Synthesis of AgN₅ and its extended 3D energetic framework

Chengguo Sun et al.

Supplementary Figure 1 | Optical photographs of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$ crystals. Three crystals are enlarged for illustration.

Supplementary Figure 2 | Topological representation of the 3D framework in $\left[Ag(NH_3)_2\right]^+ \left[Ag_3(N_5)_4\right]^-$.

Supplementary Figure 3 | Raman spectrum of an AgN₃ reference sample.

Supplementary Figure 4 | TG-DSC curves of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$ under an argon atmosphere at 5 K/min.

Supplementary Figure 5 | The proposed thermal decomposition process of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$.

Supplementary Figure 6 | The mass spectra of selected ion monitoring scan of the gas products obtained from the thermal decomposition of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$ under argon.

Supplementary Figure 7 | The XRD powder pattern of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$ before thermal decomposition.

Supplementary Figure 8 | Optical photographs of the thermal-decomposition residues of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$.

Supplementary Figure 9 | TG-DSC curves of the AgN₅ complex under an argon atmosphere at 5 K/min.

Supplementary Table 1 | The impact sensitivity Friction sensitivity of $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$ and comparison with Nano-CL-20, HMX and RDX

Sample	$[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$	Nano CL-20 ^c	$RDX (5-class)^d$	spherical β-HMX ^e
H_{50} value (cm)	73.8 ^a	29.4	21.8	54.1
Explosive probability P (%)=76	76 ^b	66	80	80
^a : Testing Conditions.Test temperature:24 °C, Relative humidity: 60%, Hammer weight: 2.0 kg.				
^b Testing Conditions. Friction instrument: BM-B 20Z126, Test temperature: 24 °C, Relative humidity: 60%, Sample				
weight :20mg, Pressure:2.45 Mpa; Angle: 66°.				
^c Supplementary Reference 1				
^d Supplementary Reference 2				
^e Supplementary Reference 3				

$Ag_4H_6N_{22}$				
Formula	$[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$			
Formula weight	745.75 g \cdot mol ⁻¹			
Temperature	123.15 K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	$P2_{l}/c$			
Cell parameters	<i>a</i> = 9.1248(18) Å <i>b</i> = 9.1238(18) Å <i>c</i> =9.8307(19) Å			
	$\alpha = 90^{\circ} \beta = 108.963(5)^{\circ} \gamma = 90^{\circ}$			
Cell volume	774.0(3) Å ³			
Formula Z	2			
Calc. density	$3.200 \text{ g} \cdot \text{cm}^{-3}$			
Absorption coefficient	5.032 mm^{-1}			
F(000)	696			
Crystal size	$0.22\times0.25\times0.26~mm$			
Theta range for data collection	2.360 to 26.366°			
Limiting indices	-11<=h<=11, -11<=k<=10, -12<=l<=12			
Reflections collected / unique	5590/1554 [R(int) = 0.0468]			
Absorption correction	Semi-empirical from equivalents			
Max. and min. transmission	0.7457 and 0.5708			
Refinement method	Full-matrix least-squares on F^2			
Goodness-of-fit on F ²	1.142			
Final R indices [I>2sigma(I)]	$R_1 = 0.0310$, $wR_2 = 0.0799$			
R indices (all data)	$R_1 = 0.0333, wR_2 = 0.0817$			
Largest diff. peak and hole	0.648 and -1.243 $e \cdot Å^{-3}$			
CSD	433114			

Supplementary Table 2 | Crystallographic data for $[Ag(NH_3)_2]^+[Ag_3(N_5)_4]^-$

parameter	bond length(Å)	parameter	bond length(Å)
Ag(1)-N(3)	2.375(3)	N(2)-N(3)	1.323(4)
$Ag(1)-N(3)^{\#1}$	2.375(3)	N(3)-N(4)	1.330(4)
$Ag(1)-N(7)^{#2}$	2.513(3)	$N(4)-Ag(2)^{\#4}$	2.370(3)
$Ag(1)-N(7)^{\#3}$	2.513(3)	N(4)-N(5)	1.323(4)
$Ag(1)-N(10)^{#4}$	2.669(3)	N(6)-N(7)	1.327(4)
$Ag(1)-N(10)^{\#5}$	2.669(3)	N(6)-N(10)	1.330(4)
Ag(3)-N(11)	2.110(3)	$N(7)-Ag(1)^{\#9}$	2.513(3)
Ag(3)-N(11) ^{#6}	2.110(3)	N(7)-N(8)	1.320(4)
Ag(2)-N(1)	2.332(3)	N(8)-N(9)	1.318(4)
$Ag(2)-N(4)^{\#7}$	2.370(3)	$N(9)-Ag(2)^{\#10}$	2.365(3)
Ag(2)-N(6)	2.336(3)	N(9)-N(10)	1.328(4)
$Ag(2)-N(9)^{\#8}$	2.365(3)	N(11)-H(11A)	0.9100
N(1)-N(2)	1.327(4)	N(11)-H(11B)	0.9100
N(1)-N(5)	1.336(4)	N(11)-H(11C)	0.9100

Supplementary Table 3 | Bond lengths.

Symmetry code: #1: -x+2, -y+1, -z+1 #2: -x+1, -y+1, -z+1 #3: x+1, y, z #4: -x+1, y-1/2, z+1/2 #5: x+1, -y+3/2, z+1/2 #6: -x+1, -y+2, -z+1 #7: -x+1, y+1/2, -z+1/2 #8: -x, y-1/2, z+1/2 #9: x-1, y, z #10: -x, y+1/2, -z+1/2.

Supplementary Table 4	Bond angles.

parameter	bond angle(°)	parameter	bond angle(°)
$N(3)-Ag(1)-N(3)^{\#1}$	180.0	N(3)-N(2)-N(1)	107.2(3)
$N(3)^{\#1}$ -Ag(1)-N(7) ^{#3}	85.55(9)	N(2)-N(3)-Ag(1)	125.8(2)
$N(3)-Ag(1)-N(7)^{\#3}$	94.45(9)	N(2)-N(3)-N(4)	108.4(2)
$N(3)^{\#1}-Ag(1)-N(7)^{\#2}$	94.45(9)	N(4)-N(3)-Ag(1)	125.3(2)
$N(3)-Ag(1)-N(7)^{#2}$	85.55(9)	N(3)-N(4)-Ag(2) ^{#4}	124.62(19)
N(3)-Ag(1)-N(10) ^{#4}	86.51(9)	N(5)-N(4)-Ag(2) ^{#4}	121.1(2)
$N(3)^{\#1}$ -Ag(1)-N(10) ^{\#5}	86.50(9)	N(5)-N(4)-N(3)	108.6(3)
$N(3)^{\#1}-Ag(1)-N(10)^{\#4}$	93.50(9)	N(4)-N(5)-N(1)	106.8(3)
$N(3)-Ag(1)-N(10)^{\#5}$	93.49(9)	N(7)-N(6)-Ag(2)	128.6(2)
$N(7)^{#2}$ -Ag(1)-N(7) ^{#3}	180.0	N(7)-N(6)-N(10)	107.7(2)
$N(7)^{#2}$ -Ag(1)-N(10) ^{#5}	85.18(9)	N(10)-N(6)-Ag(2)	122.8(2)
$N(7)^{#3}$ -Ag(1)-N(10) ^{#5}	94.82(9)	N(6)-N(7)-Ag(1) ^{#9}	123.4(2)
$N(7)^{#2}$ -Ag(1)-N(10) ^{#4}	94.82(9)	N(8)-N(7)-Ag(1) ^{#9}	123.8(2)
$N(7)^{#3}$ -Ag(1)-N(10) ^{#4}	85.18(9)	N(8)-N(7)-N(6)	108.7(3)
$N(10)^{#4}$ -Ag(1)-N(10) ^{#5}	180.0	N(9)-N(8)-N(7)	107.4(2)
N(11)-Ag(3)-N(11) ^{#6}	180.00(13)	$N(8)-N(9)-Ag(2)^{\#10}$	128.4(2)
N(1)-Ag(2)-N(4) ^{#7}	97.19(9)	N(8)-N(9)-N(10)	109.0(3)
N(1)-Ag(2)-N(6)	141.14(9)	$N(10)-N(9)-Ag(2)^{\#10}$	122.6(2)
$N(1)-Ag(2)-N(9)^{\#8}$	93.97(9)	N(9)-N(10)-N(6)	107.2(3)
N(6)-Ag(2)-N(4) ^{#7}	99.67(9)	Ag(3)-N(11)-H(11A)	109.5
$N(6)-Ag(2)-N(9)^{\#8}$	95.60(10)	Ag(3)-N(11)-H(11B)	109.5
$N(9)^{#8}$ -Ag(2)-N(4) ^{#7}	139.30(9)	Ag(3)-N(11)-H(11C)	109.5
N(2)-N(1)-Ag(2)	128.2(2)	H(11A)-N(11)-H(11B)	109.5
N(2)-N(1)-N(5)	109.0(2)	H(11A)-N(11)-H(11C)	109.5
N(5)-N(1)-Ag(2)	121.9(2)	H(11B)-N(11)-H(11C)	109.5

Symmetry code: #1: -x+2, -y+1, -z+1 #2: -x+1, -y+1, -z+1 #3: x+1, y, z #4: -x+1, y-1/2, z+1/2 #5: x+1, -y+3/2, z+1/2 #6: -x+1, -y+2, -z+1 #7: -x+1, y+1/2, -z+1/2 #8: -x, y-1/2, z+1/2 #9: x-1, y, z #10: -x, y+1/2, -z+1/2.

D-HA	D-H(Å)	HA(Å)	DA(Å)	D-HA(°)
N(11)-H(11A)N(2)	0.91	2.50	3.079(4)	122.1
N(11)-H(11A)N(8) ^{#3}	0.91	2.31	3.112(4)	146.6
N(11)-H(11B)N(5) ^{#2}	0.91	2.27	3.152(4)	162.1
N(11)-H(11C)N(3) ^{#11}	0.91	2.69	3.289(4)	124.2
N(11)-H(11C)N(10) ^{#6}	0.91	2.44	3.257(4)	148.7

Supplementary Table 5 | Hydrogen bonds for [Ag(NH₃)₂]⁺[Ag₃(N₅)₄]⁻.

Symmetry code: #1: -x+2, -y+1, -z+1 #2: -x+1, -y+1, -z+1 #3: x+1, y, z #4: -x+1, y-1/2, z+1/2 #5: x+1, -y+3/2, z+1/2 #6: -x+1, -y+2, -z+1 #7: -x+1, y+1/2, -z+1/2 #8: -x, y-1/2, z+1/2 #9: x-1, y, z #10: -x, y+1/2, -z+1/2 #11: x, -y+3/2, z+1/2.

parameter	torsion angle(°)	parameter	torsion angle(°)
$Ag(1)-N(3)-N(4)-Ag(2)^{#4}$	-18.9(3)	N(2)-N(1)-N(5)-N(4)	0.0(3)
Ag(1)-N(3)-N(4)-N(5)	-172.3(2)	N(2)-N(3)-N(4)-Ag(2) ^{#4}	153.5(2)
Ag(1) ^{#9} -N(7)-N(8)-N(9)	-158.2(2)	N(2)-N(3)-N(4)-N(5)	0.0(3)
Ag(2)-N(1)-N(2)-N(3)	-168.9(2)	N(3)-N(4)-N(5)-N(1)	0.0(3)
Ag(2)-N(1)-N(5)-N(4)	169.74(18)	N(5)-N(1)-N(2)-N(3)	0.0(3)
$Ag(2)^{#4}-N(4)-N(5)-N(1)$	-154.6(2)	N(6)-N(7)-N(8)-N(9)	-0.3(4)
Ag(2)-N(6)-N(7)-Ag(1) ^{#9}	-10.5(4)	N(7)-N(6)-N(10)-N(9)	-0.4(4)
Ag(2)-N(6)-N(7)-N(8)	-168.5(2)	$N(7)-N(8)-N(9)-Ag(2)^{\#10}$	-179.4(2)
Ag(2)-N(6)-N(10)-N(9)	169.3(2)	N(7)-N(8)-N(9)-N(10)	0.1(4)
$Ag(2)^{\#10}-N(9)-N(10)-N(6)$	179.7(2)	N(8)-N(9)-N(10)-N(6)	0.2(4)
N(1)-N(2)-N(3)-Ag(1)	172.25(19)	N(10)-N(6)-N(7)-Ag(1) ^{#9}	158.5(2)
N(1)-N(2)-N(3)-N(4)	0.0(3)	N(10)-N(6)-N(7)-N(8)	0.4(4)

Supplementary Table 6 | Torsion angles.

Symmetry code: #1: -x+2, -y+1, -z+1 #2: -x+1, -y+1, -z+1 #3: x+1, y, z #4: -x+1, y-1/2, z+1/2 #5: x+1, -y+3/2, z+1/2 #6: -x+1, -y+2, -z+1 #7: -x+1, y+1/2, -z+1/2 #8: -x, y-1/2, z+1/2 #9: x-1, y, z #10: -x, y+1/2, -z+1/2.

Supplementary References

1. Guo, X., Ouyang, G., Liu, J., Li, Q., Wang, L., Gu, Z., & Li, F. Massive preparation of reduced-sensitivity nano CL-20 and its characterization. *J. Energ. Mater.*, **33(1)**, 24-33 (2015).

2. Jiang, X., Guo, X., Ren, H., & Jiao, Q. Preparation and characterization of desensitized ε-HNIW in solvent-antisolvent recrystallizations. *Cent. Eur. J. Energ. Mater.*, **9(3)**, 219-236 (2012).

3. Song, X., Wang, Y., An, C., Guo, X., & Li, F.. Dependence of particle morphology and size on the mechanical sensitivity and thermal stability of octahydro-1, 3, 5, 7-tetrazocinCompeting interests: The authors declare no competing financial interests.e. *J. Hazard. Mater.*, **159(2-3)**, 222-229 (2008).