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Introduction.  In Part 1, we outline steps that lead to an expression for the entropy and

size of a cooperative rearranging region based on a generalization of the Adam-Gibbs

model (1).  In Part 2, we establish bounds on the slope of Debye-Waller factor with

respect to temperature.  In Part 3, we argue that the negative slope of the Debye-Waller

factor may be attributed to the characteristics of the temperature dependence of the

excess vibrational entropy of water Sexc, vib  for T  < 190 K.  In Part 4, we address the

question of whether the protein-water system at low temperature behaves as a fragile or

as a strong liquid.

Part 1.  In this part, we derive the equations that give the size of the cooperatively

rearranging clusters.  We invoke the Adam-Gibbs (AG) idea of a cooperative rearranging

region (2).  It is defined as that part of a subsystem which is in weak contact with the

remaining part of the system, and which is capable of independent rearrangements

because of fluctuations of enthalpy (2,3).  We assume that the relaxation time for

cooperative rearrangements in supercooled water is due to the decrease of its entropy

S T( ) (4)

τ µT A s k TS T( ) ≈ − ∗ ( )exp ( / )∆ B . [1]

Here s∗  is the “critical” entropy of the rearranging region, ∆µ  is the potential energy

barrier per molecule, A  has units of time and is weakly temperature dependent, and kB is

the Boltzmann constant.  Observe that Eq. 1 is a generalization of the AG model that

includes configurational and vibrational contributions to the entropy of the liquid.



Let us introduce the logarithmic shift factor defined as the logarithm of the ratio of

the relaxation time τ T( )  at temperature T  and that at reference temperature Ts
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On substituting Eq. 1 in Eq. 2, the logarithmic shift factor is written in the form of the

William, Landel, and Ferry (WLF) equation
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where the WLF coefficients a Ts1( )  and a T2( )  are found to be
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Here, F T S T s( ) ( ) /= ∗  and B T T F Ts, , ( )( )  is a function of F T( ) and the reference

temperature (4).

Since a T2( )  is known to be weakly temperature dependent (2, 5) compared with

a Ts1( ) , we approximate a T a Ts2 2( ) ≈ ( ) .  This leads to an explicit expression for the

temperature dependence of the entropy in glass-forming liquids
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The Vogel-Fulcher-Tamman (VTF) form accurately describes the temperature

dependence of the relaxation time of water as observed in dielectric experiments

 τ τ( ) exp ( )T
B

T T
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o

, [6]



where B , To , and τ VTF are empirical parameters.  For example, in case of water, existing

diffusivity data indicates that To  = 119 K (6).  Let us choose the reference temperature as

To .  Because the configurational entropy of water is small for temperatures below 150 K,

we assume that configurational entropy vanishes at the VFT To  (5).  Then, the critical

size of cooperative rearranging region is found to be
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The potential barrier for cooperative rearrangements is given by
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where C'1 is the WLF coefficient with Tg  as the glass transition temperature.

Part 2.  In this part, we establish the details for the bounds on the slope of Debye-Waller

factor with respect to temperature.

To explain the characteristics of the Boson peak in glass forming liquids at low

temperatures, Sokolov et al. (7) suggested expressing the temperature dependence of the

relation time of cooperative rearrangements in terms of the mean-squared displacement

of the atoms from their equilibrium positions

τ τ( ) exp( )T
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where τu  and uo
2  are weakly temperature dependent, and u2  is the mean-squared

displacement of the atoms in supercooled liquid in excess of that of the crystalline solid.



Eq. 8 can be derived by considering the hopping dynamics in configurational space

together with an estimate of the average activated barriers between free energy minima in

the glassy state (8).

On differentiating Eq. 8 with respect to temperature and making use of Eq. 1, we

obtain an explicit expression for the slope of the mean-squared displacement in terms of

experimental measurable quantities
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where C
R

N sA= ∗∆µ
.  The quantity in brackets in Eq. 9 is proportional to the fragility

index m (1); observe that the slope is positive.  One anticipates that Eq. 9 is valid for

temperatures approximately larger than 150 K because the assumed validity of the

Adam-Gibbs and VFT equation for dielectric relaxation time is in this range.

At lower temperatures, the surface of the protein induces substantial perturbations

on the structure of water.  We account for the perturbations by introducing an effective

force constant k (9)
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Here, Γ  is an appropriate order parameter that describes the reaction coordinate in

configuration space.  The temperature dependence of the relaxation time is

τ τ( ) exp( )T
k

kk= o . [11]



We choose the reference system such that ko  given by Eq. 11 is at T T= g, and τk

is weakly dependent on temperature.  From Eqs. 8 and 11 we obtain
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where F T( ) ( )= ∆Γ 2  is the mean-squared fluctuation of the order parameter, ∆α  is the

change in thermal expansion between the liquid and the glass, and we have assumed that

( ( , ) ( ( ) ( )∆ Γ ∆ ∆ΓE T E T2 2 2≈ .  The second term in brackets is positive.  In the last

term in brackets, the contributions from the first three quantities are positive, whereas the

temperature variation of F may be negative.  If this term is small in comparison with the

remaining terms in the brackets, then there is an overall positive contribution.  Under

these circumstances, the slope of the Debye-Waller factor is negative.

In the temperature range of interest, configuration freezing of entropy is expected,

and the excess entropy satisfies the inequality S S T S2 1< <( ) .  Continuity of excess free

energy at 153 and at 236 K requires S1 to be less than 2.0 J / (mol • K) (5,10).  S2  is the

excess residual entropy and is approximately 0.4 J/( mol • K) (5,10); it is defined as the

residual entropy of glassy water minus the residual entropy of hexagonal ice.  The

quantity ( )1+ ∆C

S
P  is related to the fragility index m/mmin, where mmin is the minimum

fragility, which is usually taken to be around 16 (11).  Enthalpy measurements indicate a

value for m around 39 for water (12).  The excess configurational entropy at 150 K is

approximated by Sexc K( )150  - this is assessed to be 3.8 J/(mol • K) (5).  Because



z ∗ ( )150K  = 4.3, one obtains an estimate of N s z SA ∗ = ∗ conf  = 18.48 J/(mol • K).  The

barrier to cooperative rearrangements and the constant C  is found to be ∆µ / R ≈ 447  K

and 8,269 J/mol, respectively.

Part 3.  In this section, we show that the negative slope of the DW factor can be

attributed to the temperature dependence of the excess vibrational entropy of water

Sexc,vib  for T < 190 K.

The excess vibrational entropy of water is defined as

S T S T S Texc,vib vib,water vib,ice( ) ( ) ( )= − , [13]

where, S T S T S Tvib,water water conf,water( ) ( ) ( )= − .  The total entropy of supercooled water is

defined as S T S T S Twater ice exc( ) ( ) ( )= − .  The excess entropy S Texc( ) at temperature T is that

of supercooled water above that of hexagonal ice.  This quantity is evaluated along the

same lines as Johari, namely, by choosing the Cp  path for which the excess entropy at

150 K is 0.47 J/(mol • K) (5).  Thus, this approach is valid for temperatures T > 150 K.

The entropy of hexagonal ice S Tice( )  is calculated from knowledge of the residual entropy

of hexagonal ice, which is 3.37 J/mol and the integral of C d Tp,ice ln  (13).

The configuration entropy of water is obtained from Eq. 5

S T N s
T T

TAconf,water
o( ) ( )= ∗ −

[14]

As shown earlier, z K∗ ( )150  = 4.3 whereas N s z SA ∗ = ∗ conf  = 18.48 J/(mol • K).  In

agreement with Johari, the excess vibrational entropy of water over ice as a function of

temperature becomes negative around 190 K (5).



Part 4.  In this section, we address the question of whether the protein-water system at

low temperature behaves as a fragile or as a strong liquid.  By a strong liquid we mean a

glass-forming liquid that resists change of structure, and for which the temperature

dependence of relaxation time is Arrhenius (14).  On the other hand, the structure of

fragile liquids is assumed to fluctuate over a wide range of length scales, and for which

the temperature dependence of relaxation is strongly non-Arrhenius (14).  Based on these

definitions, it is reasonable to conclude that, because there is a distinct change of slope in

the mean-squared displacement around 180 K, it would imply that protein-water system

behaves like fragile glass formers.

  Does the above picture hold for the protein-water system near its apparent glass

transition temperature Tg  =136 K?  To address this question, we take into account the

literature data for the self-diffusion coefficient D of water for temperatures larger than

245 K, together with recent measurements by Smith and Kay in the temperature range

150-157 K (15).  The extended diffusion data is fitted to the Vogel-Fulcher-Tamman

(VFT) form D T D
B

T T
( ) exp ( )= −

−o
o

.  The parameters of the VFT fit are B  = 864 ± 100,

To  = 119 ±3 K, and Do = 3.06 x 10-3 cm2/s (6).  The relaxation time as obtained by

dielectric experiments is deduced from the Stokes-Einstein relation τ ( ) /T l D= 2 6 ,

where l  is the distance that a water molecule hops; it is approximately 0.33 nm from

geometrical considerations (5,16).

At or near Tg , VFT data predict, in agreement with conventional line of thought, an

apparent Arrhenius temperature dependence of relaxation time; this result is so because



the configurational entropy is almost constant (17).  Thus, it appears that water behaves

as a strong liquid near Tg .  However, a plot of the relaxation time vs. inverse temperature.

shows that the relaxation time data for T < 200 K appears to be Arrhenius.  A signature of

Arrhenius behavior, according to the classification scheme of strong and fragile liquids

(14), is that a plot of log ( )τ T  versus 1/T is a straight line whose intercept should be 10-14

s; this is not the case (5).  Further, based on the diffusivity data, the relaxation time near

the glass transition temperature Tg  = 136 K is not 100 s.  The fragility index based on

enthalpy and dielectric measurements also differs (12).  This result underscores the fact

that, in glass-forming liquids, the relaxation time as measured by calorimetric, shear,

dielectric, or x-ray and neutron scattering techniques may differ (3, 5, 12, 14).  To put it

differently, protein-water system exhibits fragile or strong characteristics depending on

the physical property that is measured and the technique used to probe these degrees of

freedom (14).

The argument presented above is for bulk water.  But, water in crambin is

sequestered.  The only relaxation time data for sequestered water come from

measurement in various size pores of poly(2-hydroxy-ethyl methacrylate) (5, 18).  In this

case, one finds the relaxation time to be larger than that for bulk water, reinforcing the

idea that supercooled water may not necessarily be strong near the glass transition (5,

18).
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