	each	sample	and	the	
corresponding	theoretical	distribution	based	on	the	𝑣¦	inferred	from	that	sample.	The	
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resulting	distribution	of	D	statistics	corresponds	to	our	null	hypothesis,	i.e.,	that	the	loci	
detected	in	GWAS	arose	according	to	our	model,	and	specifically	to	the	way	we	calculate	
the	D	statistic	between	the	observed	distribution	of	variances	for	the	K	detected	loci	and	
the	theoretical	distribution	that	we	inferred	based	on	these	observations.	We	then	calculate	
the	D	statistic,	𝐷6 ,	based	on	the	real	data	and	corresponding	theoretical	distribution,	and	
estimate	the	one-sided	p-value	by	

𝑝%8� =
#	456õö7ç�8	87ç74�ç4	95ç:	Ë±Ë9	

#	456õö7ç�8	87ç74�ç4
.	 	 	 	 	 	 	 (A101)	

Note	that	unlike	the	common	case,	here	the	inability	to	reject	the	null	indicates	that	the	
data	is	consistent	with	our	model.		

	
Figure	A14.	Q-Q	plots	comparing	the	distribution	of	variances	among	significant	loci	taken	
from	the	GWAS	of	height	(10)	and	BMI	(8)	with	the	theoretical	distributions	inferred	from	
these	data,	based	on	the	models	without	pleiotropy	(a)	and	in	the	high	pleiotropy	limit	(b).	
These	 plots	 show	 that	 the	model	 assuming	high	pleiotropy	 cannot	 be	 rejected	 for	 either	
trait	and	fits	these	data	much	better	than	the	model	without	pleiotropy.	
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8. Consistency	with	other	datasets	and	analyses	

Here,	we	show	that	the	results	of	our	inference	for	height	are	consistent	with	findings	of	a	
recent	GWAS	based	on	exome	genotyping;	that	our	inferences	for	height	and	BMI	are	
consistent	with	estimates	of	the	heritability	tagged	by	SNPs	with	MAF > 1%	in	the	GWAS	
we	used;	and	that	our	model	is	consistent	with	estimates	about	the	relationship	between	
effect	size	and	MAF	in	these	and	other	GWAS.	

8.1. Exome	association	study	of	height	

Marouli	et	al.	(40)	present	an	association	study	for	height	that	was	specifically	designed	to	
capture	rare,	exonic	variants.	They	rely	on	the	ExomeChip	genotyping	array	(41),	which	
includes	the	vast	majority	of	protein-altering	variants	with	MAF>0.1%,	allowing	them	to	
directly	(i.e.,	without	imputation)	test	for	associations	among	rare	variants.	Using	a	study	
size	of	more	than	300,000	European	individuals,	they	find	over	400	genome-wide	
significant	associations.	Here	we	examine	whether	their	findings	are	consistent	with	our	
inference	based	on	the	Wood	et	al.	genome-wide,	genotyping	based	GWAS	for	height	(10).		

In	addition	to	protein	altering	variants,	the	ExomeChip	includes	some	synonymous	SNPs	
and	ancestry	informative	markers,	as	well	as	all	of	the	genome-wide	significant	
associations	listed	in	NHGRI	from	2011.	To	avoid	ascertainment	biases,	we	consider	only	
protein-altering	variants,	including	non-synonymous,	splice	region,	splice	acceptor	and	
stop	codon	variants.	This	leaves	us	with	250	of	the	Marouli	et	al.	genome-wide	significant	
associations.	In	addition,	we	apply	the	procedure	described	in	Section	7.2,	resulting	in	the	
removal	of	associations	with	contributions	to	variance	below	𝑣¸∗ = 1.15 ⋅ 108�	𝑉ó,	for	which	
power	is	substantially	diminished	(Fig.	A15a)	;	this	step	leaves	us	with	147	associations.	
Next,	we	compare	the	distribution	of	variances	among	the	remaining	147	associations	with	
our	theoretical	prediction,	with	the	𝑣�	inferred	from	the	Wood	et	al.	data	(Table	A2)	above	
the	threshold	𝑣¸∗ 		(Fig.	A15b).	We	do	not	consider	the	fit	to	the	number	of	associations,	
because	it	depends	on	the	mutational	target	size	for	protein-altering	variants	affecting	
height,	which	is	unknown.		
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Figure	A15.	 Comparing	 our	 inferences	 for	 height	 with	 the	 results	 of	 the	 Marouli	 et	 al.	
GWAS.	 (a) 	Choosing	 the	 threshold	 contribution	 to	 variance,	𝑣º∗ ,	 above	 which	 our	
approximation	 for	power	applies;	see	Section	7.2	 for	details.	(b)	Comparing	the	predicted	
and	observed	distribution	of	variances	above	the	threshold	𝑣º∗ .	95%	CIs	for	our	predictions	
are	based	on	bootstrap;	see	Section	7.4	for	details.	
	
	

To	test	whether	the	observed	distribution	is	consistent	with	our	prediction,	we	calculate	
the	Kolmogorov-Smirnov	D	statistic	(38,	39)	for	this	comparison,	𝐷6 ,	and	ask	whether	we	
can	reject	our	prediction	based	on	the	value	of	𝐷6 .	In	approximating	the	null	distribution	of	
the	D	statistic,	we	must	consider	that:	i)	Some	of	the	Marouli	et	al.	associations	might	have	
been	tagged	by	the	genome-wide	significant	associations	in	Wood	et	al.,	which	we	relied	
upon	in	estimating	𝑣�;	this	would	lead	to	smaller	values	of	the	D	statistic	than	if	the	two	
sets	of	associations	were	independent.	ii)	Our	estimate	of	𝑣�	includes	some	statistical	error,	
due	to	the	finite	set	of	associations	on	which	it	relies.	To	account	for	these	factors,	we	
employ	a	parametric	bootstrap	procedure	that	mimics	how	the	value	of	the	D	statistic	
arises,	under	the	conservative	scenario	in	which	any	of	the	associations	from	Marouli	et	al.	
could	have	been	included	in	the	data	that	we	used	in	our	inference.	Specifically,	we	assume	
that	the	distribution	of	variances	among	loci	follows	the	theoretical	prediction	with	our	
estimate	of	𝑣�,	and	i)	We	sample	147	associations	from	the	predicted	distribution	with	
threshold	𝑣¸∗ ,	corresponding	to	the	Marouli	et	al.	associations.	ii)	Given	the	number,	k,	of	
these	associations	that	fall	above	the	threshold	of	the	Wood	et	al.	GWAS,	𝑣0∗ = 1.4 ⋅ 108�	𝑉ó	
(Section	7.2),	we	sample	an	additional	644 − 𝑘	variants	from	the	predicted	distribution	
with	threshold	𝑣0∗ .	The	resulting	644	simulated	associations	that	fall	above	𝑣0∗ 	correspond	
to	the	Wood	et	al.	associations.	iii)	We	infer	𝑣¦	based	on	these	644	variants,	thus	mimicking	
our	inference	procedure,	and	calculate	the	D	statistic	for	our	predicted	distribution	with	𝑣¦	
and	the	distribution	based	on	the	147	simulated	variants.	iv)	We	repeat	this	procedure	105	
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times	to	approximate	the	distribution	of	D	statistic	under	our	null,	and	estimate	the	one-
sided	p-value	by	

𝑝%8� =
#	456õö7ç�8	87ç74�ç4	95ç:	Ë±Ë9	

#	456õö7ç�8	87ç74�ç4
.	 	 	 	 	 		 	 (A102)	

Doing	so,	we	find	that	𝑝%8� = 0.99,	and	thus,	we	cannot	reject	our	predictions	based	on	the	
data	from	Marouli	et	al.	(40).	This	result	indicates	a	good	fit	to	their	findings.	

8.2. The	heritability	arising	from	common	SNPs		

Yang	et	al.	(42,	43)	estimate	the	heritability	that	is	tagged	by	common	SNPs	(MAF>1%)	in	
GWAS	of	several	traits,	including	height	and	BMI.	Here	we	ask	whether	their	estimates	are	
consistent	with	our	inferences	based	on	genome-wide	significant	(GWS)	associations	from	
the	same	GWAS.	

First,	we	consider	our	inferences	predicated	on	equilibrium	demography.	On	this	
assumption,	we	predict	that	GWS	associations	would	be	under	intermediate	or	strong	
selection,	roughly	corresponding	to	𝑆 > 5.	Our	estimates	then	suggest	what	proportion	of	
variance	arises	from	loci	under	this	range	of	selection	effects,	where	the	rest	of	the	variance	
is	assumed	to	arise	from	loci	under	weaker	selection.	The	proportion	of	variance	that	arises	
from	sites	with	𝑆 < 5	and	MAF > 1%,	𝑃A > 1% ,	can	be	bound	from	above	by	the	variance	
that	would	arise	if	they	were	all	effectively	neutral,	𝑃O > 1% .	Further	denoting	the	
proportion	of	variance	that	arises	from	sites	with	𝑆 > 5	and	MAF > 1%	by	𝑃¦ > 1% ,	and	
the	overall	proportion	of	variance	from	sites	with	MAF > 1%	by	𝑃 > 1% ,	we	obtain	the	
following	requirement:	
𝑃¦ > 1% = 𝑃 > 1% − 𝑃A(> 1%) ≥ 𝑃 > 1% − 𝑃O(> 1%).	 	 	 (A103)	
For	height,	Yang	et	al.	estimate	that	𝑃 > 1% = 0.59	(42),	and	our	estimate	for	
𝑃O > 1% = 0.45.	As	Fig.	A16	shows,	so	long	as	most	of	the	estimated	variance	with	𝑆 > 5	
(53%)	arises	from	loci	with	𝑆 < 135,	the	requirement	in	Eq.	A103	will	be	easily	met.	For	
BMI,	Yang	et	al.	estimate	that	𝑃 > 1% = 0.5	(42),	and	our	estimate	for	𝑃O > 1% = 0.83.	
The	lower	bound	in	Eq.	A103	is	therefore	negative,	implying	that	requirement	A103	is	met	
regardless	of	the	distribution	of	selection	coefficients	for	𝑆 > 5.	
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Figure	A16.		The	Yang	et	al.	(42,	43)	estimate	of	
the	genetic	variance	in	height	arising	from	loci	
with	𝑀𝐴𝐹 > 1%	imposes	weak	constraints	on	
the	distribution	of	selection	coefficients,	
assuming	our	estimate	for	the	genetic	variance	
with	𝑆 > 5.	
	

Next,	we	consider	the	results	of	our	analysis	in	Section	9,	incorporating	the	effects	of	recent	
changes	in	European	population	size.	Our	results	suggest	that	GWS	associations	arise	from	
loci	with	selection	coefficients	of	𝑠 ≈ 108Ö.	We	therefore	ask	whether	the	Yang	et	al.	(42,	
43)	estimates	are	consistent	with	ours,	when	we	attribute	our	equilibrium	estimates	of	the	
proportion	of	variance	arising	from	intermediate	and	strongly	selected	loci	to	selection	
coefficients	of	𝑠 ≈ 108Ö,	assuming	that	the	remaining	variance	arises	from	loci	under	
weaker	or	stronger	selection	(a	more	rigorous	approach	would	be	to	account	for	
demography	in	estimating	the	proportion	of	variance,	but	this	extension	lies	beyond	the	
scope	of	the	current	paper).	The	proportion	of	variance	arising	from	sites	under	weaker	
selection	with	MAF > 1%	is	bound	from	above	by	𝑃O > 1% ,	whereas	the	corresponding	
proportion	from	sites	under	stronger	selection	can	be	vanishingly	small.	Denoting	the	
proportion	of	variance	arising	from	sites	with	𝑠 ≈ 108Ö	and	MAF > 1%	by	𝑃/~Y] > 1% ,	
we	therefore	obtain	the	following	condition:	
𝑃 > 1% ≥ 𝑃/~Y] > 1% ≥ 𝑃 > 1% − 𝑃O > 1% .	 	 	 	 (A104)	
If	we	assume	the	Yang	et	al.	(42)	estimates	for	𝑃 > 1% 	and	our	estimates	for													
𝑃/~Y](> 1%),	Table	A3	shows	that	this	requirement	is	easily	met	for	both	height	and	BMI.	
More	generally,	our	analysis	illustrates	that	heritability	estimates	of	this	kind	impose	
rather	weak	constraints	on	our	inferences.		
	
	 𝑃 > 1% 	 	 𝑃/~Y] > 1% 	 	 𝑃 > 1% − 𝑃O > 1% 	

Height	 0.59	 ≥	 0.48	 ≥	 0.59−0.38=0.21	

BMI	 0.5	 ≥	 0.12	 ≥	 0.5−0.83=−0.33	
	

Table	A3.	Consistency	between	the	Yang	et	al.	(42)	estimates	of	the	total	variance	arising	
from	 loci	 with	MAF > 1%	and	 our	 estimates	 of	 the	 variance	 arising	 from	 sites	 with											
𝑠 ≈ 108Ö	and	MAF > 1%.	
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8.3. The	relationship	between	SNP	heterozygosity	and	effect	size	

More	recent	studies	of	the	heritability	tagged	by	SNPs	in	GWAS	also	make	inferences	about	
the	relationship	between	effect	sizes	and	MAF	(44-46).	Specifically,	they	assume	that	the	
relationship	between	the	contribution	of	a	site	to	variance,	𝑣 = 2𝑎/"𝑥(1 − 𝑥),	and	its	MAF,	
𝑥,	takes	the	form		

E 𝑣 𝑥 ∝ 𝑥 1 − 𝑥 å?/,											 	 	 	 	 	 	 (A105)	

or	equivalently,	that		

E 𝑎/" 𝑥 ∝ 𝑥 1 − 𝑥 å ,											 	 	 	 	 	 	 (A106)	

and	they	estimate	the	value	of	𝛼	from	the	data.		

Provided	a	distribution	of	selection	coefficients,	f(𝑆),	Eq.	A20	implies	that	in	our	model	

E 𝑎/" 𝑥 =
ST4µ �,ST¯T
µ �,ST¯T

=
ST4� � C(�|�)D(ST|�)¯T�

� � C(�|�)D(ST|�)¯T�
		

	 				= "A4

O�
∙

�	� � C(!|X)�
�(�)C(!|X)�

= "A4

O�
∙ E(𝑆|𝑥).			 	 	 	 	 (A107)	

Thus,	in	our	model,	assuming	the	relationship	of	Eq.	A105	(or	A106)	would	imply	that		

E 𝑆 𝑥 ∝ 𝑥 1 − 𝑥 å 											 	 	 	 	 	 	 	 (A108)	

(See	(45)	for	a	similar	derivation).	

The	aforementioned	studies	assume	the	relationship	in	Eq.	A105	(or	A106),	without	
providing	any	evidence	that	this	somewhat	arbitrary	functional	form	fits	the	data	better	
than	others,	and	show	that	values	of	𝛼	between	-1	and	0	provide	the	best	fit	to	data	from	
GWAS	of	a	variety	of	traits.	To	show	that	our	model	is	in	agreement	with	theirs,	all	we	
therefore	need	to	do	is	to	find	distributions	of	selection	coefficients,	f(𝑆),	that	approximate	
the	relationship	of	Eq.	A108	for	values	of	𝛼	between	-1	and	0.	In	Fig.	A17,	we	assume	that	
selection	coefficients	follow	a	Gamma	distribution,	where	we	vary	its	expectation	and	
variance.	As	expected,	E 𝑆 𝑥 	monotonically	decreases	as	𝑥	increases.	When	E 𝑆 ≪ 1	or	
the	coefficient	of	variation	Cê" 𝑆 ≪ 1,	E 𝑆 𝑥 	varies	minimally	with	𝑥	and	can	
approximated	by	Eq.	A108	with	𝛼 = 0.	In	other	cases,	𝐸 𝑆 𝑥 	varies	more	substantially	
with	𝑥.	When	we	approximate	those	cases	using	Eq.	A108,	we	obtain	a	range	of	𝛼	values	
between	−1	and	0.	Thus,	our	model	appears	to	be	consistent	with	the	values	of	𝛼	reported	
in	(44-46).	Our	inferences	for	height	and	BMI	are	not	very	informative	about	the	
distribution	of	selection	coefficients	and	are	therefore	not	comparable	with	estimates	of	𝛼.	
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Figure	A17.	The	relationship	between	effect	size,	or	equivalently,	selection	coefficient,	and	
MAF,	 shown	 on	 a	 log-log	 scale.	 Selection	 coefficients	 are	 gamma-distributed,	 with							
E 𝑆 = 0.3, 3, 10	and	 shape	 parameters	𝑘 = 0.1, 1, 10.	E 𝑆 𝑥 	was	 approximated	 using	 the	
functional	 form	E 𝑆 𝑥 ∝ 𝑥 1 − 𝑥 å 	(Eq.	 A108),	 by	 taking	 the	 values	 of	log E 𝑆 𝑥 	and	
log 𝑥 1 − 𝑥 	on	 a	 grid	 of	𝑥	values,	𝑥 = 0.5 ⋅ 108Ò/�	with	𝑖 = −8,−7,… , 0,	 and	 preforming	
least-square	linear	regression.	
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9. The	effects	of	demographic	history	

While	our	theoretical	results	were	derived	on	the	assumption	of	a	panmictic	population	of	
constant	size,	the	evolutionary	history	of	human	populations	sharply	deviates	from	these	
simplifying	assumptions.	Notably,	most	large	GWAS,	including	the	studies	of	height	(10)	
and	BMI	(8)	that	we	use	to	test	our	predictions,	have	been	performed	in	predominantly	
European	populations,	which	are	known	to	have	experienced	dramatic	changes	in	their	
effective	population	size,	including	an	Out-of-Africa	bottleneck	about	~100	KYA	and	
explosive	population	growth	over	the	past	~5	KY		(47-50).	These	changes	in	population	
size	have	dramatically	impacted	the	frequencies	of	neutral	and	selected	alleles	(47-49,	51-
53),	and	are	therefore	expected	to	have	had	a	substantial	impact	on	the	architecture	of	
quantitative	traits	(52,	53).	These	considerations	raise	several	questions	about	the	
interpretation	of	the	fit	between	our	predictions	and	GWAS	data.	Notably,	how	will	these	
historical	changes	in	population	size	affect	our	prediction,	and	specifically,	why	do	our	
equilibrium	predictions	fit	GWAS	data	despite	the	dramatic	historical	changes	in	
population	size?	While	a	comprehensive	treatment	of	these	questions	warrants	a	study	in	
itself,	we	briefly	address	them	here.		

Even	with	changing	population	size,	our	results	for	the	dynamics	at	segregating	sites	
should	still	hold.	Notably,	we	would	expect	the	mean	phenotype	in	the	population	to	
maintain	the	optimal	phenotypic	value,	because	any	displacement	from	the	optimum	would	
be	quickly	adjusted	by	small	changes	to	allele	frequencies	at	numerous	loci	(see	
Section	4.4).	As	a	result,	the	dynamics	at	individual	sites	would	be	decoupled,	and	well	
approximated	by	the	first	two	moments	of	change	in	allele	frequency	described	in	Eqs.	5	
and	6,	which	appear	in	the	Results	section	of	the	main	text.	In	particular,	the	first	moment	
would	correspond	to	under-dominant	selection,	and	the	selection	coefficient	would	be	
proportional	to	the	size	of	the	allele	in	the	n-dimensional	trait	space	(as	described	in	Eq.	7,	
which	appears	in	the	Results	section	of	the	main	text).	We	can	therefore	study	the	effect	of	
historical	changes	in	population	size	on	allele	frequencies	with	simulations,	using	a	fixed	
(not	population-scaled)	selection	coefficient	with	under-dominance,	and	having	the	
population	size	change	over	time.	

To	this	end,	we	modify	the	simulation	from	Simons	et	al.	(53)	to	incorporate	under-
dominance,	and	the	historical	changes	in	the	effective	population	size	of	European	
populations	inferred	by	Schiffels	and	Durbin	(50)	(Fig.	A18).	In	brief,	we	simulate	a	bi-
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allelic	site	in	a	diploid,	panmictic	population,	in	which	mutations,	with	selection	coefficient	
s,	arise	at	rate	𝑢 = 1.25 ⋅ 108À	per	bp	per	generation	(5,	50),	and	the	next	generation	
derives	from	Wright-Fisher	sampling	and	fecundity	selection.	The	simulation	begins	150K	
generations	ago	(corresponding	to	4.5	MYA	with	a	generation	time	of	30	Y,	as	assumed	by	
(50)),	with	a	burn-in	period	with	a	constant	population	size	of	14,448.	In	accordance	with	
the	Schiffels	and	Durbin	inferences	(50),	changes	in	population	size	begin	55,940	
generations	ago	(corresponding	to	1.7	MYA).	Specifically,	we	piece	together	the	MSMC	
inferences	from	two	and	four	haplotypes	of	European	individuals	(CEU)	from	HapMap	
project	(54),	where	the	four	haplotype	MSMC	captures	the	bottleneck	and	recent	growth	
and	is	used	for	times	<170	KYA,	and	the	two	haplotype	MSMC	captures	more	ancient	times	
and	is	used	for	times	>170	kya	(see	Fig.	A18).	The	derived	allele	frequency	is	recorded	at	
the	last	generation	corresponding	to	the	present.	The	software	and	documentation	can	be	
found	at	https://github.com/sellalab/GenArchitecture.	

	
Figure	A18.	 	 Changes	 in	 population	 size	 in	
the	 history	 of	 Europeans,	 as	 inferred	 by	
Schiffels	 and	 Durbin	 using	MSMC	 (50).	 The	
cutoff	 between	 the	 two	 and	 four	 haplotype	
MSMC	inferences	is	marked	by	the	gray	line.	
	
	
	
	
	
	

	
We	rely	on	such	simulations	to	study	how	changes	in	populations	size	will	affect	the	genetic	
architecture	of	a	trait	under	the	assumptions	of	our	model.	To	this	end,	we	consider	a	grid	

of	selection	coefficients:	𝑠 = 108Ò À,	𝑖 = 8, 9… , 40,	where	for	each	selection	coefficient,	we	
run	15 ⋅ 10Û	simulations.	In	this	way,	we	obtain	numerical	approximations	for	the	expected	
site	frequency	spectrum	corresponding	to	each	selection	coefficient,	which	replaces	the	
term	2𝑁𝑢 ∙ τ(𝑥|𝑆)	in	our	expressions	for	summaries	of	genetic	architecture	(Section	3).	We	
further	assume	the	high	pleiotropy	limit	form	for	the	distribution	of	effect	sizes	on	the	focal	
trait	corresponding	to	a	given	selection	coefficient	(i.e.,	Eq.	11,	which	appears	in	the	Results	
section	of	the	main	text).	
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We	first	consider	how	demography	affects	the	distribution	of	genetic	variances	among	sites	
with	different	selection	coefficients	(Fig.	A19a).	The	expected	contribution	per	site	
(including	both	sites	that	are	segregating	and	monomorphic)	peaks	around	a	selection	
coefficient	of	𝑠 ≈ 108Ö	and,	as	in	the	case	with	constant	population	size	(Fig.	2a),	when	the	
strength	of	selection	increases,	it	appears	to	approach	a	plateau	(Fig.	A19a).	The	
distribution	of	variances	among	sites,	however,	is	dramatically	affected	by	changes	in	
population	size:	for	selection	coefficients	around	𝑠 ≈ 108Ö,	a	much	greater	proportion	of	
variance	comes	from	sites	with	large	contributions	than	from	those	with	both	weaker	and	
stronger	selection	coefficients	(Fig.	A19b).	This	behavior	contrasts	with	the	case	of	a	
constant	population	size,	where	for	sufficiently	strong	selection	(𝑆 > 5),	the	distribution	of	
variances	among	sites	is	insensitive	to	the	strength	of	selection	(see	Fig.	3b).		
	
	

	
Figure	A19.	 	The	joint	effects	of	selection	and	changes	in	populations	size	(as	inferred	for	
Europeans	 by	 Schiffels	 and	Durbin	 (50))	 on	 the	 distribution	 of	 genetic	 variances	 among	
sites.	 (a)	 The	 expected	 contribution	 to	 variance	 per	 site,	 both	 segregating	 and	
monomorphic,	as	a	function	of	the	(unscaled)	selection	coefficient.	Variance	is	measured	in	
units	 of	4𝑢	𝑤"/𝑛,	 the	 equilibrium	 expectation	 for	 a	 strongly	 selected	 site.	 (b)	 The	
cumulative	variance	arising	 from	sites	with	contributions	above	a	 threshold	 (y-axis)	as	a	
function	 of	 the	 threshold	 (x-axis);	 cumulative	 variance	 is	measured	 in	 units	 of	4𝑢	𝑤"/𝑛,	
while	the	threshold	in	units	of	108Ö𝑤"/𝑛.	
	
As	we	establish	below,	these	findings	can	be	understood	as	follows.	The	segregating	sites	
with	the	largest	contribution	to	current	genetic	variance	are	due	to	mutations	with											
𝑠 ≈ 108Ö	that	arose	shortly	before	or	during	the	Out-of-Africa	bottleneck.	Such	mutations	
were	under	strong	selection	(i.e.,	with	2𝑁)𝑠 ≈ 50)	before	the	bottleneck,	but	with	the	drop	
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to	an	effective	population	size	of	𝑁) ≈ 4000	during	the	bottleneck,	they	experienced	more	
relaxed	selection	(with	2𝑁)𝑠 ≈ 10),	allowing	some	of	them	to	ascend	to	higher	frequencies.	
The	durations	of	subsequent	increases	in	population	size,	and	of	explosive	growth	in	
particular,	were	too	short	to	allow	for	a	substantial	reduction	in	their	frequencies	(e.g.,	a	
mutation	with	𝑠 = 108Ö	that	reached	20%	frequency	by	the	end	of	the	bottleneck,	15	Kya,	
would	have	an	expected	frequency	of	18%	at	present).	As	a	result,	these	mutations	would	
have	large	contributions	to	variance	at	present.	Moreover,	their	site	frequency	spectrum	
and	distribution	of	contributions	to	variance	are	well	approximated	by	assuming	a	
population	size	of	𝑁) ≈ 5000	–	roughly	the	geometric	mean	of	populations	sizes	from	the	
beginning	of	the	bottleneck	to	the	present	–	and	thus	to	scaled	selection	coefficients	of	
2𝑁)𝑠 ≈ 10.	

Extant	segregating	mutations	under	substantially	stronger	selection	are	expected	to	be	
much	younger.	They	therefore	tend	to	have	arisen	after	the	bottleneck,	when	the	
population	size	was	considerably	larger.	As	a	result,	they	have	much	lower	frequencies	and	
per	segregating	site	contributions	to	variance	at	present.	The	larger	population	size,	
however,	will	also	increase	the	mutational	input	and	thus	the	number	of	extant	segregating	
sites;	so	long	as	selection	is	sufficiently	strong,	these	effects	balance	each	other	such	that	
the	per	site	contribution	to	variance,	counting	both	segregating	and	monomorphic	sites,	
remains	insensitive	to	changes	in	population	size	(53).		In	turn,	extant	segregating	
mutations	under	substantially	weaker	selection	are	expected	to	contribute	much	less	
variance	per	site	(considering	either	segregating	sites	alone	or	all	sites)	primarily	because	
of	their	smaller	effect	sizes,	which	is	the	same	reason	that	applied	in	the	case	with	a	
constant	population	size	(see	Fig.	2a).		

We	find	support	for	this	verbal	argument	when	we	relate	the	results	of	our	simulations	
with	the	findings	from	GWAS.	To	do	so,	we	follow	the	same	reasoning	that	we	applied	to	
the	case	with	constant	population	size	(see	Discussion).	Namely,	based	on	the	distribution	
of	variances	(Fig.	A19a),	we	would	expect	sites	with	selection	coefficients	around	𝑠 ≈ 108Ö	
to	be	the	first	to	be	discovered	in	GWAS.	Further	assuming	that	such	sites	account	for	most	
associations	discovered	in	GWAS	and	that	their	distribution	of	variances	corresponds	to	
𝑁) = 5000,	we	can	use	our	estimates	of	𝑣¦	for	height	and	BMI	to	calculate	the	parameter	
𝑤" 𝑛	(= ½𝑁)𝑣¦)	for	these	traits.	This	approach	allows	us	to	plot	the	putative	distribution	
of	variances	among	sites	that	exceed	the	study	thresholds,	𝑣∗,	for	different	selection	
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coefficients	(Fig.	A20a	&	b).	Doing	so,	we	find	that	the	observed	and	fitted	distributions	are	
well	approximated	by	the	distributions	for	sites	with	𝑠 ≈ 108Ö,	thus	supporting	our	
premise	that	most	of	the	explained	variance	arises	from	such	sites,	and	that	their	
distribution	of	variances	is	well	approximated	by	assuming	a	constant	population	size	of	
𝑁) ≈ 5000.	Our	simulations	also	suggest	that	the	proportion	of	variance	explained	for	sites	
with	𝑠 ≈ 108Ö	is	much	greater	than	the	proportion	for	sites	under	weaker	or	stronger	
selection	(Fig.	A20c	&	d),	and	should	therefore	also	be	greater	than	the	total	proportion	of	
variance	explained	by	these	GWAS.	This	expectation	accords	with	our	findings	as	well,	with	
our	simulations	suggesting	that	the	proportion	of	variance	explained	for	sites	with												
𝑠 ≈ 108Ö	is	~40%	for	height	and	~30%	for	BMI	(Fig.	A20c	&	d)	compared	to	a	total	
proportion	of	~25%	for	height	and	~5%	for	BMI	in	these	GWAS	(8,	10).		

Examining	the	expected	MAF	and	allelic	ages	at	sites	that	we	predict	to	have	been	identified	
by	these	GWAS	lends	further	support	to	our	interpretation	(Fig.	A20e-h).	Notably,	we	find	
that	the	MAF	for	sites	with	𝑠 ≈ 108Ö	that	are	predicted	to	have	been	identified	by	these	
studies	are	similar	to	those	that	are	observed	(Fig.	A20e	&	f).	Moreover,	when	we	examine	
the	ages	of	mutations	at	detected	sites,	we	find	that	mutations	at	sites	with	𝑠 ≈ 108Ö	are	
predicted	to	have	originated	during	or	shortly	before	the	OoA	bottleneck	(Fig.	A20g	&	h).	

In	summary,	our	analyses	suggest	that	the	bulk	of	associations	identified	in	the	GWAS	for	
height	and	BMI	tag	segregating	mutations	with	𝑠 ≈ 108Ö,	which	originated	shortly	before	
or	during	the	OoA	bottleneck.	As	a	result,	we	would	expect	the	distribution	of	variances	
among	these	sites	to	be	well	approximated	by	our	equilibrium	predictions	corresponding	
to	an	effective	population	of		𝑁) ≈ 5000.	This	finding	provides	an	explanation	for	why	our	
equilibrium	predictions	fit	the	findings	of	GWAS	in	Europeans,	despite	our	ignoring	the	
dramatic	changes	in	population	size	during	their	recent	evolutionary	past.	
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Figure	A20.	Comparison	of	the	results	of	simulations	with	European	demography	with	our	
inferences	and	the	findings	from	GWAS	for	height	and	BMI	(8,	10).	(a	&	b)	The	distribution	
of	variances	among	discovered	loci.	For	each	selection	coefficient,	the	proportion	of	
variance	at	the	study	threshold	is	set	to	1.	Simulation-based	distributions	are	in	color;	the	
empirical	distributions	are	in	solid	black;	and	our	inferred	fits	are	in	dashed	black.	(c	&	d)	
The	expected	proportion	of	variance	explained	in	GWAS	as	a	function	of	the	selection	
coefficient,	based	on	simulations	and	on	the	equilibrium	model	with	a	constant	population	
size	of	𝑁) = 5,000.	(e	&	f)	Comparison	of	MAF	of	discovered	sites	as	a	function	of	selection	
coefficient	in	simulations	with	the	MAF	observed	for	GWS	associations	in	GWAS.	(g	&	h)	
The	age	of	mutations	at	discovered	sites	as	a	function	of	selection	coefficient	based	on	
simulations.	In	(e–h),	points	correspond	to	the	mean	and	whiskers	span	the	1st	to	3rd	
quartiles	of	the	distribution.	
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10. The	effects	of	genotyping	

Another	implication	of	the	demographic	effects	that	we	discussed	in	the	last	section	
(Section	9)	pertains	to	the	reliance	on	genotyping	rather	than	resequencing	in	GWAS.	As	
we	reviewed	in	Section	6,	current	genotyping-based	GWAS	typically	consider	only	loci	with	
MAF > 1%,	for	which	imputation	is	currently	quite	accurate,	at	least	in	Europeans	(24).	
Even	if	loci	below	that	frequency	were	imputed	with	perfect	accuracy,	however,	they	would	
only	be	detected	in	a	GWAS	if	they	exceed	the	threshold	contribution	to	variance	for	that	
study.	Thus,	loci	at	which	the	minor	allele	is	rare	would	only	be	detected	if	they	had	very	
large	effect	sizes,	which	in	our	model	implies	very	strong	selection.	For	example,	assuming	
a	constant	population	size,	if	a	re-sequencing	study	captured	25%	of	the	heritable	variance,	
a	genotyping	study	with	the	same	sample	size	would	suffer	a	≥ 50%	decrease	in	explained	
heritability	only	if	𝑆 ≥ 200	(Fig.	A21a	&	b)For	an	effective	population	size	of	2 ⋅ 10�	for	
humans	(50),	that	implies	an	enormous	fitness	cost	of	𝑠 ≥ 0.5%	(in	heterozygotes)	for	the	
minor	allele.		
Our	results	for	European	demographic	history	suggest	that	only	a	small	proportion	of	
genetic	variance	can	arise	from	loci	that	fall	below	the	current	MAF	imputation	threshold	
but	have	sufficiently	large	effect	sizes	to	exceed	the	variance	discovery	thresholds	of	
current	GWAS.	To	illustrate	that,	we	relied	on	our	simulation	results	and	estimates	of	𝑣¦	for	
height	and	BMI,	to	calculate	the	proportion	of	variance	arising	from	sites	with	MAF <
1%	and	contribution	to	variance	> 𝑣∗.	We	find	this	proportion	to	be	greater	than	0	only	for	
selection	coefficients	between	𝑠 = 0.3 ⋅ 108"	and	𝑠 = 2 ⋅ 108",	but	even	within	this	range,	
such	loci	account	for	less	than	~6%	of	the	expected	variance	for	height	and	2%	of	the	
variance	for	BMI	(Fig.	A21c	&	d).	This	suggests	that	the	common	reliance	on	genotyping	in	
current	GWAS	for	quantitative	traits	entails	minimal	loss	in	the	discovery	of	associations	
relative	to	resequencing.	Moreover,	this	is	likely	to	remain	the	case	even	when	GWAS	sizes	
substantially	increase,	as	long	as	such	increases	are	accompanied	by	reasonable	increases	
in	the	size	of	imputation	panels.	
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Figure	A21.	 The	 heritability	 explained	 in	 resequencing	 and	 genotyping	 studies	 as	 a	
function	of	selection	coefficient.	(a-b)	The	case	with	a	constant	population	size,	in	the	high	
pleiotropy	 limit	 (a)	 and	 without	 pleiotropy	 (b).	 The	 study	 size	 was	 chosen	 such	 that	 a	
resequencing	study	would	capture	25%	of	the	strongly	selected	variance:	implying	a	study	
size	 of	~16𝑉ó/𝑣¦	in	 the	 highly	 pleiotropic	 limit	 (a),	 and	 a	 study	 size	 of	~43𝑉ó/𝑣¦	without	
pleiotropy	 (b).	 (c-d)	 The	 case	 with	 European	 demographic	 history	 and	 high	 pleiotropy,	
using	our	estimates	of	𝑣¦	for	height	(c)	and	BMI	(d)	(see	Section	9	for	details).	
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11. Glossary	of	notation	

𝑟	 n-dimensional	phenotype	

W(𝑟)	 Absolute	fitness	

𝑤	 Scale	of	selection	

𝑛	 Number	of	traits	(dimension)	

𝑎	 A	mutation’s	n-dimensional	effect	size	

𝑎/	 A	mutation’s	effect	size	on	focal	trait	

𝑈	 Haploid	mutation	rate	per	generation	

𝜎"	 Phenotypic	variance	in	a	trait	

𝐾	 Number	of	segregating	sites	

φO(𝑎/|𝑎)	 Distribution	effect	sizes	on	focal	trait	conditional	on	overall	effect	size	

𝑆 =
𝑁a"

2w"	 Scaled	selection	coefficient	

η(𝑎/|𝑆)	 Distribution	of	effect	sizes	on	focal	trait	conditional	on	𝑆	

𝑞	 Derived	allele	frequency	

𝑝	 Ancestral	allele	frequency,	𝑝 = 1 − 𝑞	

τ(𝑞|𝑆)	 The	sojourn	time	for	a	mutation	with	scaled	selection	coefficient	𝑆	

𝑣	 Contribution	to	variance	from	a	site	 𝑣 = 2𝑎/"𝑞 1 − 𝑞 	

𝑣¦	 Expected	contribution	of	a	strongly	selected	site	to	variance	(𝑣¦ = 2𝑤"/𝑛𝑁).		

E(𝑉|𝑆)	 Expected	contribution	to	genetic	variance	from	sites	with	𝑆		

E(𝐾|𝑆)	 Expected	number	of	segregating	sites	with	𝑆	

𝜌(𝑣)	 Density	of	segregating	sites	contributing	variance	𝑣	

G(𝑣∗)	 Proportion	of	variance	from	sites	with	contribution	to	variance	>	𝑣∗		

𝑚	 GWAS	study	size	

H	 Power	to	identify	a	locus	in	GWAS	
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12. Additional	figure	

	

	

	

Figure	A22.	 The	 proportion	 of	 heritability	 (a)	 and	 the	 number	 of	 variants	 per	 Mbp	 (b)	
identified	in	GWAS	as	a	function	of	study	size,	 in	the	case	without	pleiotropy	(𝑛 = 1);	see	
Section	 3	 for	 derivations.	 This	 figure	 is	 equivalent	 to	 Fig.	 4	 from	 the	 main	 text,	 which	
describes	the	case	with	pleiotropy	(𝑛 ≫ 1).	
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