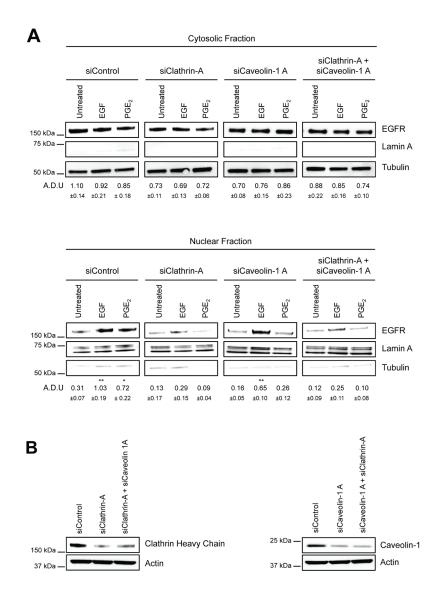
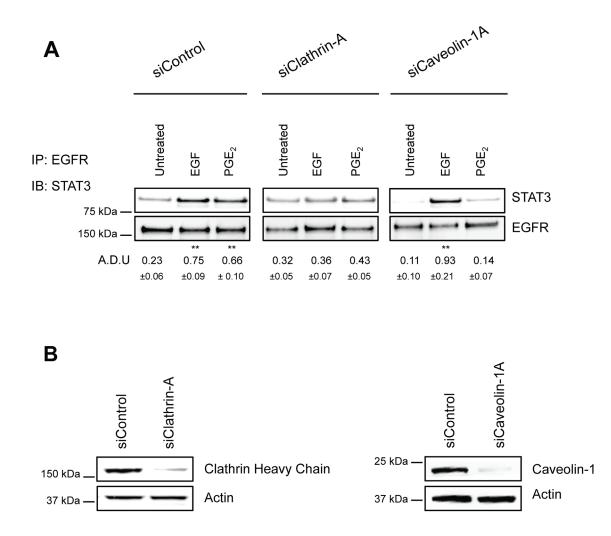
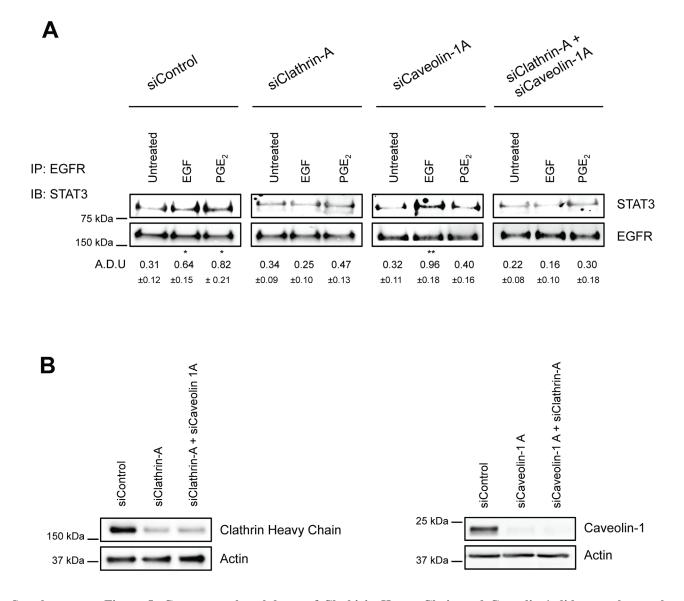

PGE2 mediates EGFR internalization and nuclear translocation via caveolin endocytosis promoting its transcriptional activity and proliferation in human NSCLC cells

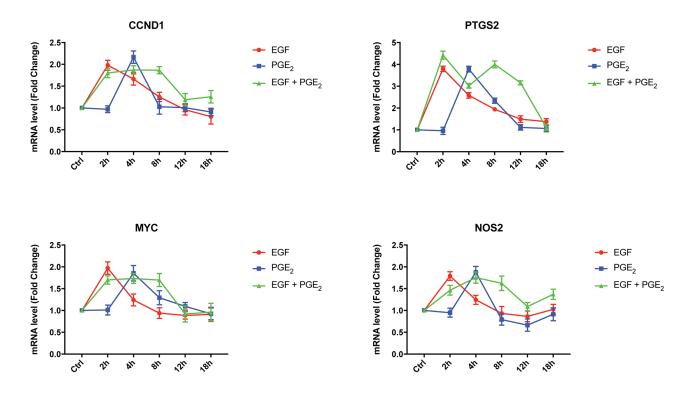
SUPPLEMENTARY MATERIALS

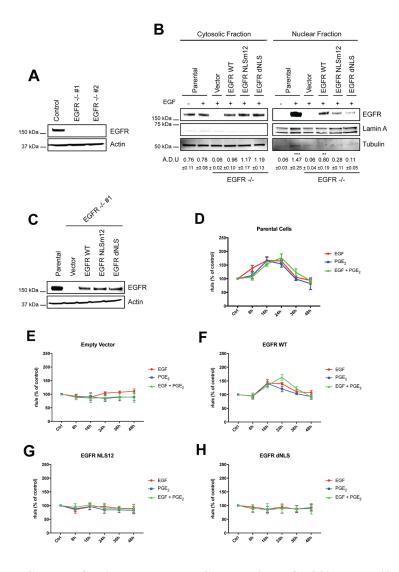


A.D.U 1.10 1.42 1.12 1.37 1.30 1.74 1.81 1.46 1.68 0.10 0.53 0.46 0.26 0.20 0.12 0.43 0.27 0.44 ±0.08 ±0.13 ± 0.17 ± 0.09 ± 0.18 ±0.11 ± 0.20 ±0.12 ± 0.18 ±0.12 ± 0.18 ±0.05 ±0.07 ± 0.10 ± 0.12 ± 0.16 ± 0.14 ± 0.09 ±0.16 ± 0.08


Supplementary Figure 1: Dynamin inhibition blocks EGF- and PGE₂-induced EGFR nuclear translocation in GLC82. (A) Immunoblotting analysis of EGFR expression in cytosolic and nuclear fraction in overnight starved GLC82 exposed to 10 min to 25ng/ml EGF or 1 μ M PGE₂. (B) GLC82 cells were starved overnight and then treated with dynasore 80 μ M (DYN) or 100 μ M 5-(N-Ethyl-N-isopropyl) amiloride (EIPA) for 30 min before challenge with 25 ng/ml EGF or 1 μ M PGE₂ for 10 and 60 min respectively. EGFR level in cytoplasmic and nuclear fraction was assessed using immunoblot with indicated antibodies. Tubulin and Lamin A were used as loading control for cytosolic and nuclear fraction. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean \pm SD. *p < 0.05, **p < 0.01, ***p < 0.001 vs Ctrl. EGFR in the cytoplasmic and nuclear fractions was normalized to Tubulin or Lamin A respectively. The experiments were performed three times.


Supplementary Figure 2: PGE₂ promotes EGFR internalization via Clathrin- and Caveolin-mediated endocytosis in GLC82. (A) GLC82 cells were transfected with siRNA control or siRNAs against Clathrin Heavy Chain or Caveolin-1 for 24 h. After that, cells were serum starved overnight and then exposed to 25ng/ml EGF for 10 min or to 1 μ M PGE₂ for 60 min. EGFR level in cytoplasmic and nuclear fraction was assessed using immunoblot with indicated antibodies. Tubulin and Lamin A were used as loading control for cytosolic and nuclear fraction. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean ± SD. *p < 0.05, **p < 0.01 vs Ctrl. EGFR in the cytoplasmic and nuclear fractions was normalized to Tubulin or Lamin A respectively. (B) Knockdown efficiency was verified by immunoblotting with Clathrin Heavy Chain or Caveolin-1 antibodies, actin was used as loading control. The experiments were performed three times.


Supplementary Figure 3: Concurrent knockdown of Clathirin Heavy Chain and Caveolin-1 did not enhance the inhibition of PGE₂-induced EGFR nuclear translocation compared to individual siRNAs. (A) A549 cells were transfected with siRNA control or siRNAs against Clathrin Heavy Chain or Caveolin-1 or the combination for 24 h. After that, cells were serum starved overnight and then exposed to 25ng/ml EGF for 10 min or to 1μ M PGE₂ for 60 min. EGFR level in cytoplasmic and nuclear fraction was assessed using immunoblot with indicated antibodies. Tubulin and Lamin A were used as loading control for cytosolic and nuclear fraction. Data are shown only for siClathrin-A and siCaveolin-1A, similar data were obtained with siClathrin-B, siCaveolin-1B and siClathrin-B+ siCaveolin-1B. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean \pm SD. *p < 0.05, **p < 0.01 vs Ctrl. EGFR in the cytoplasmic and nuclear fractions was normalized to Tubulin or Lamin A respectively. (B) Knockdown efficiency was verified by immunoblotting with Clathrin Heavy Chain or Caveolin-1 antibodies, actin was used as loading control. The experiments were performed three times.


Supplementary Figure 4: PGE₂ induces the formation of EGFR-STAT3 complex into the nucleus in GLC82. (A) GLC82 cells were transfected with siRNA Control or siRNA against Clathrin Heavy Chain or against Caveolin-1 for 24 h. After that, cells were serum starved overnight and treated with 25ng/ml EGF for 10 min or 1μ M PGE₂ for 60 min. Whole cell lysates were subjected to immunoprecipitation with anti-EGFR antibody and analyzed by immunoblotting with anti-STAT3 antibody. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean \pm SD. **p < 0.01 vs Ctrl. STAT3 was normalized to EGFR. (B) Knockdown efficiency was verified via western blot with Clathrin heavy chain and Caveolin-1 antibodies, actin was used as loading control. The experiments were performed three times.

Supplementary Figure 5: Concurrent knockdown of Clathirin Heavy Chain and Caveolin-1 did not enhance the inhibition of PGE₂-induced EGFR-STAT3 co-immunoprecipitation compared to individual siRNAs. (A) A549 cells were transfected with siRNA Control or siRNA against Clathrin Heavy Chain or against Caveolin-1 or the combination for 24 h. Cells were then serum starved overnight and treated with 25ng/ml EGF for 10 min or 1μ M PGE₂ for 60 min. Whole cell lysates were subjected to immunoprecipitation with anti-EGFR antibody and analyzed by immunoblotting with anti-STAT3 antibody. (B) Knockdown efficiency was verified via western blot with Clathrin heavy chain and Caveolin-1 antibodies, actin was used as loading control. Data are shown only for siClathrin-A and siCaveolin-1A, similar data were obtained with siClathrin-B, siCaveolin-1B and siClathrin-B+ siCaveolin-1B. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean \pm SD. *p < 0.05, **p < 0.01vs Ctrl. STAT3 was normalized to EGFR. The experiments were performed three times.

Supplementary Figure 6: EGF and PGE₂ induces the transcription of nuclear EGFR target genes in GLC82 up to 8 hours. GLC82 cells were starved overnight and then treated with 25ng/ml EGF or 1 μ M PGE₂ or the combination for 2, 4, 8, 12, 18 h. RNA was isolated and analyzed by qRT-PCR for a panel of nuclear EGFR target genes. The data are presented as mean of fold change \pm SD of three independent experiments, relative to non-treated cells (Control), which were assigned to 1. Statistical analysis is reported in Supplementary Table 1.

Supplementary Figure 7: EGF and PGE, induce nuclear EGFR-mediated GLC82 cell proliferation. (A) Immunoblotting analysis of EGFR expression in GLC82 wild type cells and two clones knockout for EGFR, Actin was used as loading control. (B) EGFR knockout GLC82 cells were transiently transfected with Vector or EGFR-WT or EGFR NLS mutant (NLSm12 or dNLS) plasmids for 48 h. Then EGFR nuclear import in response to 25ng/ml EGF for 10 min was analyzed by immunoblotting upon cell fractionation. Parental cells were included as a control. Tubulin and Lamin A were used as loading control for cytosolic and nuclear fraction respectively. Immunoblotting quantification was expressed in A.D.U. (arbitrary density unit) and as mean \pm SD. **p < 0.01, ***p < 0.001 vs Ctrl. EGFR in the cytoplasmic and nuclear fractions was normalized to Tubulin or Lamin A respectively. (C) Expression of EGFR in EGFR knockout cells transfected with Vector, EGFR-WT and NLS mutant plasmids for 96 h. (D-H) Parental GLC82 cells or EGFR -/- #1, #2 cells transfected with Vector or EGFR WT or EGFR NLS12 or EGFR dNLS mutant plasmids for 24 h were harvested and seeded for BrdU incorporation assay. Cell proliferation was assessed by measuring the luminescence after 8, 16, 24, 36, 48 h treatment with EGF or PGE₂ or the combination. Data are mean \pm SD of triplicate cultures, expressed as % of control. Statistical analysis is reported in Supplementary Table 2.

CCND1					
	2h	4h	8h	12h	18h
EGF vs Ctrl	0.0132 (*)	0.0424 (*)	0.1422 (ns)	0.767 (ns)	0.3618 (ns)
PGE_2 vs Ctrl	0.7414 (ns)	0.0144 (*)	0.8837 (ns)	0.9466 (ns)	0.3896 (ns)
$EGF+PGE_2$ vs Ctrl	0.0173 (*)	0.0116 (*)	0.0086 (**)	0.3103 (ns)	0.2998 (ns)
$EGF+PGE_2$ vs EGF	0.3746 (ns)	0.346 (ns)	0.0447 (*)	0.339 (ns)	0.121 (ns)
EGF+PGE ₂ vs PGE ₂	0.0244 (*)	0.2273 (ns)	0.0469 (*)	0.3902 (ns)	0,0664 (ns)
PTGS2					
	2h	4h	8h	12h	18h
EGF vs Ctrl	0.0019 (**)	0.0063 (**)	0.0097 (**)	0.0852 (ns)	0.1077 (ns)
PGE_2 vs Ctrl	0.8266 (ns)	0.0021 (**)	0.0076 (**)	0.4551 (ns)	0.7069 (ns)
$EGF+PGE_2$ vs Ctrl	0.0028 (**)	0.0025 (**)	0.0032 (**)	0.0018 (**)	0.5326 (ns)
EGF+PGE ₂ vs EGF	0.1017 (ns)	0.117 (ns)	0.0077 (*)	0.0114 (ns)	0.2983 (ns)
EGF+PGE ₂ vs PGE ₂	0.0049 (**)	0.044 (*)	0.0135 (*)	0.0057 (**)	0.8588 (ns)
МҮС					
	2h	4h	8h	12h	18h
EGF vs Ctrl	0.0209 (*)	0.2186 (ns)	0.6673 (ns)	0.3154 (ns)	0.6399 (ns)
PGE_2 vs Ctrl	0.9348 (ns)	0.0404 (*)	0.2096 (ns)	0.3951 (ns)	0.626 (ns)
$EGF+PGE_2$ vs Ctrl	0.0176 (*)	0.0234 (*)	0.0425 (*)	0.7041 (ns)	0.8686 (ns)
$EGF+PGE_2$ vs EGF	0.2544 (ns)	0.1082 (ns)	0.0584 (ns)	0.8884 (ns)	0.8641 (ns)
EGF+PGE ₂ vs PGE ₂	0.0427 (*)	0.6278 (ns)	0.2048 (ns)	0.4812 (ns)	0.8906 (ns)
NOS2					
	2h	4h	8h	12h	18h
EGF vs Ctrl	0.0154 (*)	0.1439 (ns)	0.7117 (ns)	0.3801 (ns)	0.8395 (ns)
PGE_2 vs Ctrl	0.6713 (ns)	0.0223 (*)	0.2408 (ns)	0.141 (ns)	0.6198 (ns)
$EGF+PGE_2$ vs Ctrl	0.0528 (ns)	0.0277 (*)	0.0642 (ns)	0.4411 (ns)	0.0854 (ns)
EGF+PGE ₂ vs EGF	0.1602 (ns)	0.0905 (ns)	0.0955 (ns)	0.2801 (ns)	0.1682 (ns)
EGF+PGE, vs PGE,	0.0767 (ns)	0.5783 (ns)	0.0577 (ns)	0.2323 (ns)	0.797 (ns)

Supplementary Table 1: Statistical analysis of nuclear EGFR target genes regulated by EGF and PGE_2 in GLC82 cells

ns = non significant; * p < 0.05; ** p < 0.01.

Parental Cells					
	8h	16h	24h	36h	48h
EGF vs Ctrl	0.0033 (**)	0.001 (***)	0.0008 (***)	0.0444 (*)	0.0642 (ns
PGE_2 vs Ctrl	0.1592 (ns)	0.0009 (***)	0.0014 (**)	0.7123 (ns)	0.2115 (ns
EGF+PGE ₂ vs Ctrl	0.3788 (ns)	0.0003 (***)	0.0009 (***)	0.0316 (*)	0.1505 (ns
EGF+PGE ₂ vs EGF	0.0263 (*)	0.2163 (ns)	0.2552 (ns)	0.076 (ns)	0.8121 (ns
EGF+PGE ₂ vs PGE ₂	0.6068 (ns)	0.2396 (ns)	0.1087 (ns)	0.0347 (*)	0.4667 (ns
Empty Vector					
	8h	16h	24h	36h	48h
EGF vs Ctrl	0.1616 (ns)	0.0574 (ns)	0.2028 (ns)	0.064 (ns)	0.0859 (ns
PGE ₂ vs Ctrl	0.1038 (ns)	0.3357 (ns)	0.0715 (ns)	0.2396 (ns)	0.2351 (ns
EGF+PGE ₂ vs Ctrl	0.0947 (ns)	0.217 (ns)	0.089 (ns)	0.2375 (ns)	0.3169 (ns
EGF+PGE ₂ vs EGF	0.5923 (ns)	0.7549 (ns)	0.0552 (ns)	0.0877(ns)	0.1148 (ns
EGF+PGE ₂ vs PGE ₂	0.9716 (ns)	0.706 (ns)	0.7133 (ns)	0.8906 (ns)	0.9459 (ns
EGFR WT					
	8h	16h	24h	36h	48h
EGF vs Ctrl	0.4603 (ns)	0.0046 (**)	0.0008 (***)	0.0811 (ns)	0.1751 (ns
PGE_2 vs Ctrl	0.1211 (ns)	0.0015 (**)	0.0225 (*)	0.0881 (ns)	0.1965 (ns
EGF+PGE ₂ vs Ctrl	0.4308 (ns)	0.0026 (**)	0.0005 (***)	0.0076 (**)	0.189 (ns
EGF+PGE ₂ vs EGF	0.8996 (ns)	0.3924 (ns)	0.0223 (*)	0.1405 (ns)	0.0861 (ns
EGF+PGE ₂ vs PGE ₂	0.9745 (ns)	0.4082 (ns)	0.0064 (**)	0.0159 (*)	0.873 (ns)
EGFR NLS12					
	8h	16h	24h	36h	48h
EGF vs Ctrl	0.1182 (ns)	0.4602 (ns)	0.3961 (ns)	0.0956 (ns)	0.2923 (ns
PGE_2 vs Ctrl	0.1025 (ns)	0.6062 (ns)	0.0935 (ns)	0.0546 (ns)	0.0847 (ns
EGF+PGE ₂ vs Ctrl	0.439 (ns)	0.6234 (ns)	0.4079 (ns)	0.0969 (ns)	0.2469 (ns
EGF+PGE ₂ vs EGF	0.4978 (ns)	0.3884 (ns)	0.6226 (ns)	0.9439 (ns)	0.8864 (ns
EGF+PGE ₂ vs PGE ₂	0.6185 (ns)	0.4847 (ns)	0.6294 (ns)	0.5296 (ns)	0.7032 (ns
EGFR dNLS					
	8h	16h	24h	36h	48h
EGF vs Ctrl	0.2931 (ns)	0.0972 (ns)	0.2696 (ns)	0.1486 (ns)	0.3583 (ns
PGE ₂ vs Ctrl	0.2325 (ns)	0.105 (ns)	0.3329 (ns)	0.4004 (ns)	0.2551 (ns
EGF+PGE ₂ vs Ctrl	0.2478 (ns)	0.3345 (ns)	0.3172 (ns)	0.1272 (ns)	0.3460 (ns
EGF+PGE ₂ vs EGF	0.5336 (ns)	0.9361 (ns)	0.6233 (ns)	0.8117 (ns)	0.7746 (ns
EGF+PGE, vs PGE,	0.9205 (ns)	0.8691 (ns)	0.9898 (ns)	0.3848 (ns)	0.7442 (ns

Supplementary Table 2: Statistical analysis of BrdU incorporation assay in performed in GLC82 cells

ns = non significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

Supplementary Table 3: List of siRNA sequences

Target	Target Sequence (5'-3')	
AllStars Negative Control siRNA	-	
Clathrin Heavy Chain 1A	AAGGAGAGTCTCAGCCAGTGA	
Clathrin Heavy Chain 1B	TAATCCAATTCGAAGACCAAT	
Caveolin 1A	AACTAAACACCTCAACGATGA	
Caveolin 1B	AAGCATCAACTTGCAGAAAGA	
Importin β1A	CTGGAATCGTCCAGGGATTAA	
Importin β1B	AAGGGCGGAGATCGAAGACTA	

Supplementary Table 4: List of qPCR primers

Name	Forward primer (5'-3')	Reverse primer (5'-3')
RPL19	GATGCCGGAAAAACACCTTG	TGGCTGTACCCTTCCGCTT
CCND1	GACCTTCGTTGCCCTCTGT	GGTTCAGGCCTTGCACTG
PTGS2	GCTTTATGCTGAAGCCCTATGA	TCCAACTCTGCAGACATTTCC
MYC	CACCAGCAGCGACTCTGA	CTGTGAGGAGGTTTGCTGTG
NOS2	GCTGCCAAGCTGAAATTGA	GATAGCGCTTCTGGCTCTTG