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Training Data Set

The list of unique molecules IDs, associated molecule and reaction registry numbers, and
their metabolic status is provided in “AMD Registry Numbers.csv” file. This is a comma-
separated values text file with the “UniqueDatasetMoleculeID” containing the assigned ID in
the training data set. The “MOLREGNO” and “RXNREGNO” columns provide Accelrys
Metabolite Database registry number. Columns “1A2”, “2A6”, “2B6”, “2C19”, “2C8”,
“2C9”, “2D6”, “2E1”, “3A4”, and “HLM” indicate whether the molecule is metabolized by
the enzymatic entity. The histograms describing molecular properties of the combined data
set are provided (Figures S1, S2, and S3).
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Figure S1: Molecular Weight (MW) Distribution of the Combined Data Set.

Descriptors

The following tables detail all the descriptors used by the model in this study.

Table S1: Molecule-level descriptors used by the XenoSite N-Dealkylation Model.

Name Descriptions

atoms number of atoms
bonds number of bonds
TPSA topological polar surface area
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logP octanol/water partition coefficient
HBD number of hydrogen bond donors
HBA1 number of hydrogen bond acceptors Pybel SMARTS string 1
HBA2 number of hydrogen bond acceptors Pybel SMARTS string 2
MR molar refractivity
MW molecular weight

sbonds number of single bonds
dbonds number of double bonds
tbonds number of triple bonds
abonds number of aromatic bonds

heavy atoms number of heavy atoms
hydrogens number of hydrogens
NumRings number of rings

Table S2: Bond-level descriptors used by the XenoSite N-Dealkylation Model.

Name Descriptions

Single whether the bond is a single bond
Double whether the bond is a double bond
Triple whether the bond is a triple bond

Aromatic whether the bond is an aromatic bond
Length length of the bond

NTopologicalEquivalent number of topological equivalent of the bond within the molecule

Table S3: Atom-derived bond-level descriptors used by the XenoSite N-Dealkylation Model.

Ne d number of atoms depth d (0,1,2,3,4) bonds away of type element e (C, O, N,
S, P, F, Cl, Br or I)

Pe d percentage of atoms depth d (1,2,3,4) bonds away of type element e (C, O,
N, S, P, F, Cl, Br or I)

Ne spi d number of atoms depth d (0,1,2,3) bonds aways of type element e
(C,O,N,S)with spi hybridization

spi d number of spi hybridization depth d (0,1,2,3) bonds aways
TotalBondOrder total bond order

Span (maximum path length from current atom)/(maximum path length
from all atoms within the molecule)

InvertedSpan 1/(1 + Span)
Normalized Span Span/(maximum span within molecule)

Ringn within ring of size n
MaxInvRingSize size of the largest ring containing the atom

NRings total number of rings containing atom
SRing smallest ring containing atom

HBonded total number of hydrogens bound to atom
NHBonded total number of non-hydrogens bound to atom

FarthestBondedHydrogen distance to the farthest hydrogen bound to atom
FarthestBondedHydrogenIndicator indicates whether or not an atom is bound to a hydrogen

RB number of rotatable bonds for atom
PT ElectronNeg electron negativity

PT ElectronAffinity electron affinity
PT Ionization ionization state
PT BondRad Bond radius
PT VdwRad Vdw radius

Aromatic binary value indicating whether atom is aromatic
SP1 binary value indicating whether atom is sp1 hybridized
SP2 binary value indicating whether atom is sp2 hybridized
SP3 binary value indicating whether atom is sp3 hybridized

HybX binary value indicating whether atom is non-sp hybridized
Lone Pair Depth d Number of lone pair depth d (0,1,2,3) bonds away
AromaticNeighbors Number of aromatic neighbors

BN t d number of type t (single, double, triple, aromatic) bond neighbors of depth
d away
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Within substructure whether the atom is in a substructure (epoxide, α-β unsaturated ketone,
carboxyl, sulfate,phosphate, nitro, amide)

Table S4: Descriptor groups in the modular multi-target neural network.

Group Input Nodes Number of 1H nodes

Neighborhood 0 Ne d with d = 0 3
Neighborhood 1 N d e, P d e, and spi d with d = 0 3
Neighborhood 2 N d e, P d e, and spi d with d = 1 3
Neighborhood 3 N d e, P d e, and spi d with d = 2 3
Neighborhood 4 N d e, P d e, and spi d with d = 3 3

Table S5: Descriptor groups used for sensitivity analysis.

Atom Element Ne d with d = 0
Atoms One Bond Away N d e and P d e with d = 1
Atoms Two Bonds Away N d e and P d e with d = 2

Atoms Three Bonds Away N d e and P d e with d = 3
Atoms Four Bonds Away N d e and P d e with d = 4

Size of Ring Containing Atom Ringn, NRings, and SRing
Hybridization State SP1, SP2, SP3, and HybX

Heuristic Python Script

The python script “Heuristic.py” can be used to make Heuristic N-dealkylation predictions
on molecules in SDF format.

Metabolite Structure Prediction Python Script

The python script “get Dealkylation metabolite structure.py” can be used to generate N-
Dealkylation metabolite structure based on molecules in SDF format.

Accuracy Comparison

Alpha-Beta Unsaturated Aldehyde Reactivity Scores

To further assess the mode’s performance in modeling reactivity of aldehydes, we identified
313 alpha-beta unsaturated aldehyde containing molecules and 528 alpha-beta unsaturated
aldehyde sites from the reactivity model’s training data set and used their cross-validated
predictions to access the model performance on this subset of data. First, we assessed the
ability of model to identify the correct atom in the molecule as reactive. The average site
AUC is computed by averaging the AUC of sites computed within each molecule separately.
The reactivity model predicted reactive atoms of 313 aldehyde containing molecules with
average site AUC accuracies of 100.0% (1 molecule), 90.4% (21 molecules) , 96.1% (265
molecules), and 97.5% (23 molecules) for cyanide, DNA, GSH, and protein, respectively.
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Figure S2: Topological Polar Surface Area (TPSA) Distribution of the Combined
Data Set.
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Figure S3: Molar Refractivity (MR) Distribution of the Combined Data Set.
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Figure S4: The model accurately identifies sites of N-dealkylation. Top left panel
shows top-two performance metric for 883 molecules of the combined data set, by which a
molecule was considered correctly predicted if any of its observed SNDs were predicted in
the first- or second-rank position. Bottom left panel, the AUC for predictions of nitrogen-
carbon bonds within each molecule is computed and then averaged across the whole data
set, measuring the per-molecule performance. Most performance differences between two
models are not statistically significant except for the CYP2A6 and CYP2B6 average nitrogen-
carbon AUCs (Welch’s t-test p-values cutoff of 0.05). By both molecule-level metrics, the
cross-validated predictions generated by the multi-target modular neural network perform
equally well in comparison to the predictions of a single target neural network. Right panel,
for each isozyme and HML target, global nitrogen-carbon AUC was computed across all
4071 nitrogen-carbon bonds of the combined data set. This quantifies how often SNDs
were ranked above other nitrogen-carbon bonds in the entire data set. The ten-fold cross-
validated predictions generated by a multi-target modular neural network outperformed the
predictions of a single target neural network. The performance difference between the two
models is statistically significant (paired permutation test p-values cutoff of 0.05). Across all
metrics, the heuristic model perform worst, with average top-two, average nitrogen-carbon
AUC, and global nitrogen-carbon AUC accuracies of 83.8%, 85.8%, and 85.2%, respectively.
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Next, we assessed the ability of the model to separate reactive and non-reactive aldehyde
molecules. Across the full database 528 aldehydes, the model can accurately separate reactive
and non reactive substructures with AUCs of 93.7%, 89.8% and, 98.7%, for DNA, GSH,
and protein, respectively. These assessments demonstrate that the reactivity model can
accurately model the reactivity of alpha-beta-reactive aldehyde containing compounds.

Descriptors Driving Performance
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Figure S5: The importance of specific descriptors to the bond N-dealkylation
model. A permutation sensitivity analysis quantified the importance of descriptors for the
final trained site of N-dealkylation model. The ten most important individual descriptors
are listed in decreasing order of importance from top to bottom. The graph shows the model
performance drop associated after permuting the associated descriptor values, averaging over
ten iterations.

A permutation sensitivity analysis identified the descriptors driving model accuracy.1

We started with the trained model, and calculated its training accuracy. Next, we randomly
permuted each descriptor column (or group of closely related descriptors) in the input data
for these molecules. We applied the trained model to the permuted data, and recorded the
performance drop across all molecules. The higher the performance drop, the more important
the descriptor(s) to the model’s performance. We saw similar results using all performance
metrics. For example, using the average site AUC performance, this analysis identified the
most important topological and molecular descriptors for differentiating metabolized sites
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Figure S6: The importance of specific descriptors to each isozyme N-dealkylation
target. A permutation sensitivity analysis quantified the importance of descriptors for the
final trained site of N-dealkylation model. The ten most important individual descriptors
are listed in decreasing order of importance from top to bottom. The graph shows the model
performance drop associated after permuting the associated descriptor values, averaging over
ten iterations.
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from non-metabolized sites (Figure S5). The key topological descriptors are the identities
and hybridization states of atoms on either sides of the bond and their neighbors (atoms
one, two, three and four bond away), the relative distance from the bond to the center of
the molecule (Span) and the number of rotatable neighbor bonds (Rotors). The molecule’s
number of single, double, triple and aromatic bonds (Global Bonds Statistics) are the most
important group of molecular descriptors. This result revealed that the model heavily relies
on local topology. Similar results were seen in the individual isozyme sensitivities (Figure
S6).

Loss Functions Dependency on Iteration Cycles

The values of loss function at each iteration were tracked for 10 training experiments where
targets were permuted (Figure S7). Similar results are seen for non-permuted data, but this
data was excluded for brevity.
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Figure S7: Loss functions dependency on Iteration Cycles The values of loss function
at each iteration were tracked for 10 training experiments where targets were scrambled.
Very quickly, the loss reaches a minimum. Similar results are seen for non-permuted data,
and excluded for brevity.

10



Reliability Plots

Reliability plot for each CYPs isozymes are shown in Figure S8.
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Figure S8: XenoSite offers well-scaled probabilistic prediction scores of 1A2 N-
dealkylation. The bar graphs plot the normalized distributions of NDS across 4071 dealky-
lated and non-dealkylated N-C bonds. The solid lines plot the percentage of N-C bonds that
are dealkylated (using non-normalized frequencies) in each bin. The diagonal dashed lines
indicate a hypothetical perfectly scaled prediction.
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