SUPPLEMENTARY MATERIALS AND METHODS

An optimized spectrophotometric assay for convenient and accurate quantitation of intracellular iron oxide nanoparticles

Mohammad Hedayati^{1‡}, Bedri Abubaker-Sharif¹, Mohamed Khattab¹, Allen Razavi¹, Isa Mohammed¹, Arsalan Nejad¹, Michele Wabler¹, Haoming Zhou¹, Jana Mihalic², Cordula Gruettner³, Theodore DeWeese^{1,4} and Robert Ivkov^{1,4-8}*.

Detailed protocol for ferene-s assay:

REAGENTS:

Glacial acetic acid (Fisher cat. No. A38-212) Ammonium acetate (Fisher cat. No. A637-500, FW = 77.08) Ferene-s (3-(2-Pyridyl)-5,6-di(2-furyl)-1,2,4-triazine-5',5"-disulfonic acid disodium salt, Sigma cat. No P4272, FW = 494.37) L-ascorbic acid (Sigma cat. No. A92902-100, FW =176.12) TraceCERT Iron Standard for ICP (Sigma-Aldrich 43149-100ML, 1000±2 mg/l) Nitric acid (Sigma cat. No. 30709-1L, \geq 65%) Standard 96 well plates (Thermo Fisher Scientific cat. No. 130188) Phosphate buffered saline (PBS, Corning Cellgro cat. No. 21-040-CV)

EQUIPMENT: Plate reader (SpectraMax-M5, Molecular Devices) Flow hood (hazardous material) Microcentrifuge PH meter SealRight® 1.5 ml tubes Heat block

REAGENT PREPERATION:

Stock of (2 M) acetate buffer (pH 4.0 - 4.5) store at room temperature (stable for several months): Weigh 46.3 g of ammonium acetate, add 120 ml of glacial acetic acid and deionized water to final volume of 300 ml (measured pH ~ 4.3).

Stock of ferene-s (0.5 M) store in aliquots at 4° C protected from light (stable for several months): Weigh 0.5 g of ferene-s, add deionized water to 2.0 ml.

5x working buffer, 1 M l-ascorbic acid in 2 M acetate buffer (make fresh, stable for at least a week at 4° C): Weigh 2.0 g of l-ascorbic acid, add 2 M acetate buffer to 11.0 ml (enough for ~ 55 samples).

1x working solution: 10.0 ml of 5x working buffer, 0.5 ml of ferene-s stock, 39.5 ml of deionized water to final volume of 50.0 ml (stable for at least a week at room temperature). *10 N NaOH*: Weigh 20.0 g of sodium hydroxide; add deionized water to final volume of 50 ml.

100 μ g/ml Fe standards: Stock of Fe standards (1 mg/ml) are stored at 4° C in 5 ml aliquots sealed with parafilm. Dilute the stock solution in deionized water (add 100 μ l of stock to 900 μ l of water store at 4° C).

SIMPLIFIED PROCEDURE

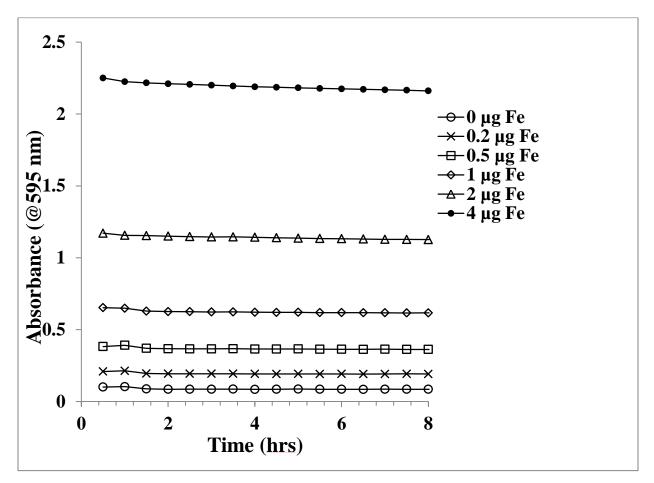
Working solution (950 µl) can be directly added to each sample (50 µl) containing nanoparticles (including cells) in a 1.5 ml tube (without any further processing). After through mixing the samples are left at room temperature in the dark for \geq 20 hrs. The absorbance is then measured at 595 nm in a flat bottom standard 96-well plate (300 µl per well in triplicates) using SpectraMax-M5 plate reader at 595 nm. FeCl₃, iron standards are always included (0-4 µg /ml). Fe standards require only about 30 minutes but can be kept in 1x working solution for at least a week without any significant loss of the signal.

Alternatively for faster processing, the samples could be digested first with concentrated nitric acid:

NANOPARTICLES:

Add 5 μ l of nanoparticles to 95 μ l of PBS, add 100 μ l of concentrated nitric acid (use SealRight® 1.5 ml tubes to avoid any potential leakage), transfer to 70-80° C heat block and heat for 2 hrs. Turn off the heat block, allow to cool, remove the samples and spin at 5000 rpm for 5 min in a microcentrifuge. Neutralize by slowly adding 160 μ l of 10 N NaOH. Use 100 μ l for ferene-s assay (if the original sample has a high concentration of Fe use less and add PBS to final volume of 100 μ l, also see notes).

CELLS LOADED WITH NANOPARTICLES:


Wash the cells with PBS (make sure to count the cells if need to determine the amount of Fe/cell). Transfer the cells to 1.5 ml SealRight® tubes and spin at 5000 rpm for 5 min in a microcentrifuge. Aspirate carefully without disrupting the pellet (could be frozen at 80° C). Resuspend the cells in PBS. To digest the cells add 100 μ l of concentrated nitric acid to100 μ l of cell suspension and transfer to 70-80° C heat block and heat for 2 hrs. Turn off the heat block, allow to cool, remove the samples and spin at 5000 rpm for 5 min in a microcentrifuge. Neutralize by slowly adding 160 μ l of 10 N NaOH.

FERENE-S ASSAY:

Add 100 μ l of digested and neutralized sample to 900 μ l of 1x working solution, mix well and leave at room temperature for at least 30 min. Transfer 300 μ l to each well of a 96-well plate in triplicates and read the absorbance at 595 nm.

Include Fe standards with a range of $(0-4 \ \mu g)$ such as 0.1 μg , 0.2 μg , 0.5 μg , 1.0 μg , 2.0 μg and 4.0 μg (total Fe in 1x working solution).

Notes: Samples with high concentration of Fe can be further diluted in 1x working solution. SpectraMax-M5 plate reader from Molecular Devices allows for absorbance readings as high as 3. If the absorbance readings are higher than 3 dilute the samples until the readings are ≤ 3 . If the concentration of Fe in the sample is low, all of the digested and neutralized sample can be added to 1000 μ l of 1x working solution.

SUPPLEMENTARY FIGURES

Figure S1: Formation of iron ferene-s complex (Fe^{2+} : ferene-s) in the working solution occurs rapidly when using FeCl₃ standards. Tests were conducted at room temperature. Once formed the complex is stable for at least 1 week, see Supplementary Table S6 (below).

SUPPLEMENTARY TABLES

Supplementary Table S1. Molar absorptivity (ε) calculation for ferene-s and ferrozine in the working solution (1 ml cuvette), *A* is the net absorbance obtained from the average of a least 3 experiments. Calculated from Beer-Lambert law $A = \varepsilon cl$, where l = 1cm.

on concentra	ition (c)	A	ε	
(<i>µ</i> g/ml)	(<i>µ</i> M)		(µM⁻¹cm⁻¹)	(M ⁻¹ cm ⁻¹)
Ferene-s				
0.0	0.00	0.00		
0.1	1.79	0.07	0.036634	36634
0.2	3.58	0.12	0.034547	34547
0.5	8.95	0.31	0.035545	35545
1	17.9	0.61	0.034462	34462
2	35.8	1.26	0.035317	35317
4	71.6	2.48	0.034657	34657
			Mean ± SD	35194 ± 831
Ferrozine				
0.0	0.0	0.00		
0.1	1.79	0.05	0.028686	28686
0.2	3.58	0.10	0.027336	27336
0.5	8.95	0.25	0.027520	27520
1	17.9	0.49	0.027371	27371
2	35.8	0.98	0.027453	27453
4	71.6	1.96	0.027390	27390

Supplementary Table S2. Molar absorptivity calculation for ferene-s and ferrozine in the working solution (96-w plate)), *A* is the net absorbance obtained from the average of a least 3 experiments (calculated from Beer-Lambert law $A = \varepsilon cl$, assuming that *l* is ~0.88 cm for a volume 300 µl in each well).

(µg/ml) Ferene-s	(<i>µ</i> M)		(µM⁻¹cm⁻¹)	(1.4-1
				(M ⁻¹ cm ⁻¹)
0.0	0.00	0.00		
0.1	1.79	0.06	0.0354854	35485
0.2	3.58	0.10	0.0324236	32424
0.5	8.95	0.27	0.0336640	33664
1	17.9	0.52	0.0323451	32345
2	35.8	1.04	0.0325728	32553
4	71.6	2.04	0.0324536	32454
			Mean ± SD	33157 ± 1242
Ferrozine				
0.0	0.0	0.00		
0.1	1.79	0.05	0.0292548	29255
0.2	3.58	0.09	0.0273937	27394
0.5	8.95	0.29	0.0270728	27073
1	17.9	0.41	0.0267722	26772
2	35.8	0.54	0.0268541	26854
4	71.6	1.60	0.0266060	26606
			Mean ± SD	27326 ± 984

Supplementary Table S3. Net absorbance readings of iron standards for ferene-s in the working solution (1 ml cuvette). Net absorbance = absorbance of the sample – absorbance of the working solution.

Iron cor	ncentration (c)			Net absorb	oance			
(<i>µ</i> g/ml)	(<i>µ</i> M)	exp1	exp2	ехр3	exp4	mean	SD	% CV
0	0	0	0	0	0	0	0	0
0.1	1.79	0.069	0.063	0.065	0.065	0.066	0.0025	3.83
0.2	3.58	0.126	0.118	0.125	0.125	0.124	0.0037	2.96
0.5	8.95	0.313	0.314	0.316	0.331	0.318	0.0081	2.53
1.0	17.9	0.616	0.582	0.620	0.651	0.617	0.0278	4.50
2.0	35.8	1.235	1.268	1.258	1.293	1.265	0.0262	2.07
4.0	71.6	2.468	2.498	2.346	2.619	2.482	0.1224	4.52
Slope		0.616	0.626	0.590	0.645	0.622	0.0267	4.30

Supplementary Table S4. Absorbance readings of iron standards for ferene-s in the working solution (96-w plate). Net absorbance = absorbance of the sample – absorbance of the working solution, total net absorbance = net absorbance \times total volume/volume of sample in each well (1000/300).

		exp1	exp2	ехр3	exp4	mean	SD	% CV
lron conce (µg/ml)	entration (c) (µM)			Net absor	bance			
0	0	0	0	0	0	0	0	0
0.1	1.79	0.062	0.053	0.053	0.058	0.057	0.0044	7.71
0.2	3.58	0.104	0.100	0.100	0.109	0.103	0.0043	4.13
0.5	8.95	0.264	0.266	0.265	0.277	0.268	0.0061	2.26
1.0	17.9	0.515	0.484	0.515	0.546	0.515	0.0253	4.91
2.0	35.8	1.020	1.042	1.022	1.065	1.037	0.0210	2.02
4.0	71.6	2.021	2.062	1.941	2.166	2.048	0.0221	4.57
Slope		0.504	0.516	0.487	0.540	0.511	0.0267	4.31
Iron conc	entration (c)			Total net al	bsorbance			
(<i>µ</i> g/ml)	(<i>µ</i> M)							
0	0	0	0	0	0	0	0	(
0.1	1.79	0.207	0.177	0.177	0.193	0.187	0.0145	7.78
0.2	3.58	0.347	0.333	0.333	0.363	0.338	0.0142	4.22
0.5	8.95	0.880	0.887	0.883	0.923	0.883	0.0202	2.29
1.0	17.9	1.717	1.613	1.717	1.820	1.682	0.0844	5.02
2.0	35.8	3.400	3.473	3.407	3.550	3.427	0.0700	2.04
4.0	71.6	6.734	6.873	6.470	7.220	6.693	0.3121	4.66
Slope		1.680	1.721	1.623	1.798	1.675	0.0737	4.4(

Supplementary Table S5. Net absorbance readings of iron standards for ferene-s in the working solution (96-w plate with pathcheck correction). Net absorbance = absorbance of the sample – absorbance of the working solution. A cuvette containing working solution was used as the reference.

Iron cor	ncentration (c))		Net absorb	oance		
(<i>µ</i> g/ml)	(<i>µ</i> M)	exp1	exp2	ехр3	mean	SD	% CV
0	0	0	0	0	0	0	0
0.1	1.79	0.069	0.073	0.075	0.072	0.0031	4.22
0.2	3.58	0.136	0.135	0.139	0.137	0.0021	1.52
0.5	8.95	0.317	0.330	0.321	0.322	0.0067	2.06
1.0	17.9	0.646	0.664	0.642	0.651	0.0117	1.80
2.0	35.8	1.288	1.264	1.263	1.271	0.0141	1.11
4.0	71.6	2.466	2.493	2.496	2.485	0.0165	0.66
Slope		0.618	0.621	0.622	0.621	0.0023	0.36

		day 1	day 6	day 12	day 21	mean	SD	% CV
<i>lron conce</i> (µg/ml)	entration (c) (μM)			Net absorb	ance			
0	0	0	0	0	0	0	0	0
0.1	1.79	0.060	0.050	0.041	0.057	0.052	0.0084	16.2
0.2	3.58	0.105	0.093	0.086	0.095	0.095	0.0078	8.28
0.5	8.95	0.263	0.246	0.226	0.240	0.244	0.0153	6.29
1.0	17.9	0.515	0.495	0.472	0.483	0.491	0.0184	3.74
2.0	35.8	1.021	0.987	0.964	0.981	0.988	0.0239	2.42
4.0	71.6	2.049	2.006	2.003	2.010	2.017	0.0215	1.07
Slope		0.510	0.501	0.501	0.501	0.504	0.0047	0.94
<i>lron conc</i> (µg/ml)	entration (c) (μΜ)			Total net abs	sorbance			
0	0	0	0	0	0	0	0	C
0.1	1.79	0.200	0.167	0.137	0.190	0.173	0.0282	16.24
0.2	3.50	0.350	0.310	0.287	0.317	0.316	0.0262	8.28
0.5	8.95	0.877	0.820	0.753	0.800	0.813	0.0511	6.29
1.0	17.9	1.717	1.650	1.573	1.610	1.638	0.0614	3.74
2.0	35.8	3.403	3.290	3.213	3.270	3.294	0.0797	2.42
4.0	71.6	6.830	6.687	6.677	6.700	6.723	0.0718	1.07
Slope		1.702	1.671	1.671	1.671	1.681	0.0157	0.94

Supplementary Table S6. Stability of absorbance readings of iron standards for ferene-s in working solution for up to 21 days (96-w plate).

Supplementary Table S7. *Total net absorbance* of iron standards and the slope of standard curves in working solution (96-w plate).

Fe (<i>µ</i> g/ml)	exp1	exp2	ехр3	exp4	exp5	mean	SD	
0	0	0	0	0	0	0	0	
0.1	0.176	0.213	0.190	0.190	0.264	0.207	0.035	
0.2	0.311	0.377	0.364	0.324	0.458	0.367	0.057	
0.5	0.946	0.931	0.824	0.868	0.995	0.913	0.067	
1.0	1.782	1.794	1.623	1.730	1.848	1.756	0.085	
2.0	3.487	3.516	3.329	3.468	3.454	3.451	0.072	
4.0	6.736	7.277	6.639	6.867	6.860	6.867	0.243	
Slope	1.688	1.806	1.657	1.712	1.693	1.712	0.057	